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Abstract 8 

Wildfires have a great impact on the global ecosystem and human society, so the 9 

prediction and prevention of wildfires is necessary. This article uses the MOD14A2 10 

data, the NCEP/NCAR and ERA5 Reanalysis data, the GFEDv4 data and the Scripps O2 11 

data to analyze the correlation between wildfires, meteorological elements and 12 

oxygen concentration in the Boreal North America (BONA), the Temperate North 13 

America (TENA), the Australia and New Zealand (AUST). The following preliminary 14 

conclusions were obtained: 1) From 2001 to 2015, 2002 was the year with the most 15 

wildfires, and august was the month with the most wildfires. Besides, Northern 16 

Africa, Southern Africa and South America are the main wildfires-affected areas, the 17 

total wildfires area from 2001 to 2015 is about 2148 million ha, accounting for nearly 18 

80% of the global wildfires area in these 15 years. 2) Globally, the correlation 19 

coefficient between temperature and wildfires area is 0.47, between wind speed and 20 

wildfires area is 0.17, between precipitation and wildfires area is -0.41; between 21 

relative humidity and wildfires area is -0.19. 3) AS the direct path coefficients of 22 

oxygen concentration are nearly 0.38, oxygen can be regarded as a variable 23 

independent of meteorological elements. In BONA, from 2001 to 2015, the 24 

correlation coefficient between oxygen concentration and wildfires area is 0.61; In 25 

TENA, the correlation coefficient is 0.62; In AUST, the correlation coefficient is 0.6. 26 

This study illustrates the importance of oxygen concentration for wildfires. So, it is of 27 

great significance to the prediction and prevention of global wildfires. 28 
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1 Introduction 31 

  Forests play a key and dynamic role in the ground and atmospheric systems (Bowman et al., 32 

2009). At the beginning of 21 century, the total area of the world's forests was 3.45 billion ha, 33 

accounting for about 25% of the total land area of the earth, and they are unevenly distributed 34 

around the world (Li, 2016). Large fires account for a disproportionally high percentage of area 35 

burned with potentially severe environmental and socioeconomic impacts (Paulo et al., 2016). 36 

The global annual wildfires area from the years 1997 through 2011 varied from 301 to 377 million 37 

ha, with an average of 348 million ha (Giglio et al., 2013). Wildfire damage is huge, sudden and 38 

strong. It is difficult to dispose of it when it occurs (Shu et al., 2003). Large wildfires may cause 39 



soil erosion, soil desertification, the compression of animals, plants and the human living space, 40 

at the same time, also cause serious economic losses to the society (Schenk et al., 2002). Annual 41 

forest burning produces more than 50% of fossil fuel combustion emissions. Wildfires have 42 

caused serious damage to forests, humans, ecosystems and the global environment (IPCC, 2007; 43 

Di et al., 2007). Transport of boreal wildfire emissions is a large source of nitrogen oxides over the 44 

North Atlantic region (Martin et al., 2008). Wildfires are also about human health. Marlier et al. 45 

have shown that (Marlier, 2013) during strong El Niño years, wildfires contribute up to 200 µg m−3 46 

and 50 ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations 47 

near ignition. The increase of harmful gases seriously endangers human health. Therefore, the 48 

prediction and prevention of wildfires is necessary.  49 

  Researches based on the spatial and temporal distribution of wildfires and its correlation with 50 

meteorological elements are especially important. In recent decades, many scholars have done 51 

long-term researches on the relationship between wildfires and meteorological elements. Siegert 52 

et al. (2001) suggested that the drought associated with the El Niño/Southern Oscillation (ENSO) 53 

destroyed a large area of tropical rainforests around the world, and the drought caused by ENSO 54 

caused 2.6 million ha of forest to be burned in 1997-1998. Chen et al. (2017) used satellite data 55 

to create a climatology of burned-area and wildfires-emissions responses, drawing on six El Niño 56 

and six La Niña events during1997-2016, these observations help to explain why the growth rate 57 

of atmospheric CO2 increases during El Niño and may contribute to improved seasonal wildfires 58 

forecasts. Sander et al. (2017) suggested that lightning is one of the main driving forces of 59 

large-scale wildfires in North American forests in recent years, affecting the interannual and 60 

long-term wildfires and dynamic changes in the burning area of forests in northern North 61 

America. It also suggests that lightning ignition increases may increase carbon loss while 62 

accelerating the northward expansion of boreal forest. Matt et al. (2014) used the 1979-2013 63 

NCEP data and ECMWF data to calculate three fire risk assessment indices, the US Burning Index 64 

(Bradshaw et al., 1983), the Canadian Fire Weather Index (Wagner, 1987), and the Australian (or 65 

McArthur) Forest Fire Danger Index (Nobel et al., 1980). The study also shows that a doubling 66 

