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Key Points:7

• Six alternative flux profiles fit to a Martin curve yield large differences in atmo-8

spheric carbon.9

• Structural uncertainty comprises one third of total uncertainty in the ocean’s bi-10

ological pump.11

Plain Language Summary12

The ocean’s “biological pump” regulates atmospheric carbon dioxide levels and cli-13

mate by transferring organic carbon produced at the surface by phytoplankton to the14

ocean interior via “marine snow”, where the organic carbon is consumed and respired15

by microbes. This surface to deep transport is usually described by a power-law rela-16

tionship of sinking particle concentration with depth. Uncertainty in biological pump17

strength can be related to different variable values (“parametric” uncertainty) or the un-18

derlying equations (“structural” uncertainty) that describe organic matter export. We19

evaluate structural uncertainty using an ocean biogeochemistry model by substituting20

six alternative remineralization profiles fit to a reference power-law curve. Structural un-21

certainty makes a substantial contribution, about one third in atmospheric pCO2 terms,22

to total uncertainty of the biological pump, highlighting the importance of improving23

biological pump characterization from observations and its mechanistic inclusion in cli-24

mate models.25
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Abstract26

The ocean’s “biological pump” significantly modulates atmospheric carbon dioxide lev-27

els. However, the complexity and variability of processes involved introduces uncertainty28

in interpretation of transient observations and future climate projections. Much work29

has focused on “parametric uncertainty”, particularly determining the exponent(s) of30

a power-law relationship of sinking particle flux with depth. Varying this relationship’s31

functional form introduces additional “structural uncertainty”. We use an ocean biogeo-32

chemistry model substituting six alternative remineralization profiles fit to a reference33

power-law curve, to characterize structural uncertainty, which, in atmospheric pCO2 terms,34

is roughly 50% of the parametric uncertainty associated with varying the power-law ex-35

ponent within its plausible global range, and similar to uncertainty associated with re-36

gional variation in power-law exponents. The substantial contribution of structural un-37

certainty to total uncertainty highlights the need to improve characterization of biolog-38

ical pump processes, and compare the performance of different profiles within Earth Sys-39

tem Models to obtain better constrained climate projections.40

1 Introduction41

Carbon and nutrients are consumed by phytoplankton in the surface ocean dur-42

ing primary production, leading to a downward flux of organic matter (Fig. 1). This “ma-43

rine snow” is transformed, respired, and degraded by heterotrophic organisms in deeper44

waters, ultimately releasing those constituents back into dissolved inorganic form. Oceanic45

overturning and turbulent mixing returns resource-rich deep waters back to the sunlit46

surface layer, sustaining global ocean productivity. The “biological pump” maintains this47

vertical gradient in nutrients through uptake, vertical transport, and remineralization48

of organic matter, storing carbon in the deep ocean that is isolated from the atmosphere49

on centennial and millennial timescales, lowering atmospheric CO2 levels by hundreds50

of microatmospheres (Sarmiento & Toggweiler, 1984; Knox & McElroy, 1984; Volk & Hof-51

fert, 1985; Ito et al., 2005). The biological pump resists simple mechanistic character-52

ization due to the complex suite of biological, chemical, and physical processes involved53

(Boyd et al., 2019), so the fate of exported organic carbon is typically described using54

a depth-dependent profile to evaluate the degradation of sinking particulate matter.55

Various remineralization profiles can be derived from assumptions about particle56

degradability and sinking speed(s) (Suess, 1980; Martin et al., 1987; Middelburg, 1989;57
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Figure 1. Schematic of the biological pump. Primary production by phytoplankton takes

up carbon and nutrients in the sunlit surface ocean creating a pool of sinking particulate or-

ganic matter. Unused carbon and nutrients are subducted from the surface and conservatively

transported into the ocean interior (the “preformed” carbon concentration, Cpre). Exported and

sinking particles are remineralized at depth returning the organic matter to its inorganic con-

stituents that are accumulated by watermasses (as the “biological” carbon concentration, Cbio).

