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Key Points:

• There indicates a “warm-get-warmer” pattern for some extremes over Aus-
tralia and tropical regions usually show the highest warming

• Compared to CMIP5, the higher warming for some extremes in CMIP6
can lead to earlier time of emergence under the highest scenario

• Internal variability influences the determination of the noise

Abstract

This study focuses on the projections and time of emergence (TOE) for tem-
perature extremes over Australian regions in the phase 6 of Coupled Model
Intercomparison Project (CMIP6) models. The model outputs are based on the
Shared Socioeconomic Pathways (SSPs) from the Tier 1 experiments (i.e., SSP1-
2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) in the Scenario Model Intercomparison
Project (ScenarioMIP), which is compared with the Representative Concentra-
tion Pathways (RCPs) in CMIP5 (i.e., RCP2.6, RCP4.5 and RCP8.5). Further-
more, two large ensembles (LEs) in CMIP6 are used to investigate the effects of
internal variability on the projected changes and TOE. As shown in the tempo-
ral evolution and spatial distribution, the strongest warming levels are projected
under the highest future scenario and the changes for some extremes follow a
“warm-get-warmer” pattern over Australia. Over subregions, tropical Australia
usually shows the highest warming. Compared to the RCPs in CMIP5, the
multi-model medians in SSPs are higher for some indices and commonly exhibit
wider spreads, likely related to the different forcings and higher climate sensitiv-
ity in a subset of the CMIP6 models. Based on a signal-to-noise framework, we
confirm that the emergence patterns differ greatly for different extreme indices
and the large uncertainty in TOE can result from the inter-model ranges of both
signal and noise, for which internal variability contributes to the determination
of the signal. We further demonstrate that the internally-generated variations
influence the noise. Our findings can provide useful information for mitigation
strategies and adaptation planning over Australia.

1 Introduction

Anthropogenic climate change will lead to more severe temperature extremes,
which have significant impacts on society and natural systems (Intergovern-
mental Panel on Climate Change, 2021). To assess possible climate futures,
projections by global climate models from the Scenario Model Intercomparison
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Project (ScenarioMIP; O’Neill et al., 2016) as part of the Coupled Model Inter-
comparison Project phase 6 (CMIP6; Eyring et al., 2016) are useful resources,
and may provide new insights into how temperature extremes are projected to
change under climate change (e.g., Alexander & Arblaster, 2017; Grose et al.,
2020; Sillmann, Kharin, Zwiers, et al., 2013; Thibeault & Seth, 2014).

Over Australia, Alexander and Arblaster (2017) indicated that significant in-
creases (decreases) are projected for the occurrence of warm (cold) extremes by
the end of this century under the intermediate- and highest-emission scenarios
in CMIP5, and that these changes are most distinct in the tropics. Compared
to 29 CMIP5 models, Grose et al. (2020) documented that projected changes
in temperature extremes over Australia are more distinct and span narrower
ranges in seven CMIP6 models. However, the smaller number of models used in
this study may lead to misleading conclusions. Recently, Tebaldi et al. (2021)
demonstrated that the CMIP6 ensemble projects higher warming and larger
spread for global mean temperature compared with CMIP5, which could result
from both a wider range of radiative forcing and higher climate sensitivity in
a subset of CMIP6 models. In the present study, to obtain a more reasonable
comparison with CMIP5, more models are included in the CMIP6 ensemble to
analyze the projected changes of temperature extremes over Australia.

In addition, detecting the time of emergence (TOE) for extremes over Australia
needs investigation. TOE is defined as the time when the externally forced
climate signal (i.e., forced response) emerges from the noise (i.e., natural vari-
ability), suggesting that a significant change is detected and a novel climate
regime become evident (e.g., Hawkins et al., 2020; Hawkins & Sutton, 2012;
King, Donat, et al., 2015). Estimating TOE can provide insights for mitiga-
tion strategies, adaptation planning and scientific community, as the forced
response relative to the background noise may be more relevant for the assess-
ment of climate impacts, compared to the absolute change (Beaumont et al.,
2011; Deutsch et al., 2008; Hawkins et al., 2020; Hawkins & Sutton, 2012; Ossó
et al., 2021). For example, similar absolute changes in extreme temperature can
result in different ecological impacts since extratropical ecosystems are usually
more resilient than tropical ecosystems, as they are adapted to a more variable
climate (Beaumont et al., 2011; Deutsch et al., 2008).

Previous studies have concluded that for mean temperature there is earlier TOE
over tropical regions than that in the extratropics where the noise is generally
larger (e.g., Giorgi & Bi, 2009; Hawkins et al., 2020; Hawkins & Sutton, 2012;
Mahlstein et al., 2012; Mahlstein et al., 2011). Furthermore, for warm and cold
extremes that display larger variability, the signals for these indices tend to
emerge later over both the tropics and extratropics (e.g., King, Donat, et al.,
2015; Tan et al., 2018) relative to mean temperature. Currently, most studies
on TOE have been conducted at global levels, with less detailed analyses over
smaller-scale regions (e.g., Batibeniz et al., 2020; Gaetani et al., 2020; Ossó et
al., 2021), especially for Australia (King, Donat, et al., 2015). Under different
future scenarios, we aim to investigate the TOE of extreme temperatures over
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Australia at the subregional scale.

