Data Availability Statement
The BEST dataset is obtained from http://berkeleyearth.org/data, and the methodological details are provided in the references: Rohde, Muller, Jacobsen, Muller, et al. (2013) and Rohde, Muller, Jacobsen, Perlmutter, et al. (2013). The CMIP6 and CMIP5 outputs can be downloaded from the Earth System Grid Federation (https://esgf-node.llnl.gov/search/cmip6/ and https://esgf-node.llnl.gov/search/cmip5/). Code for the temperature extremes in the ETCCDI indices is archived at https://doi.org/10.5281/zenodo.4903200 (Deng, 2021).
References
Abatzoglou, J. T., Williams, A. P., & Barbero, R. (2019). Global emergence of anthropogenic climate change in fire weather indices.Geophysical Research Letters, 46 (1), 326-336. https://doi.org/10.1029/2018gl080959
Alexander, L. V., & Arblaster, J. M. (2017). Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5. Weather and Climate Extremes, 15 , 34-56. https://doi.org/10.1016/j.wace.2017.02.001
Barnes, E. A., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., & Anderson, D. (2019). Viewing forced climate patterns through an AI Lens.Geophysical Research Letters, 46 (22), 13389-13398. https://doi.org/10.1029/2019gl084944
Barsugli, J. J., & Battisti, D. S. (1998). The basic effects of atmosphere-ocean thermal coupling on midlatitude variability.Journal of the Atmospheric Sciences, 55 (4), 477-493. https://doi.org/10.1175/1520-0469(1998)055<0477:Tbeoao>2.0.Co;2
Batibeniz, F., Ashfaq, M., Diffenbaugh, N. S., Key, K., Evans, K. J., Turuncoglu, U. U., et al. (2020). Doubling of U.S. population exposure to climate extremes by 2050. Earth’s Future, 8 (4), e2019EF001421. https://doi.org/10.1029/2019ef001421
Beaumont, L. J., Pitman, A., Perkins, S., Zimmermann, N. E., Yoccoz, N. G., & Thuiller, W. (2011). Impacts of climate change on the world’s most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 108 (6), 2306-2311. https://doi.org/10.1073/pnas.1007217108
Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., et al. (2021). The ERA5 global reanalysis: Preliminary extension to 1950. Quarterly Journal of the Royal Meteorological Society, 147 (741), 4186-4227. https://doi.org/10.1002/qj.4174
Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74 (368), 829-836. https://doi.org/10.2307/2286407
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., et al. (2011). The twentieth century reanalysis project.Quarterly Journal of the Royal Meteorological Society, 137 (654), 1-28. https://doi.org/10.1002/qj.776
Dai, A., & Bloecker, C. E. (2019). Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Climate Dynamics, 52 (1-2), 289-306. https://doi.org/10.1007/s00382-018-4132-4
Deng, X. (2021). Code for temperature extremes in ETCCDI indices based on the NCAR Command Language. Zenodo . https://doi.org/10.5281/zenodo.4903200
Deng, X., Perkins-Kirkpatrick, S. E., Lewis, S. C., & Ritchie, E. A. (2021). Evaluation of extreme temperatures over Australia in the historical simulations of CMIP5 and CMIP6 models. Earth’s Future, 9 (7), e2020EF001902. https://doi.org/10.1029/2020ef001902
Deser, C. (2020). ”Certain uncertainty: The role of internal climate variability in projections of regional climate change and risk management”. Earth’s Future, 8 (12), e2020EF001854. https://doi.org/10.1029/2020ef001854
Deser, C., Knutti, R., Solomon, S., & Phillips, A. S. (2012). Communication of the role of natural variability in future North American climate. Nature Climate Change, 2 (11), 775-779. https://doi.org/10.1038/nclimate1562
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., et al. (2020). Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 10 (4), 277-286. https://doi.org/10.1038/s41558-020-0731-2
Deser, C., Phillips, A., Bourdette, V., & Teng, H. Y. (2012). Uncertainty in climate change projections: the role of internal variability. Climate Dynamics, 38 (3-4), 527-546. https://doi.org/10.1007/s00382-010-0977-x
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., et al. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105 (18), 6668-6672. https://doi.org/10.1073/pnas.0709472105
Diffenbaugh, N. S., & Scherer, M. (2011). Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Climatic Change, 107 (3-4), 615-624. https://doi.org/10.1007/s10584-011-0112-y
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., et al. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9 (5), 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016
Fischer, E. M., Sedláček, J., Hawkins, E., & Knutti, R. (2014). Models agree on forced response pattern of precipitation and temperature extremes. Geophysical Research Letters, 41 (23), 8554-8562. https://doi.org/10.1002/2014gl062018
Frame, D., Joshi, M., Hawkins, E., Harrington, L. J., & de Roiste, M. (2017). Population-based emergence of unfamiliar climates. Nature Climate Change, 7 (6), 407-411. https://doi.org/10.1038/nclimate3297