Upwelling from the deep ocean returns both preformed and remineralized carbon and nutrients to

the surface mixed layer.

Banse, 1990; Armstrong et al., 2001; Lutz et al., 2002; Rothman & Forney, 2007; Kri-58

est & Oschlies, 2008; Cael & Bisson, 2018). The ubiquitous “Martin Curve” (Martin et59

al., 1987) is a power-law profile (Eq. 1) that assumes slower-sinking and/or more labile60

organic matter is preferentially depleted near the surface causing increasing sinking speed61

and/or remineralization timescale with depth (Fig. 2a).62

fp(z) = Cpz
−b, (1)63

where fp(z) (moles per square meter per second) representing a fraction of particulate64

flux at depth z (meters), Cp (per meter) corresponds1 to the initial flux from the pro-65

ductive layer near the surface (Buesseler et al., 2020), and b is a nondimensional param-66

eter controlling how fp decreases with depth.67

Considerable effort has been dedicated to determining value(s) for the exponent,68

b (e.g., Martin et al., 1987, 1993; Berelson, 2001; Primeau, 2006; Honjo et al., 2008; Hen-69

son et al., 2012; Gloege et al., 2017; Wilson et al., 2019). Open ocean particulate flux70

observations from the North Pacific (Martin et al., 1987) indicate a b value of 0.858. Fur-71

1 Eq. 1 is often normalized to a reference depth zo but this parameter is readily absorbed into Cp.
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Figure 2. Fraction of sinking particulate organic matter exported from the 50 m surface layer

remaining at each depth for (a) the reference power-law (Eq. 1) with exponents 0.84 ± 0.14,

and six alternative functions (Eq. S1–S6) fit to the reference power-law curve (b = 0.84) by (b)

statistically minimizing the relative error (“RFIT”), or (c) the absolute error (“AFIT”), and (d)

matching the e-folding depth scale of 164 m (“EFD”). See Materials and Methods, Table S1 for

fitting details, coefficients, and fit statistics. Inset plots show the attenuation rate of the export

flux with depth
[
1
f

∂f
∂z
,m−1

]
.

ther analyses of expanded sediment trap datasets suggest a possible range of approxi-72

mately 0.84±0.14 for the global b value (Martin et al., 1993; Berelson, 2001; Primeau,73

2006; Honjo et al., 2008; Gloege et al., 2017), though a much wider range has been ob-74

served when including regional variability in b and optically- and geochemically-derived75

flux estimates (Henson et al., 2012; Guidi et al., 2015; Pavia et al., 2019). This may re-76

sult from differences in temperature (Matsumoto, 2007), microbial community compo-77

sition (Boyd & Newton, 1999), particle composition (Armstrong et al., 2001), oxygen con-78

centration (Devol & Hartnett, 2001), or external factors such as mineral ballasting (Pabortsava79

et al., 2017).80

Uncertainty in the value of b translates to uncertainty in the biological pump’s im-81

pact on the ocean carbon sink, atmosphere-ocean carbon partitioning, and climate model82

projections. Thus, constraining b for the modern ocean and how it may differ in the past,83

or the future, is of much interest from a climate perspective, with one estimate placing84

an economic value of $0.5 trillion USD on reducing these uncertainties (Jin et al., 2020).85

Varying a global value of b between 0.50–1.4 altered atmospheric pCO2 by 86–185µatm86

in an influential modeling study (Kwon et al., 2009): Higher values of b result in enhanced87
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particle remineralization at shallower depths. Shallow watermasses are more frequently88

ventilated, allowing remineralized CO2 to be released back into the atmosphere on shorter89

timescales. Due to this depth-dependence, a small change of degradation depth can ap-90

preciably change atmospheric pCO2 (Yamanaka & Tajika, 1996; Kwon et al., 2009). Vary-91

ing b over the plausible range in global values between 0.70–0.98 produces a more mod-92

est change in atmospheric pCO2, over the range of (-16,+12)µatm (Gloege et al., 2017),93