A variety of methods have been used in TOE assessment, which can lead to
a source of uncertainty (Abatzoglou et al., 2019; Gaetani et al., 2020). A re-
cent study (Gaetani et al., 2020) found that compared to Kolmogorov-Smirnov
(KS) non-parametric test (King, Donat, et al., 2015), the signal-to-noise ratio
(SNR) frameworks exhibit increased uncertainty and later times for TOE over
West Africa (Gaetani et al., 2020). However, the SNR methods facilitate the
separation between signal and noise, and identifying both components and their
interaction physically (e.g., slow-varying ocean conditions and the modes of in-
ternal variability) can deepen our understanding in climate change (e.g., Barnes
et al., 2019; Barsugli & Battisti, 1998). In this study, we adopt the method
by Hawkins and Sutton (2012) and Hawkins et al. (2020) to address the TOE
assessment, which is widely used and allows more cross-study comparisons (e.g.,
Abatzoglou et al., 2019; Gaetani et al., 2020; Hawkins et al., 2020; Hawkins &
Sutton, 2012; Ossó et al., 2021). For the uncertainty in the detection of TOE
in this method, it can arise from inter-model spread not only in the signal, but
also from noise (Hawkins & Sutton, 2012).

Furthermore, as internal variability can also be an important source of uncer-
tainty for regional climate (Dai & Bloecker, 2019; Deser, Knutti, et al., 2012;
Deser, Phillips, et al., 2012; Hawkins & Sutton, 2009; Lehner et al., 2020),
single-model initial-condition large ensembles (SMILEs; hereafter LEs) are an
important tool to investigate the consequences of the intrinsic variability on the
uncertainty in projected changes and TOE of extreme temperatures over Aus-
tralia, of which external forcing and model structure are identical among the
members (e.g., Dai & Bloecker, 2019; Deser, 2020; Deser et al., 2020; Lehner et
al., 2020; Mankin et al., 2020; Perkins-Kirkpatrick et al., 2017; Xie et al., 2015).

Previous research evaluated the ability of CMIP6 models to simulate extreme
temperatures over Australian regions in the historical period (1950-2014), com-
pared these results to the CMIP5 ensemble, and investigated the effects of
internal variability on the corresponding trends based on the LEs in CMIP6
(Deng et al., 2021). Following from this research, the purposes of this study are:
to assess future climate changes of the extremes and the TOE over Australian
regions in both the CMIP6 and CMIP5 models, and to explore the effects of
internal variability on the projected changes and TOE based on LEs in CMIP6.

2 Data and Methods

2.1 Model Data

Although the scenarios in the ScenarioMIP consist of two tiers, we only use
the Tier 1 experiments based on the Shared Socioeconomic Pathway (SSP) sce-
narios: SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, as these sample a varying
range of possible emission futures and contain relatively large number of model
outputs. Among them, SSP1-2.6, SSP2-4.5 and SSP5-8.5 indicate the same nom-
inal stratospheric-adjusted radiative forcing (2.6, 4.5 and 8.5 W m−2) reached in
2100, compared to the scenarios based on Representative Concentration Path-
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ways (RCPs) used in CMIP5 (i.e., RCP2.6, RCP4.5 and RCP8.5); and SSP3-7.0
fills a gap between medium and high end in the range of future forcing pathways,
not included in previous CMIP generations (O’Neill et al., 2016; Tebaldi et al.,
2021). Despite the similarity among the future scenarios in CMIP6 and CMIP5,
it is noted that there are some differences, such as the composition of some
radiatively active gases or species (e.g., CO2 and CH4) and aerosol emissions,
making the resulting effective radiative forcing (ERF) different (Lurton et al.,
2020; Riahi et al., 2017; Tebaldi et al., 2021).

As one aim of this study is to compare the two CMIP ensembles in projected
changes and TOE in extremes, we do not consider the interdependence among
the models and use emergent constraints or any other ways of model weighting to
reduce the differences between CMIP6 and CMIP5 (e.g., Tokarska et al., 2020),
which is similar to the practice by Seneviratne and Hauser (2020). Similar to
Deng et al. (2021), only one ensemble member (typically the first member) in
each model is considered for the main part of analysis. There are 25 models
in CMIP6 and 26 models in CMIP5 for at least one of the future scenarios. In
addition, two LEs under SSP5-8.5 and SSP1-2.6 in CMIP6 are used to investi-
gate the impacts of internal variability on the projected changes and TOE of
the extremes: CanESM5-LE and MIROC6-LE, which contain 25 members and
50 members, respectively. Detailed information on the simulations from CMIP6
and CMIP5 models are listed in the Tables S1 and S2, respectively.