(108.1% increase) of global burnable area is related to meteorological factors such as surface 67 

temperature, relative humidity and precipitation. If these meteorological factors are coupled with 68 

ignition sources and available fuel, they could markedly impact global ecosystems, societies, 69 

economies and climate. Chen et al. (2015) described a climate mode synchronizing forest carbon 70 

losses from North and South America by analyzing time series of tropical North Atlantic sea 71 

surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon wildfires during 72 

1995–2013, found that the relationship between North Atlantic tropical cyclones and southern 73 

Amazon wildfires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones 74 

or wildfires alone. Chen et al. (2016) used OCI-burned area relationships and a clustering 75 

algorithm, identified 12 hotspot regions in which wildfires had a consistent response to SST 76 

patterns. 77 

Furthermore, the scientists also evaluated the importance of oxygen concentration on the fire 78 

models. The third series of benchmark experiments (BE3) and the fifth series of benchmark 79 

experiments (BE5) of the International Collaborative Fire Model Project (ICFMP) conducted by 80 

the Electric Power Research Institute (EPRI) indicate that the oxygen concentration has a very 81 

important influence on the error of the fire model (Rowekamp et al., 2008; Lassus et al., 2014).  82 

  Although domestic and foreign scholars have made many important researches and 83 



contributions to the analysis of wildfires, it has been found that studies of the effect of oxygen 84 

concentration on wildfires are seldom. There are many wildfires risk assessment indexes around 85 

the world. Most of wildfires risk indexes take into account meteorological elements such as 86 

temperature, precipitation, relative humidity, and wind speed, but do not consider the impact of 87 

oxygen concentration. Therefore, in order to obtain the influence of oxygen concentration on 88 

wildfires, we analyzed the correlation between oxygen concentration and wildfires. Then, further 89 

illustrated the importance of oxygen concentration to wildfires. This study can help to better 90 

improve the wildfires models and is of great significance to the prediction and prevention of 91 

global wildfires. 92 

 93 

2 Data and methodology 94 

2.1 Data resource 95 

2.1.1 Global fire data 96 

Global fire data comes from MOD14A2 data (https://modis-land.gsfc.nasa.gov 97 

/fire.html). It is a 1km resolution L3 fire mask data product, which synthesized for 8 days. The 98 

scientific data set includes fire mask and algorithm quality evaluation. Fire mask is an image filter 99 

template used to extract the ignition point. When extracting satellite remote sensing image 100 

information, an n*n ground object matrix is used to filter the image elements, and then the 101 

required fire point information is displayed. The data we obtained is the number of fire pixels, 102 

covering the period from 2001 to 2015. 103 

MOD14A2 data is the accumulated value of each fire pixel category detected by the Terra 104 

Moderate-resolution Imaging Spectroradiometer within eight days under the condition of 105 

1km*1km spatial resolution. 106 

2.1.2 Global wildfires area data 107 

  Global wildfires area data is derived from GFEDv4 (Global Fire Emissions Database, Version 4.1), 108 

provided by NASA (National Aeronautics and Space Administration) 109 

(https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4_R1.html). This dataset provides 110 

global estimates of monthly burned area, monthly emissions and fractional contributions of 111 

different fire types, daily or 3-hourly fields to scale the monthly emissions to higher temporal 112 

resolutions, and data for monthly biosphere fluxes. The study includes 14 areas. The UMD 113 

(University of Maryland) land cover type data from GFEDv4 dataset was used to revise the global 114 

fires area data, and the coverage period is from 2001 to 2015. 115 

GFED4 burned area data provides global monthly burned area at 0.25*0.25 degree spatial 116 

resolution from mid-1995 through the present and daily burned area for the time series 117 

extending back to August 2000. The data were derived by combining 500-m MODIS burned area 118 

maps with active fire data from the Tropical Rainfall Measuring Mission (TRMM) Visible and 119 

Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer (ATSR) family of sensors. 120 

  The global fire number data and the global burned area data were corrected by the UMD 121 

(University of Maryland) land cover distribution of wildfires in the GFEDv4 data set to obtain the 122 

number of wildfires and the wildfires area. 123 

2.1.3 Meteorological data 124 

  There are two types of global meteorological data used in this article. One is ERA5 data 125 

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) 126 

https://modis-land.gsfc.nasa.gov/
https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4_R1.html


(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-m127 

eans?tab=overview). ERA5 is the fifth-generation ECMWF reanalysis data for the global climate 128 

and weather in the past 40 to 70 years. Reanalysis combines observations into globally complete 129 

fields using the laws of physics with the method of data assimilation (4D-Var in the case of ERA5). 130 

ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface 131 

quantities. The time period covered is from 2001 to 2015. The use factors include wind speed at 132 

10m, air temperature at 2m, precipitation, relative humidity, and sea level pressure. The spatial 133 

resolution of ERA5 reanalysis data is 0.25°x 0.25°. 134 

The second type of data is the NCEP/NCAR reanalysis data set Ⅰ produced by NCEP and 135 

NCAR (https://www.esrl.noaa.gov/psd/data/gridded/reanalysis/#opennewwindow). NCEP used 136 

the same climate models that were initialized with a wide variety of weather observations: ships, 137 

planes, RAOBS, station data, satellite observations and many more. By using the same model, 138 

scientists can examine climate/weather statistics and dynamic processes without the 139 

complication that model changes can cause.  140 

2.1.4 Observational O2 concentration data 141 

  Observational O2 concentration data comes from nine stations around the world from the 142 