while the modeled uncertainty in atmospheric pCO2 associated with regional variation94

in b is estimated between 5–15µatm (Wilson et al., 2019).95

Biogeochemical models are subject not only to parametric uncertainty (which value96

for b and how b varies in space and time), but also structural uncertainty, i.e. which equa-97

tion(s) to choose for the vertical flux of organic matter. The Martin Curve power-law98

is an empirical fit to sediment trap data, but several other functional forms have also been99

put forward (Suess, 1980; Middelburg, 1989; Banse, 1990; Armstrong et al., 2001; Lutz100

et al., 2002; Dutkiewicz et al., 2005; Rothman & Forney, 2007; Marsay et al., 2015) that101

fit sediment trap fluxes equivalently well and have equal if not better mechanistic jus-102

tification (Cael & Bisson, 2018). Atmospheric pCO2 and many other global biogeochem-103

ical properties will be affected by this structural uncertainty, so it is critical to evaluate104

the impact of choosing one remineralization profile “shape” over another.105

We assess the effect of remineralization profile shape on biological pump strength106

and evaluate a comprehensive estimate of structural uncertainty in terms of atmosphere-107

ocean carbon partitioning in a global ocean biogeochemistry model. We substitute the108

reference power-law curve for six different remineralization profiles (exponential (Banse,109

1990; Dutkiewicz et al., 2005; Marsay et al., 2015; Gloege et al., 2017), ballast (Armstrong110

et al., 2001; Gloege et al., 2017), double exponential (Lutz et al., 2002), stretched ex-111

ponential (Middelburg, 1989; Cael & Bisson, 2018), rational (Suess, 1980), and gamma112

(Rothman & Forney, 2007) functions2), each corresponding to a basic mechanistic de-113

scription of particle flux (Cael & Bisson, 2018), that are constrained to the reference pro-114

file by statistically minimizing misfits or by matching degradation depth scales (Kwon115

et al., 2009). These simulations indicate that structural uncertainty is an appreciable com-116

ponent, around one third, of total uncertainty for understanding the biological pump:117

changing remineralization functional form alters atmospheric pCO2 by ∼10-15µatm de-118

2 See Supporting Information for derivations of these profiles
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pending on how structural uncertainty is quantified, equivalent to ∼0.08 uncertainty in119

a global value of the power-law exponent, b, and similar to the uncertainty resulting from120

regional variation of b.121

Our results underscore the importance of characterizing basic mechanisms govern-122

ing the biological pump. Furthermore, our results corroborate that depth-dependence123

of these mechanisms is particularly important (Gehlen et al., 2006; Kriest & Oschlies,124

2008): not only is biological pump-driven carbon storage an important control on atmo-125

spheric pCO2, but we find that particle degradation in the upper ocean must also de-126

crease rapidly for a sufficient quantity of carbon to become isolated in the deep ocean.127

While a given flux curve may be chosen for historical reasons or mathematical conve-128

nience, its skill should be compared to those of other idealized flux profile parameter-129

izations in Earth System Models used for projections of future climate.130

2 Materials and Methods131

2.1 Fitting the alternative remineralization curves.132

We fit the alternative functions for export fluxes and remineralization (Fig. 2, Eq.133

S1–S6, see Supporting Information) to the reference power-law curve (Eq. 1) with the134

exponent b = 0.84 using nonlinear regression on the native model grid interfaces to min-135

imize the absolute curve mismatch (“ABS” simulations). Points were weighted equally,136

except for the heavily weighted top level to ensure all the profiles pass through the same137

value as the control profile (i.e. fraction of export from the surface layer is 1.0). We fur-138

ther matched the e-folding depth of remineralization to the reference (“EFD” simula-139

tions) by adding a second heavily weighted point to the reference power-law at 164 m140

depth (z0e
(1/b)), with an export fraction of e−1. In a third set (“RFIT” simulations), the141

nonlinear regression is performed in log-space to minimize the relative error the refer-142

ence profile match. Goodness of fit is evaluated by the Standard Error of Regression, S,143

which is the sum of squared residuals, divided by statistical degrees of freedom (num-144

ber of points minus number of parameters). Coefficients and S values for the eighteen145

curves are given in Table S1.146
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2.2 Numerical ocean biogeochemistry model.147