2.2 Temperature indices

As in Deng et al. (2021), based on daily maximum and minimum tempera-
tures (TX and TN), the annualized temperature extremes defined by the Expert
Team on Climate Change Detection and Indices (ETCCDI; Zhang et al., 2011)
are used, which forms a continuous and comprehensive investigation of changes
in extremes, similar to other studies for CMIP5 (e.g., Alexander & Arblaster,
2017; Sillmann, Kharin, Zhang, et al., 2013; Sillmann, Kharin, Zwiers, et al.,
2013; Thibeault & Seth, 2014). Besides diurnal temperature range (DTR), other
extreme indices for temperatures are classified into four categories: absolute in-
dices (hottest day [TXx], coldest day [TXn], warmest night [TNx] and coldest
night [TNn]), threshold indices (summer days [SU], tropical nights [TR] and frost
days [FD]), percentile-based indices (warm days [TX90p], cold days [TX10p],
warm nights [TN90p] and cold nights [TN10p]), and duration indices (warm
spell duration index [WSDI] and cold spell duration index [CSDI]). The boot-
strap resampling procedure by Zhang et al. (2005) is applied to the percentile-
based and duration indices, among which the spells crossing year boundaries are
taken into consideration for WSDI and CSDI. Since the definitions of growing
season length (GSL) and ice days (ID) are not suitable over most of Australia
(Alexander & Arblaster, 2017), we do not use them in this study. Detailed
information on the indices can be found in Table S3.

2.3 Time of Emergence

The TOE is determined using the signal-to-noise framework as detailed by
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Hawkins and Sutton (2012) and Hawkins et al. (2020), which is considered
as the first year when the signal-to-noise ratio (SNR) is larger than nominated
thresholds (e.g., 1 and 2). As suggested by Frame et al. (2017), we consider
SNR=1 as the threshold for an “unusual” climate and SNR=2 as “unfamiliar”.
This approach linearly regresses annual local variations in temperature extremes
onto global mean surface temperature change (�𝐺𝑀𝑆𝑇 ), relative to the base pe-
riod:

𝐿(𝑡) = 𝛼𝐺(𝑡) + 𝛽

where 𝐿(𝑡) represents the regressed 𝐿(𝑡), denoting annual local changes in ex-
tremes over time; 𝐺(𝑡) is a smoothed version of �𝐺𝑀𝑆𝑇 over the same period;
𝛼 defines the linear scaling between 𝐿(𝑡) and 𝐺(𝑡); and 𝛽 is a constant. �𝐺𝑀𝑆𝑇
is smoothed with a “Locally Weighted Scatterplot Smoothing” filter (LOWESS;
Cleveland, 1979) of 21 years, which filters out interannual variability (though re-
taining multi-decadal variability). The signal of local climate change described
by �𝐺𝑀𝑆𝑇 is �G(𝑡), and the noise is defined as the standard deviation of the
residuals (𝐿(𝑡) – �G(𝑡)). The method implies that local variations for some vari-
ables scale well with �𝐺𝑀𝑆𝑇 (Fischer et al., 2014; Seneviratne & Hauser, 2020;
Sutton et al., 2015). It is also noted that internal variability can contribute
to the determination of signal, which may introduce further uncertainty in the
estimate of TOE (Gaetani et al., 2020; Kumar & Ganguly, 2018; Lehner et al.,
2020).

To compare observed SNR with the simulations, Berkeley Earth Surface Tem-
peratures (BEST; Rohde, Muller, Jacobsen, Muller, et al., 2013; Rohde, Muller,
Jacobsen, Perlmutter, et al., 2013) is used in this study. Although TN in BEST
is biased over Australia (Deng et al., 2021), the TX and TN in BEST show higher
correlation compared to Australian gridded climate data (AGCD, previously
termed Australian Water Availability Project [AWAP]; Jones et al., 2009), which
is better than other global datasets, including National Centers for Environmen-
tal Prediction/National Center for Atmospheric Research (NCEP/NCAR) Re-
analysis 1 (NCEP1; Kalnay et al., 1996), NCEP/Department of Energy (DOE)
Reanalysis 2 (NCEP2; Kanamitsu et al., 2002), Twentieth Century Reanalysis
(20CR; Compo et al., 2011), and European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis version 5 (ERA5) with preliminary extension
to 1950 (Bell et al., 2021; Hersbach et al., 2020) (not shown).

2.4 Regional Assessment

According to climatological and geographical conditions (Perkins et al.,
2014; http://www.bom.gov.au/climate/change/about/temp_timeseries.shtml),
Australia is divided into nine sub-regions: AUS (Australia), NA (Northern Aus-
tralia), SA (Southern Australia), SEA (South East Australia), MEA (Middle
Eastern Australia), TA (Tropical Australia), SWA (South West Australia), SSA
(Southern South Australia), CAU (Central Australia), and MWA (Mid-Western
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Australia), shown in Table S4 and Fig. S1, which allows a detailed assessment
over smaller subregions. And the base period is from 1961 to 1990, which is
commonly used and allows us to analyze TOE with respect to a recent period.
Still, we regrid TX and TN to 1° × 1° resolution using bilinear interpolation,
and then calculate extreme indices. In addition, grid boxes containing less than
75% land are masked out (King, van Oldenborgh, et al., 2015).