Fyfe, J. C., Kharin, V. V., Santer, B. D., Cole, J. N. S., & Gillett, N. P. (2021). Significant impact of forcing uncertainty in a large ensemble of climate model simulations. Proceedings of the National Academy of Sciences of the United States of America, 118 (23), e2016549118. https://doi.org/10.1073/pnas.2016549118
Gaetani, M., Janicot, S., Vrac, M., Famien, A. M., & Sultan, B. (2020). Robust assessment of the time of emergence of precipitation change in West Africa. Scientific Reports, 10 (1), 7670. https://doi.org/10.1038/s41598-020-63782-2
Giorgi, F., & Bi, X. (2009). Time of emergence (TOE) of GHG-forced precipitation change hot-spots. Geophysical Research Letters, 36 (6), L06709. https://doi.org/10.1029/2009gl037593
Grose, M. R., Narsey, S., Delage, F. P., Dowdy, A. J., Bador, M., Boschat, G., et al. (2020). Insights From CMIP6 for Australia’s Future Climate. Earth’s Future, 8 (5), e2019EF001469. https://doi.org/10.1029/2019ef001469
Hawkins, E., Anderson, B., Diffenbaugh, N., Mahlstein, I., Betts, R., Hegerl, G., et al. (2014). Uncertainties in the timing of unprecedented climates. Nature, 511 (7507), E3-E5. https://doi.org/10.1038/nature13523
Hawkins, E., Frame, D., Harrington, L., Joshi, M., King, A., Rojas, M., et al. (2020). Observed emergence of the climate change signal: From the familiar to the unknown. Geophysical Research Letters, 47 (6), e2019GL086259. https://doi.org/10.1029/2019gl086259
Hawkins, E., & Sutton, R. (2009). The potential to narrow uncertainty in regional climate predictions. Bulletin of the American Meteorological Society, 90 (8), 1095-1108. https://doi.org/10.1175/2009bams2607.1
Hawkins, E., & Sutton, R. (2012). Time of emergence of climate signals.Geophysical Research Letters, 39 (1), L01702. https://doi.org/10.1029/2011gl050087
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. (2020). The ERA5 global reanalysis.Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999-2049. https://doi.org/10.1002/qj.3803
Intergovernmental Panel on Climate Change. (2021). Climate Change 2021: The physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change (V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou Eds.). Cambridge, UK and New York, NY, USA: Cambridge University Press.
Jones, D. A., Wang, W., & Fawcett, R. (2009). High-quality spatial climate data-sets for Australia. Australian Meteorological and Oceanographic Journal, 58 (4), 233-248. https://doi.org/10.22499/2.5804.003
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project.Bulletin of the American Meteorological Society, 77 (3), 437-472. https://doi.org/10.1175/1520-0477(1996)077<0437:Tnyrp>2.0.Co;2
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M., et al. (2002). NCEP–DOE AMIP-II Reanalysis (R-2).Bulletin of the American Meteorological Society, 83 (11), 1631-1643. https://doi.org/10.1175/bams-83-11-1631(2002)083<1631:Nar>2.3.Co;2
King, A. D., Donat, M. G., Fischer, E. M., Hawkins, E., Alexander, L. V., Karoly, D. J., et al. (2015). The timing of anthropogenic emergence in simulated climate extremes. Environmental Research Letters, 10 (9), 094015. https://doi.org/10.1088/1748-9326/10/9/094015
King, A. D., van Oldenborgh, G. J., Karoly, D. J., Lewis, S. C., & Cullen, H. (2015). Attribution of the record high Central England temperature of 2014 to anthropogenic influences. Environmental Research Letters, 10 (5). https://doi.org/10.1088/1748-9326/10/5/054002
Kumar, D., & Ganguly, A. R. (2018). Intercomparison of model response and internal variability across climate model ensembles. Climate Dynamics, 51 (1-2), 207-219. https://doi.org/10.1007/s00382-017-3914-4
Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., et al. (2020). Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth System Dynamics, 11 (2), 491-508. https://doi.org/10.5194/esd-11-491-2020
Lurton, T., Balkanski, Y., Bastrikov, V., Bekki, S., Bopp, L., Braconnot, P., et al. (2020). Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model. Journal of Advances in Modeling Earth Systems, 12 (4), e2019MS001940. https://doi.org/10.1029/2019ms001940
Mahlstein, I., Hegerl, G., & Solomon, S. (2012). Emerging local warming signals in observational data. Geophysical Research Letters, 39 (21), L21711. https://doi.org/10.1029/2012gl053952
Mahlstein, I., Knutti, R., Solomon, S., & Portmann, R. W. (2011). Early onset of significant local warming in low latitude countries.Environmental Research Letters, 6 (3), 034009. https://doi.org/10.1088/1748-9326/6/3/034009
Mankin, J. S., Lehner, F., Coats, S., & McKinnon, K. A. (2020). The value of initial condition large ensembles to robust adaptation decision‐making. Earth’s Future, 8 (10), e2012EF001610. https://doi.org/10.1029/2020ef001610
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F., Stouffer, R. J., et al. (2020). Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 6 (26), eaba1981. https://doi.org/10.1126/sciadv.aba1981