Alternative remineralization profiles are substituted into global ocean simulations148

of a coarse resolution (3◦, 15 vertical level) global configuration of the Massachusetts In-149

stitute of Technology general circulation model, MITgcm (Marshall et al., 1997), cou-150

pled to an idealized ocean biogeochemistry model (Najjar et al., 2007; Dutkiewicz et al.,151

2006; Parekh et al., 2006) that captures the magnitude and variation of observed air-sea152

fluxes of CO2 (Lauderdale et al., 2016), and has been widely used in theoretical carbon153

cycle studies (Parekh et al., 2006; Dutkiewicz et al., 2006; Goodwin et al., 2007; Naj-154

jar et al., 2007; Lauderdale et al., 2013, 2017).155

Two-thirds of surface production (which depends on light, nutrients, and iron) is156

channelled into dissolved organic matter that is remineralized with a timescale of 6 months157

(Yamanaka & Tajika, 1997), while one-third is exported via sinking particulate organic158

matter subject to depth-dependent remineralization rates. Elemental biological trans-159

formations are related using fixed stoichiometric ratios RC:N :P :Fe:O2
= 117:16:1:4.68×10−4:-160

170 (Anderson & Sarmiento, 1994). The total ocean-atmosphere carbon inventory is con-161

served as there is no riverine carbon input or sediment carbon burial. Our model includes162

tracers to separate the in situ concentrations of carbon (Fig. 1) into: (i) a component163

subducted from the surface layer and transported conservatively by ocean circulation (the164

“preformed” carbon concentration, Cpre), and (ii) a component that integrates export165

and remineralization of organic matter as a watermass transits the ocean interior (the166

“biological” carbon concentration, Cbio), connecting more directly to the biological pump167

(Ito & Follows, 2005). We integrate simulations for 10,000 years toward steady state in168

atmosphere-ocean carbon partitioning.169

3 Results170

3.1 Varying the exponent of the reference power-law curve.171

Global power-law exponent, b, estimates range from 0.70 (Primeau, 2006) based172

on sediment traps to 0.97 based on inverse models fit to tracer distributions (Kwon &173

Primeau, 2008; Kwon et al., 2009). These values match the global b interquartile range174

of 0.70–0.98 in (Gloege et al., 2017). We integrate three simulations with b = 0.84 ±175

0.14 (Fig. 2a) using the standard power-law parameterization (Eq. 1) to produce a base-176
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line estimate of biological pump parametric uncertainty. The reference simulation has177

the exponent b = 0.84.178

Higher b values cause the fraction of sinking particulate matter to decrease faster179

with depth, that is, attenuation (1/fp · ∂fp/∂z) is higher in the upper ocean, whereas180

lower exponents have less attenuation and a larger proportion of export reaching the deep181

ocean (Figs. 2a and S1a–f). A negative feedback occurs near the surface in our simula-182

tions. For example, when b is increased, higher rates of upper ocean attenuation cause183

an increase in surface nutrient availability, and therefore more overall biological produc-184

tion (see ∆BC , Table S2). Local biological activity enhancement increases local rates of185

particle export, evaluated by integrated fluxes through the deepest mixed layer depth186

(∆Emld, Table S2). However, higher shallow export is compensated by greater upper ocean187

remineralization, due to larger exponent value, resulting instead in reduced export flux188

anomalies through 1 km depth (∆E1km, Table S2), and vice versa when b is decreased.189

The global ocean reservoir of biological carbon changes proportionally with ∆E1km (Figs. 3,190

blue symbols, S1g–i, and ∆Cbio, Table S2) and inversely-proportional to ∆Emld (Fig. S4a).191