In the next section, temporal variations from 1950 to 2100 for the ETCCDI
indices in different future scenarios are first analyzed, followed by the spatial
patterns of the changes in the indices over 2071-2011 and 2031-2060. Then, the
SNR and TOE for TXx and TNn is calculated to address when a novel climate
for temperature extremes emerges. For consistency among CMIP6, CMIP5 and
BEST, we calculate the noise in SNR for the period 1950-2005, as the estimation
of noise can stabilize over longer timescale (Dai & Bloecker, 2019; Santer et al.,
2011). Finally, we use two LEs to check the effects of internal variability on the
projected responses of extremes and TOE.

3 Results

3.1 Projected changes

Relative to the base period 1961-1990, Figs. 1 and 2 indicate time series of
the anomalies for the 14 ETCCDI indices averaged over Australia (10-45°S, 110-
155°E) during the period 1950-2100 under different future scenarios in CMIP6
(SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) and CMIP5 (RCP2.6, RCP4.5
and RCP8.5). For the multi-model medians (Fig. 1), consistent with RCPs
in CMIP5 (Fig. 2), the Tier 1 experiments in ScenarioMIP show projected
increases in the absolute indices (TXx, TXn, TNx and TNn) and in the warm
extremes for percentile-based, duration and threshold indices (TX90p, TN90p,
WSDI, SU and TR); in contrast, there are decreases in other cold extremes
(TX10p, TN10p, CSDI and FD).

Among the scenarios, the indices under SSP5-8.5 and RCP8.5 generally show
larger warming evolution, especially by the end of the century. Moreover, ex-
cept for DTR, CSDI and FD (Fig. 1e, k and n), extremes under the SSP3-7.0
fill the gap between SSP2-4.5&RCP4.5 and SSP5-8.5&RCP8.5. For example,
in the year 2100, the median of TXx under SSP3-7.0 is 4.58°C, lower than
5.78°C&5.82°C in SSP5-8.5&RCP8.5 and higher than 3.24°C&2.67°C in SSP2-
4.5&RCP4.5. In the lower emission scenarios (SSP1-2.6&RCP2.6) there is a
stabilization for the extremes in the second half of 21st century, achieving low-
est warming (e.g., 2.23°C&1.92°C for TXx in 2100). This result implies the
benefits of mitigation strategies associated with these scenarios (O’Neill et al.,
2016). However, the separation for the adjacent pathways (e.g., SSP5-8.5&SSP3-
7.0, SSP3-7.0&SSP2-4.5 and SSP2-4.5&SSP1-2.6) usually occurs after 2060s for
most indices over Australia. In particular, compared to SSP5-8.5&RCP8.5, if
a more aggressive mitigation policy is undertaken (e.g., SSP1-2.6&RCP2.6), it
may still take one or two decades to notice its effects on projected changes in
temperature extremes over Australia.
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Figure 1. Time series of the anomalies (base period: 1961-1990) for the 14
ETCCDI indices averaged over Australia (10°S–45°S, 110°E–155°E) from 1950 to
2100, under the historical simulations and Tier 1 experiments of ScenarioMIP in
CMIP6: Hist (grey), SSP1-2.6 (green), SSP2-4.5 (blue), SSP3-7.0 (yellow) and
SSP5-8.5 (red) (the number of models indicated in parentheses in the legend).
Solid lines represent the multi-model medians and shading indicates the full
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range across the models for each experiment.

Figure 2. Same as Fig.1, but for CMIP5: Hist (grey), RCP2.6 (green), RCP4.5
(blue), and RCP8.5 (red).

To illustrate the spreads and medians of the projected climatological changes
in extremes over Australian regions in detail, boxplots for SSP5-8.5&RCP8.5
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and SSP1-2.6&RCP2.6 are shown in Figs. 3 and 4, and Figs. S2 and S3 for
SSP3-7.0 and SSP2-4.5&RCP4.5. Over the regions, the spreads of the indices
in SSPs and RCPs tend to be larger with higher emission pathways and over
time, among which some regions such as NA and TA commonly span relatively
wider ranges. Compared to RCP8.5, the spreads in SSP5-8.5 are usually larger,
especially over the period 2071-2100. As for the multi-model medians, most
indices display larger warming trends over TA and lower warming over southern
Australian regions (e.g., SSA and SWA); while for other indices (e.g., TXx, TNx
and TN10p), there are relatively similar warming levels across the 10 regions.
Relative to RCPs, the warming levels for some indices (e.g., TXx, TNn, and
WSDI) tends to be higher under the SSPs; in contrast, the relative magnitudes
of some indices between RCPs and SSPs, such as TXn and TNx (e.g., Fig. 3b,
c and Fig. S3b, c), differ among the regions and the levels of radiative forcing.
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Figure 3. Boxplots of projected changes in the 14 ETCCDI indices over 2071–
2100 (bold color) and 2031-2060 (light color) relative to the base period 1961–
1990 across 10 Australian regions, under SSP5-8.5 (red) and RCP8.5 (blue).
The boxes indicate the interquartile spreads (ranges between the 25th and 75th
percentiles), the black lines within the boxes are the multi-model medians, the
whiskers extend to the edges of 1.5 × interquartile ranges and “outliers” outside
of the whiskers are denoted by diamonds.
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Figure 4. Same as Fig. 3, but for SSP1-2.6 and RCP2.6.