Merrifield, A. L., Brunner, L., Lorenz, R., Medhaug, I., & Knutti, R. (2020). An investigation of weighting schemes suitable for incorporating large ensembles into multi-model ensembles. Earth System Dynamics, 11 (3), 807-834. https://doi.org/10.5194/esd-11-807-2020
O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., et al. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9 (9), 3461-3482. https://doi.org/10.5194/gmd-9-3461-2016
Ossó, A., Allan, R. P., Hawkins, E., Shaffrey, L., & Maraun, D. (2021). Emerging new climate extremes over Europe. Climate Dynamics . https://doi.org/10.1007/s00382-021-05917-3
Palmer, T. E., Booth, B. B. B., & McSweeney, C. F. (2021). How does the CMIP6 ensemble change the picture for European climate projections?Environmental Research Letters, 16 (9), 094042. https://doi.org/10.1088/1748-9326/ac1ed9
Perkins, S. E., Moise, A., Whetton, P., & Katzfey, J. (2014). Regional changes of climate extremes over Australia – A comparison of regional dynamical downscaling and global climate model simulations.International journal of climatology, 34 (12), 3456-3478. https://doi.org/10.1002/joc.3927
Perkins-Kirkpatrick, S. E., Fischer, E. M., Angélil, O., & Gibson, P. B. (2017). The influence of internal climate variability on heatwave frequency trends. Environmental Research Letters, 12 (4). https://doi.org/10.1088/1748-9326/aa63fe
Pierce, D. W., Barnett, T. P., Santer, B. D., & Gleckler, P. J. (2009). Selecting global climate models for regional climate change studies.Proceedings of the National Academy of Sciences of the United States of America, 106 (21), 8441-8446. https://doi.org/10.1073/pnas.0900094106
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., et al. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42 , 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009
Rohde, R., Muller, R., Jacobsen, R., Muller, E., Perlmutter, S., Rosenfeld, A., et al. (2013). A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinformatics and Geostatistics: An Overview, 1 (1). https://doi.org/10.4172/2327-4581.1000101
Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S., Rosenfeld, A., Wurtele, J., et al. (2013). Berkeley Earth temperature averaging process. Geoinformatics and Geostatistics: An Overview, 1 (2). https://doi.org/10.4172/2327-4581.1000103
Santer, B. D., Mears, C., Doutriaux, C., Caldwell, P., Gleckler, P. J., Wigley, T. M. L., et al. (2011). Separating signal and noise in atmospheric temperature changes: The importance of timescale.Journal of Geophysical Research: Atmospheres, 116 (D22), D22105. https://doi.org/10.1029/2011jd016263
Seneviratne, S. I., & Hauser, M. (2020). Regional climate sensitivity of climate extremes in CMIP6 versus CMIP5 multi‐model ensembles.Earth’s Future, 8 (9), e2019EF001474. https://doi.org/10.1029/2019EF001474
Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., & Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research: Atmospheres, 118 (4), 1716-1733. https://doi.org/10.1002/jgrd.50203
Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., & Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research: Atmospheres, 118 (6), 2473-2493. https://doi.org/10.1002/jgrd.50188
Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., et al. (2020). Effective radiative forcing and adjustments in CMIP6 models. Atmospheric Chemistry and Physics, 20 (16), 9591-9618. https://doi.org/10.5194/acp-20-9591-2020
Sutton, R., Suckling, E., & Hawkins, E. (2015). What does global mean temperature tell us about local climate? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373 (2054), 20140426. https://doi.org/10.1098/rsta.2014.0426
Tan, X., Gan, T. Y., & Horton, D. E. (2018). Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems. Global Change Biology, 24 (10), 4696-4708. https://doi.org/10.1111/gcb.14329
Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., et al. (2021). Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6.Earth System Dynamics, 12 (1), 253-293. https://doi.org/10.5194/esd-12-253-2021
Thibeault, J. M., & Seth, A. (2014). Changing climate extremes in the Northeast United States: observations and projections from CMIP5.Climatic Change, 127 (2), 273-287. https://doi.org/10.1007/s10584-014-1257-2
Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., et al. (2020). Past warming trend constrains future warming in CMIP6 models. Science Advances, 6 (12), eaaz9549. https://doi.org/10.1126/sciadv.aaz9549
Xie, S. P., Deser, C., Vecchi, G. A., Collins, M., Delworth, T. L., Hall, A., et al. (2015). Towards predictive understanding of regional climate change. Nature Climate Change, 5 (10), 921-930. https://doi.org/10.1038/nclimate2689
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., et al. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2 (6), 851-870. https://doi.org/10.1002/wcc.147
Zhang, X., Hegerl, G., Zwiers, F. W., & Kenyon, J. (2005). Avoiding inhomogeneity in percentile-based indices of temperature extremes.Journal of Climate, 18 (11), 1641-1651. https://doi.org/10.1175/jcli3366.1