3.2 Impact of alternative remineralization curve shape.192

Six alternative remineralization profiles, obtained from simplifying assumptions about193

the balance between particles’ vertical transport and degradation (Eq. S1–S6), are char-194

acterized by objectively evaluating parameters to match the reference power-law curve195

(b = 0.84) as closely as possible (Fig. 2b–d, Table S1): In two groups of simulations,196

parameters are found by statistically minimizing the relative error (“RFIT”) or the ab-197

solute error (“AFIT”) of the nonlinear fit of each curve to the reference profile. In a third198

group of simulations, parameters are found that match the reference curve’s 164 m e-folding199

depth of remineralization (“EFD”, the depth at which the flux has been attenuated to200

a factor of 1/e).201

The simple exponential and gamma function fits are poorer than the other func-202

tions (Fig. 2b–d) because these profiles cannot capture a strong depth-change in rem-203

ineralization. Simulations with lower-attenuation profiles result in increased export fluxes204

through the 1 km depth horizon (∆E1km), and vice versa, as with the simulations vary-205

ing b (Fig. 3). These particulate flux anomalies translate into changes in the distribu-206

tion of biological carbon (Cbio), with positive export flux anomalies corresponding to in-207
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crease in the biological carbon pool (Fig. 3), while negative export flux anomalies result208

in lower biological carbon concentrations (Fig. S3). For instance, in RFIT simulations,209

the exponential and gamma profiles show an increase in 1 km export fluxes and biolog-210

ical carbon storage, while the reverse occurs for exponential and gamma profiles in AFIT211

and EFD simulations. The ballast profile has a more complex distribution of biological212

carbon anomalies in surface, intermediate, and deep waters (Fig. S3) such that the re-213

lationship between export flux and ∆Cbio is better captured by considering deeper hori-214

zons (e.g. 2 km, Fig. S4b).215

3.3 Evaluating structural uncertainty of the biological pump.216

Altering the strength of the biological pump leads to changes in air-sea carbon bal-217

ance. The reference simulation has a steady-state atmospheric pCO2 of 269.3µatm. In-218

creasing b from 0.70 to 0.98 increases pCO2 by 46.36µatm in this model (range: -21.6–219

24.8µatm, wide grey bars in Fig. 4, Table S2). This is higher than the “nutrient restor-220

ing” case in (Kwon et al., 2009), but lower than their “constant export” case, consistent221

with our model’s dynamic biological productivity response.222

Alternative profiles with reduced export flux through 1 km and reduced biological223

carbon storage result in increased atmospheric pCO2, and vice versa (Fig. 4, Table S3).224

The double exponential function has the most free parameters (four) and therefore fits225

the power-law extremely well, producing small differences in atmospheric pCO2 (less than226

2µatm). The rational function also agrees well, but could produce larger anomalies if227

the reference profile’s b-value was further from 1.0, i.e. 0.70. Stretched exponential and228

ballast curves produce moderate changes in atmospheric pCO2 but are generally smaller229

than, or similar to, the 0.14 changes in b for the power-law curves (Fig. 4). However, the230

simple exponential and gamma anomalies clearly deviate from the other simulations, with231

greater biological carbon concentrations and drawdown of atmospheric CO2 for the RFIT232

simulations, and the inverse for AFIT and EFD simulations. Export fluxes and reminer-233

alization are significantly different in the upper ocean for these parameterizations, which234

can be explained by their small dynamic range in attenuation (Fig. 2 insets): simple ex-235

ponential and gamma parameterizations cannot have both short remineralization length-236

scales in the upper ocean and long remineralization lengthscales in the deep ocean.237
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Figure 3. Change in the integrated export flux rate [PgC y−1] passing through the 1 km

depth level against integrated biological carbon reservoir anomaly [PgC], both with respect to the

power-law curve where b=0.84 (Martin et al., 1987). Three power-law simulations (b=0.84±0.14)

are indicated by the blue symbols (diamond, cross, and pentagon), circle, square, and triangle

symbols indicate that profile coefficients (Eq. S1–S6) were derived by minimizing the relative fit

error (“RFIT”), minimizing the absolute fit error (“AFIT”), and fixing the e-folding depth of

remineralization (“EFD”) to the reference power-law curve. Values are given in Tables S2 and S3.