Generally, the spatial patterns for the extremes in both CMIP6 and CMIP5
(Figs. 5 and 6; Figs. S4-S15 in the supplementary material) are similar to previ-
ous studies (Alexander & Arblaster, 2017). In the highest scenarios for CMIP6
and CMIP5, the extreme indices show a warmer Australia than other pathways,
especially in the end of this century. For most indices (expect DTR in Fig. S6
and FD in Fig. S15), most models (at least 75%) in both CMIP ensembles
project significant changes in extreme temperature indices over most regions of
Australia, both in the middle and the end of the century. However, there are
different warming patterns for some indices. For example, as shown in Fig. 5,
the warming pattern in TXx is relatively consistent among the regions, with
the highest warming over central Australia; while for TNn, Northern Australia
displays the most marked warming (Fig. 6).
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Figure 5. Multi-model median changes in TXx for 2071–2100 (a-d; i-k) and
2031–2060 (e-h; l-n) relative to the base period 1961–2010, under different future
scenarios in CMIP6 (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) and CMIP5
(RCP2.6, RCP4.5 and RCP8.5). Hatching indicates that at least 75% of the
models for each future scenario project significant changes at 95% level, based
on the two-tailed Student’s t-test.
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Figure 6. Same as Fig. 5, but for TNn.

Compared to RCP scenarios in CMIP5, the higher projected warming for some
extremes (e.g., TXx and TNn) and the larger spreads in CMIP6 (especially
under SSP5-8.5) by the end of the 21st century is likely related to the different
forcings in the SSPs and higher ECS in some CMIP6 models (e.g., Fyfe et al.,
2021; Palmer et al., 2021; Tebaldi et al., 2021). Although there are similar
levels of stratospheric-adjusted radiative forcing in 2100 in RCPs and SSPs,
aerosol emissions, the composition of gases and some radiatively active species
(e.g., CO2 and CH4) and the resulting ERF in the pathways can be very different
(Fyfe et al., 2021; Lurton et al., 2020; Smith et al., 2020; Tebaldi et al., 2021). In
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addition, the wider inter-model spread of the projected changes under stronger
external forcing can result from higher climate sensitivity (Lehner et al., 2020;
Tebaldi et al., 2021). As documented in Meehl et al. (2020), 12 of the 39 CMIP6
models show higher ECS than the CMIP5 models, some of which can contribute
to the wider ranges of projected changes in this study.

3.2 Signal-to-Noise Ratio and Time of Emergence

The maps of SNR for TXx and TNn in the year 2005 are plotted for BEST,
CMIP6 and CMIP5 (Fig. 7), the corresponding signal and noise of which are
shown in Figs. S16 and S17, respectively. Although the spatial patterns of noise
are relatively similar (Fig. S17), the signals of TXx and TNn show noticeable
differences between the observation and the two CMIP ensembles (Fig. S16),
which means the resulting SNR in BEST and the two CMIP ensembles differ
greatly (Fig. 7). The largest observed SNR for TXx (> 1.2) occurs over central
and southwestern regions (Fig. 7a), and for TNn there exhibit negative SNR
values (< -0.2) over southwest, northern and southeast parts in Australia (Fig.
7d). In contrast, the SNR of TXx and TNn for both CMIP6 and CMIP5 in
2005 tend to be between 0.2 and 0.8. Although there are differences in the
observations and the simulations, the low SNR values in 2005 suggest that the
signal for the two temperature extremes over most Australia regions has not
emerged from the noise.
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Figure 7. Signal-to-noise ratio (SNR) in the year 2005 for temperature ex-
tremes in BEST, CMIP6 and CMIP5. (a) SNR in TXx for BEST; (b) SNR
in TXx for the multi-model medians in CMIP6; and (c) SNR in TXx for the
multi-model medians in CMIP5. (d-f) Same as (a-c), but for TNn.

As spatial aggregation or averaging may reduce the impact of internal variability
(Deser, Knutti, et al., 2012; Hawkins & Sutton, 2009; Lehner et al., 2020), Figs.
8 and 9 show the times series (1950-2100) of SNR for TXx and TNn, which
are averaged over each region before the calculation of SNR (the corresponding
signal and noise are in the supplementary Figs. S18-S20). For the temporal
variations of median SNR over the period 1950-2014, the signal and SNR for TXx
in BEST can be within the spread of the two CMIP ensembles over some regions
(Fig. 8 and Fig. S18). However, for TNn the signal and SNR are usually outside
the ranges of CMIP6 and CMIP5 at the beginning of this century (Fig. 9 and Fig.
S19). Despite the influence of observational uncertainty in BEST over Australia
(Deng et al., 2021), the above results suggest that the differences between the
observed and simulated signal and SNR are mostly related to internal variability
(Dai & Bloecker, 2019). In the study by Dai and Bloecker (2019), they concluded
that comparing the trends of the observed and modelled precipitation (a variable
also exhibiting relatively large variability), which can represent the signal in
some studies (e.g., Gaetani et al., 2020), is not appropriate over short timescales
and at local and regional scales, as the observed precipitation changes are still
dominated by internal variability.
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Figure 8. Time series of signal-to-noise ratio (SNR) in TXx from 1950-2100
over 10 Australian regions for BEST (black), SSP5-8.5 (red) and RCP8.5 (blue)
(the number of models indicated in parentheses in the legend). Solid lines
represent the multi-model medians and shading indicates the full range across
the models for each experiment.
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Figure 9. Same as Fig. 8, but for TNn.