There are multiple ways to compare parametric and structural uncertainty quan-238

titatively. Parametric uncertainty is found by varying the power-law exponent within239

its plausible global range (b = 0.84±0.14), producing atmospheric pCO2 anomalies of240

21.6–24.8µatm (Fig. 4, Table S3). For structural uncertainty, the median change in ab-241

solute atmospheric pCO2 is 12.47±10.67µatm (b-anomaly equivalent of 0.07±0.06) across242

all simulations with alternate functional forms3. For RFIT, AFIT, and EFD simulations243

separately, the medians are 15.15±10.40, 10.65±7.30, and 20.57±15.37µatm, respectively,244

giving a 15.15±4.51µatm grand median (b-anomaly equivalent of 0.09±0.03). Exclud-245

ing profiles with small dynamic ranges in attenuation, the overall medians for RFIT, AFIT,246

and EFD are 10.07±2.32, 7.96±2.69, and 10.57±1.98µatm, respectively, with a 10.07±0.50µatm247

grand median (b-anomaly equivalent of 0.06±0.00). In summary, our results are largely248

robust, indicating a structural uncertainty of 10–15µatm, roughly half of parametric un-249

3 We choose the median±median absolute deviation so that our result is robust to large anomalies

associated with simple exponential and gamma functional forms.
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statistical fits of alternative profiles minimizing relative error (“RFIT”, left), minimizing absolute
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certainty for the biological pump (22–25µatm, b = 0.84± 0.14), analogous to a ∼0.08250

change in b.251

3.4 Role of nonlinearity in the biological pump.252

Our simulations also allow us to tease apart two fundamental aspects of the bio-253

logical pump: In terms of atmospheric CO2 influence, (i) how much is due to ocean bi-254

ological carbon storage, and (ii) how much is due to the shape of remineralization pro-255

file?256

A simulation “NOPOM” represents a hypothetical ocean with no particulate or-257

ganic matter export and without a biological carbon pool. Instead, biological produc-258

tion is channelled into semi-labile dissolved organic matter that is remineralized near the259

surface. Atmospheric pCO2 in NOPOM increases 165.4µatm (Table S2) with respect260

to the reference power-law.261

Compared to NOPOM, the simple exponential simulations in AFIT and EFD have262

significant 1 km export fluxes and large stores of biological carbon (Table S3). That is,263

they have a substantial biological pump, but atmospheric pCO2 is only 95.1 and 72.8µatm264
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lower than NOPOM, respectively. Thus, only about half of the biological pump’s influ-265

ence on atmosphere-ocean carbon partitioning (∼80µatm) can be attributed to export266

of particulate organic matter and biological carbon storage (Fig. S5).267

Now, comparing AFIT/EFD exponential profiles to the reference power-law (or in-268

deed any high dynamic-range curves), there are only modest differences in 1 km export269

fluxes and biological carbon storage. Nevertheless, AFIT/EFD exponential profile 2 km270

export fluxes remain closer to NOPOM than the other curves (Table S3). Thus, we can271

attribute the remaining ∼80µatm atmospheric pCO2 anomaly to the effect of decreas-272

ing remineralization with depth (Fig. 2c–d insets), since attenuation is constant for the273

simple exponential profiles, but varies with the other curves.274

In other words, increasing remineralization lengthscale with depth appears to be275

as important for air-sea carbon partitioning as export and storage of biological carbon276