Fig. 10 exhibits the spatial distributions of the multi-model median SNR for
TXx and TNn under SSP5-8.5 and RCP8.5 in the year 2050, for which the signal
is in Figs. S21. Under both SSP5-8.5 and RCP8.5, despite exhibiting different
spatial patterns, the magnitudes of SNR for TXx and TNn are already above 1
over most Australian regions in 2050. For TXx (Fig. 10a, c), there are larger
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SNR values (>2) over northwest Australia and lower SNR values (>1) over
southwest regions. In contrast, the SNR for TNn (Fig. 10b, d) is more than 2
over western and central Australia and indicates lower values (>1) over tropical
and southeast regions. As described in Frame et al. (2017), around mid-century,
the regions exhibiting SNR > 1 suggest that there would be “unusual” climate
compared to the recent climate over 1950-2005; and for TXx over northwest
Australia and TNn over western and central regions, the new climate for the
extremes would be “unfamiliar” (SNR > 2). Compared to RCP8.5, SSP5-8.5
in CMIP6 generally displays stronger SNR and the corresponding signal for the
two indices, which is valid for other SSPs and RCPs (Figs. S22 and S23).

Figure 10. Median signal-to-noise ratio (SNR) for TXx and TNn under SSP5-
8.5 and RCP8.5 in the year 2050. (a) SNR for TXx under SSP5-8.5 in the year
2050; (b) SNR for TNn under SSP5-8.5 in the year 2050; (c, d) same as (a) and
(b), but for RCP8.5.

As for the temporal evolution of SNR (Figs. 8 and 9), in general, the multi-
model medians of SNR in TXx and TNn are slightly larger in SSP5-8.5 than
RCP8.5 (e.g., 3.22 under SSP5-8.5 and 2.77 under RCP8.5 in 2050 over AUS);
while over some southern regions for TNn (e.g., SA, SSA, SWA), the two CMIP
ensemble show higher similarity. In addition, the medians of signal and noise
for the two indices are also comparable in the two scenarios (Figs. S18-S20). It
is noted that the differences in signal between CMIP6 and CMIP5 in the end of
the century resemble that shown in Figs. 3a and 3d, which may further imply
that the regional climate sensitivity in CMIP6 and CMIP5 is comparable indi-
cated in previous studies (Palmer et al., 2021; Seneviratne & Hauser, 2020). In
terms of the inter-model spread, although the spreads of the signals for TXx and
TNn in SSP5-8.5 are commonly larger than RCP8.5, in which there are more
models showing stronger signal in SSP5-8.5 (Figs. S18 and S19), the ranges in
noise (Fig. S20) also contribute to the uncertainty of SNR. Consequently, the
relative magnitudes of SNR in SSP5-8.5 and RCP8.5 may change (e.g., Fig. 8a),
compared to the signal (e.g., Fig. S18a). For example, the spread of the signal
in SSP5-8.5 is slightly larger in the end of the century than RCP8.5; however,
influenced by the noise, the resulting range of SNR in SSP5-8.5 becomes nar-
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rower. Over the regions, the ranges of SNR for TXx are usually narrower over
southern regions (e.g., SSA and SEA); in contrast, for TNn, northern regions
such as TA exhibit less uncertainty for SNR and TOE. In other scenarios (Figs.
S24-S27), the medians in SNR for TXx and TNn are lower, compared to SSP5-
8.5&RCP8.5; and the medians in SSPs are generally still higher than that in
RCPs. Also, the spreads of SNR and signal in the lower forcing pathways is
generally narrower, consistent with the time series of projected changes.

To estimate the TOE for TXx and TNn, we use SNR > 1 and SNR > 2 as the
thresholds (Hawkins and Sutton 2012; Frame et al. 2017; Hawkins et al. 2020)
and present the spatial patterns for multi-model median TOE under SSP5-8.5
and RCP8.5 (Fig. 11). As TOE occurring at the end of the century may be
a temporary change, which is considered as “pseudo-emergence”, we exclude
the TOE occurring after the year 2050 (Abatzoglou et al., 2019; Diffenbaugh &
Scherer, 2011; Hawkins et al., 2014; King, Donat, et al., 2015).

Figure 11. Median time of
emergence (TOE) for TXx and TNn based on SNR thresholds under SSP5-8.5
and RCP8.5. (a) TOE for TXx under SSP5-8.5 when SNR > 1; (b) TOE for
TXx under SSP5-8.5 when SNR > 2; (c, d) same as (a) and (b), but for TNn;
(e-h) same as (a-d), but for RCP8.5.

Over some central and tropical parts of Australia, the multi-model median TOE
in TXx for SNR > 1 can occur as early as the second decade of this century
(2010-2020). Generally, the signal emerges earlier over northwestern region than
the southeast for both thresholds (Fig. 11a, b, e and f), in which the signal
emerges in 2020s for SNR > 1 and 2040s for SNR > 2, as there indicate relative
smaller noise and larger signal (Figs. S17 and S21). Over the southeast regions,
the TOE occurs within 2030-2050 for SNR > 1. In contrast, for TNn, the signal
emerges from the noise in 2020s over Australia (SNR > 1; Fig. 11c and g);
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while for SNR > 2, the TOE is within the fifth decade (2040-2050) over western
and central regions (Fig. 11d and h). Compared to RCP8.5, the multi-model
medians of TOE for TXx and TNn in CMIP6 show earlier TOE over more
regions based on the threshold SNR > 2, implying the larger median SNR in
the middle of this century as shown in Figs. 8 and 9. However, the uncertainty
surrounding these TOE estimates remains large (Figs. 8 and 9). For example,
for SNR = 2, the range (inter-model spread) of TOE for TXx over AUS can be
from 2010s to 2060s (Fig. 8a). For lower scenarios, the multi-model medians of
TOE commonly occur later and over smaller regions than the stronger pathways.
For example, TOE (SNR > 1) for TNn under SSP2-4.5&RCP4.5 usually can be
10 years later over some southeast regions (Fig. S28g and k) than that shown
in SSP5-8.5&RCP4.5 (Fig. 11c and g), as the signal is lower compared to that
in higher pathways.

The analysis on SNR and TOE has useful implications for Australia. Under the
highest-emission scenarios SSP5-8.5&RCP8.5, in which the medians of the signal
for TXx are comparable, the early emergence over northwest Australia suggests
that there is less time for stakeholders and policy makers to implement effective
measures, compared to southeast Australia. In contrast, if under lower scenarios,
the TOE for TXx can be postponed, especially for southeast regions which
exhibit larger variability for TXx in the extratropics. However, the adaptation
policy may change for different extremes, even under same future pathways. For
TNn, the TOE (SNR > 1) can occur over most regions even under lower-emission
scenarios; while the “unfamiliar” climate (SNR > 2) can be largely postponed
if taking a more sustainable pathway (lower emission). It is also noted that the
large uncertainty in the estimate of SNR and TOE highlights further challenges
for stakeholders and policy makers.

3.3 Large Ensembles in CMIP6

Previous research has demonstrated the model uncertainty in estimating the
effects of internal variability on the TXx and TNn trends, shown in LEs during
1950-2014 over Australian regions (Deng et al., 2021). Therefore, how inter-
nal variability influences the projected changes and TOE/SNR (including signal
and the noise) needs further investigation. In Fig. 12, which represents the
boxplots of projected changes in TXx and TNn for CanESM5-LE and MIROC6-
LE over Australian regions under SSP5-8.5 and SSP1-2.6, model uncertainty
for representing internal variability still exists, and the relative magnitudes of
the spreads for projected changes resemble the results in Figs. 12 and 13 in
Deng et al. (2021). The projected changes in TXx for MIROC6-LE span larger
ranges than CanESM5-LE by a factor of ~3 or more over the regions, which
can be larger than that in Fig. 3a. Moreover, there exhibit larger ranges of the
projected changes for TXx over SEA, MEA, and SSA, and relatively narrower
spreads over TA for CanESM5-LE and SWA for MIROC6-LE. For TNn, the
relative magnitude for the two LEs are comparable over the regions. The dif-
ferent effects of internal variability for different LEs and regions complicate the
assessment of the uncertainty on projected changes.
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Figure 12. Boxplots of projected changes in TXx and TNn over 2071–2100
(bold color) and 2031-2060 (light color) relative to the base period 1961–1990
across 10 Australian regions, for CanESM5-LE (cyan) and MIROC6-LE (green).
(a) TXx under SSP5-8.5; (b) TNn under SSP5-8.5; (c, d) same as (a, b) but
for SSP1-2.6. The boxes indicate the interquartile spreads (ranges between
the 25th and 75th percentiles), the black lines within the boxes are the multi-
member medians, the whiskers extend to the edges of 1.5 × interquartile ranges
and “outliers” outside of the whiskers are denoted by diamonds.

The temporal evolution of signal and the boxplots of noise for TXx and TNn over
Australian regions under SSP5-8.5 are shown in Figs. 13-15, and the resulting
SNR in Figs. S29 and S30. The relative magnitudes of the ranges in signal and
noise over the regions between the two LEs also resemble that for the spread
of the TXx and TNn trends shown in Deng et al. (2021). This suggests that
internal variability has impacts not only on the uncertainty of signal, but also
on the ranges of noise, making the resulting spread of SNR (Figs. S29 and
S30) wider or narrower than that for the corresponding signal (Figs. 13 and
14), which introduce further uncertainty in the ranges of TOE. Although the
effects of internal variability on TXx and TNn are similar under SSP1-2.6, the
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temporal evolution of the SNR and the signal for TXx and TNn stabilizes and
there are narrower spreads for SNR compared to SSP5-8.5, which is due to the
lower magnitude in signal under the lower scenario (Figs. S31-34).