(Fig. S5).277

4 Discussion and Conclusions278

Atmospheric CO2 levels are intimately tied to the strength of the ocean’s biolog-279

ical pump, comprising linked processes of primary production, export of organic mat-280

ter from the upper ocean, and the degradation of particles back to inorganic constituents281

with depth. The challenge of measuring particulate fluxes via sediment traps, optical prox-282

ies, or geochemical methods (Martin et al., 1987; Berelson, 2001; Honjo et al., 2008; Hen-283

son et al., 2012; Guidi et al., 2015; Pavia et al., 2019), the spatiotemporal variability of284

fluxes, and the complexity of the mechanisms governing them all introduce uncertainty285

into representation of the biological pump in ocean biogeochemistry, ecosystem, and cli-286

mate models. We explored the impact of structural uncertainty—remineralization pro-287

file shape—on atmosphere-ocean carbon partitioning, using seven mechanistically-distinct288

functional forms of particulate organic matter flux that capture observational spread equiv-289

alently well (Cael & Bisson, 2018). Steady-state atmospheric pCO2 is inversely related290

to the biological carbon pool, thus profiles with more efficient export through 1 km, and291

greater biological carbon storage, lead to atmospheric CO2 drawdown.292

In our model, a 0.14 change in the power-law exponent, b, results in a 22–25µatm293

change in atmospheric pCO2, indicating that structural uncertainty revealed by our sim-294

ulations of 10–15µatm is equivalent to ∼0.08 change in the global b value. Thus struc-295
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tural uncertainty is roughly half that of parameteric uncertainty, a substantial portion,296

one third, of total uncertainty in understanding the biological pump. In addition our re-297

sult is in the upper range of the 5-15µatm uncertainty associated with regional varia-298

tion in b (Wilson et al., 2019).299

Historically, the focus been on remineralization lengthscale (Kwon et al., 2009), but300

our results imply that multiple lengthscales of attenuation are critical to the biological301

pump’s global impact, indicating that vertical gradient in attenuation is a first-order con-302

trol on climate. The simple exponential functional form, with constant depth attenua-303

tion, results in much larger atmospheric pCO2 anomalies of ∼80µatm for AFIT and EFD304

simulations, despite being statistically fit to be as similar to the reference power law as305

possible (and similarly for gamma function profiles). This is roughly half the ∼165µatm306

increase that results from removing the biological pump altogether (NOPOM), highlight-307

ing the importance for the air-sea carbon balance, not only of the existence of a biolog-308

ical pump that maintains interior ocean biological carbon stores, but also its non-linearity309

(Fig. S5). More specifically, significant decrease of attenuation with depth is a key fac-310

tor in the biological pump’s modulation of atmospheric CO2 levels. Even when the ex-311

ponential profiles’ parameters are determined by matching the e-folding remineraliza-312

tion depth of the reference power-law curve (Kwon et al., 2009), the result is still large313

atmospheric pCO2 anomalies caused by small dynamic range in attenuation.314

Our study is the first to evaluate structural uncertainty in the ocean’s biological315

pump. Although previous studies have compared individual, or a subset, of the alter-316

native remineralization curves used here (e.g., Yamanaka & Tajika, 1996; Gehlen et al.,317

2006; Kriest & Oschlies, 2008; Gloege et al., 2017) with a focus on minimizing model-318

observational differences, none has attempted to evaluate this structural uncertainty, which319

we do here by comparing six alternative functional forms fit to a reference power-law pro-320

file.321

As Earth System Models continue to rely on simple biological pump parameter-322

izations, our estimate of structural uncertainty underscores the importance of research323

aimed at improving the basic mechanistic characterization of the biological pump (Boyd324

et al., 2019), and particularly the depth-dependence or evolution of these mechanisms.325

A better process-based understanding is critical to choosing between these parameter-326

izations based on their mechanistic underpinnings and thus reducing structural uncer-327
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tainty, because empirical fits to flux measurements alone cannot currently do so (Cael328

& Bisson, 2018). This is even more the case for modeling past climate or projections of329

future change. In our simulations, the parameterizations were forced to be as similar as330

possible, but functional forms based on different processes will have different sensitiv-331

ities to temperature and other phenomena, and therefore will produce divergent projec-332

tions and different climate feedbacks. It would therefore be valuable to compare these333

different functional forms within state-of-the-art Earth System Models to improve con-334

fidence in projections involving biosphere-climate interactions.335
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