Figure 13. Time series of signal (unit: K) in TXx from 1950-2100 over 10
Australian regions under SSP5-8.5 for CanESM5-LE (cyan) and MIROC6-LE
(green) (the number of members indicated in parentheses in the legend). Solid
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lines represent the multi-member medians and shading indicates the full range
across the members for each LE.

Figure 14. Same as Fig. 13, but for TNn.
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Figure 15. Boxplots
of noise (unit: K) in TXx (a) and TNn (b) calculated over the period 1950-2005
across 10 Australian regions, for CanESM5-LE (cyan) and MIROC6-LE (green).
The boxes indicate the interquartile spreads (ranges between the 25th and 75th
percentiles), the black lines within the boxes are the multi-member medians, the
whiskers extend to the edges of 1.5 × interquartile ranges and “outliers” outside
of the whiskers are denoted by diamonds.

4 Conclusions

In this study, we analyzed the projected changes for the temperature extremes
under future scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) from the
Tier 1 experiment in ScenarioMIP, which is compared with RCP2.6, RCP4.5
and RCP8.5 in CMIP5. We then use an SNR framework to estimate the time
when the signal of climate change for TXx and TNn emerges from the internal
variability in the two CMIP ensemble. In addition, two LEs in CMIP6 are
employed to estimate the effect of internal variability on the projected changes
and TOE/SNR.

The projected changes for the multi-model medians of the extremes under the
highest scenario show the strongest warming, and the warming for the indices
under SSP3-7.0 fills the gap between SSP2-4.5and SSP5-8.5, with SSP1-2.6 show-
ing the least warming, especially in the end of this century. For some extreme
indices (TXx, TXn, TNx, TNn, WSDI and CSDI), although the spatial patterns
of warming can be different, there usually projects “warm-get-warmer” pattern
over Australia. As for the spread in the projections of temperature extremes,
they broadly span narrower envelopes for most indices under lower scenarios
in the end of this century. If we take a more sustainable pathway (SSP1-2.6),
although it may take two or three decades to take effects, the narrower spreads
and weaker projected changes pose relatively less challenge for adaptation de-
cisions compared to other scenarios. Compared to other regions, TA usually
shows highest warming. However, as the performance of the models over TA
usually shows lower scores (Deng et al., 2021), the projected changes for the me-
dians and the spread for the extremes may not be robust (Pierce et al., 2009),
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which is also applied to other regions such as SSA and SEA.

Compared to the counterpart future pathways in CMIP5, the spread in the
CMIP6 SSPs are commonly wider than RCPs; and for some extremes (e.g., TXx
and TNn), the multi-model medians in SPPs are usually higher as well. This
is likely caused by different forcings and higher ECS in some CMIP6 models
(e.g., Fyfe et al., 2021; Palmer et al., 2021; Tebaldi et al., 2021). For example,
Fyfe et al. (2021) concluded that despite the partly countervailing effect by
the background stratospheric aerosols, the higher amount of CO2 can lead to
stronger warming in SSPs. In this study, we also find that for some indices (e.g.,
TXx), it is the models with higher ECS that usually show warmer evolution
than the multi-model medians in SSP5-8.5 (not shown). To further figure out
relative importance of each factor, more experiments based on CMIP6 models
forced by CMIP5 RCP scenarios and/or CMIP5 models forced by CMIP6 SSP
scenarios needed be conducted and added to the collection in ScenarioMIP (Fyfe
et al., 2021; Tebaldi et al., 2021).

We also demonstrate that the medians of SNR for both TXx and TNn in SSPs
are commonly higher than in RCPs; and the uncertainty for the SNR of TNn
is wider. It is noted that the spreads of SNR for both indices decrease under
lower scenarios, which confirms the benefits of lower emission future pathways.
Furthermore, the large uncertainty in time of emergence (TOE) result from the
inter-model spread of both signal and noise, which is consistent with Hawkins
and Sutton (2012). As previous studies concluded that the statistical fit used
in the SNR framework can attribute internal variability to the signals (e.g.,
Hawkins & Sutton, 2012; Kumar & Ganguly, 2018; Lehner et al., 2020), we
further illustrate that internal variability can also influence the ranges of noise.
To better isolate forced response, dynamical adjustment or LEs can be used
(e.g., Lehner et al., 2020; Merrifield et al., 2020). In contrast, using the mean
across the range of noise in a LE may be a more appropriate way to represent
the expected noise for the model, which needs further investigation.

This study suggests that for different extreme temperature indices, the patterns
for projected changes and TOE over Australia can be different, which poses large
challenge for stakeholders and policymakers. A further effort is to improve the
climate models in simulating the physical processes and the internal variability.
Unless they are better understood and constrained, the uncertainty of projected
changes and TOE will likely continue over future model generations.
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