Scripps O2 program (http://scrippso2.ucsd.edu/). These data come from remote areas or on the 143 

ocean, so they represent the average of the large area, not the background information of the 144 

station. The nine stations are Alert (Canada), Barrow (Alaska), Cold Bay (Alaska), Cape Kumukahi 145 

(Hawaii), La Jolla Pier (California), Mauna Loa Observatory (Hawaii), American Samoa, Cape Grim 146 

(Australia), Palmer Station (Antarctica), South Pole. However, the concentration of atmospheric 147 

O2 are reported as changes in the O2/N2 ratio of air relative to a reference (air collected in the 148 

mid-1980s) to avoid the non-negligible interference caused by dilution effects. The oxygen 149 

concentration files contain the average of flask replicates collected at a given station and time, 150 

including the standard deviation of the data obtained from flasks. In this paper, the effects of 151 

oxygen concentration on wildfires are studied. To avoid errors caused by environmental factors, 152 

three sites closer to the forest are selected: Cold Bay, Alaska (BONA); La Jolla Pier, California 153 

(TENA); Cape Grim, Australia (AUST). 154 

δ = ((𝑂2 𝑁2⁄ )𝑠𝑎𝑚𝑝𝑙𝑒 − (𝑂2 𝑁2⁄ )𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) (𝑂2 𝑁2⁄ )𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)⁄ × 106        (2.1) 

where (𝑂2 𝑁2⁄ )𝑠𝑎𝑚𝑝𝑙𝑒 is the 𝑂2 𝑁2⁄  mole ratio of an air sample and (𝑂2 𝑁2⁄ )𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the 155 

𝑂2 𝑁2⁄  mole ratio of our reference. Our reference is based on tanks of air pumped in the 156 

mid-1980s which we store in our laboratory. The unit of δ is per meg.  157 

1 per meg = 0.20946 ppm = M × 10−6 × 32𝑔 𝑚𝑜𝑙⁄ 𝑂2 = 1.186 Gt 𝑂2      (2.2) 

where M =  3.706 × 1019mol is a reference value for the total number of O2 molecules in 158 

atmosphere. 159 

Table 1 summarizes the specific information of the data sets used in this study. The wildfires 160 

area data and the meteorological data have been normalized. 161 

Table 1 Data Information 162 

elements data sets Time resolution Spatial resolution unit 

Number of 

fires 

MOD14A2 (Thermal 

Anomalies and Fire 8-Day) 
8day 1°x 1° times 

Wind at 10m 
NCEP/NCAR ReanalysisⅠ

ERA5 reanalysis data 

hourly and 

monthly 

2.5°x 2.5° 

0.25°x 0.25° 
m/s 

Precipitation NCEP/NCAR ReanalysisⅠ hourly and 2.5°x 2.5° mm 



ERA5 reanalysis data monthly 0.25°x 0.25° 

Temperature 

at 2m 

NCEP/NCAR ReanalysisⅠ

ERA5 reanalysis data 

hourly and 

monthly 

2.5°x 2.5° 

0.25°x 0.25° 
℃ 

Relative 

humidity 

NCEP/NCAR ReanalysisⅠ

ERA5 reanalysis data 

hourly and 

monthly 

2.5°x 2.5° 

0.25°x 0.25° 
% 

Surface 

pressure 
ERA5 reanalysis data monthly 0.25°x 0.25° hPa 

O2  Scripps O2 program (O2/N2) monthly / 𝑝𝑒𝑟 𝑚𝑒𝑔 

Wildfires 

area 
GFEDv4 monthly 0.25°x 0.25° 𝑚2 

2.2 Methodology 163 

2.2.1 Method for converting MODIS data into fire point data 164 

Some scholars have suggested that (Ding et al., 2013; Potapov et al., 2008; Stefan et al., 2013) 165 

the grayscale attribute of MOD14 data is divided into 0-9. As shown in Table 2, the image 166 

grayscale value calculation is mostly used for fire point extraction, so when n>6, N=1, which n for 167 

the gray value of fire pixel, and N=1 represents the occurrence of fires. It also indicates that there 168 

may be a fire at this place. The number of fires obtained in this paper is the number of fire pixels. 169 

Table 2 MOD14 product data gray value corresponding to fire point 170 

area 
 Data and credibility                    

  data credibility 

0  No data 

Unprocessed data 

Water 

Cloud 

Non-fire zone 

Unknown 

Fire point 

Fire point 

Fire point 

/ 

/ 

/ 

/ 

/ 

/ 

low confidence 

trusted 

high confidence 

1 or 2 

3 

4 

5 

6 

7 

8 

9 

2.2.2 Global fire spatial distribution data 171 

Giglio et al. (2006) pointed out that the traditional grid counting number obtained by satellites 172 

is biased at high latitudes due to uneven spatial and temporal sampling, so each grid element is 173 

observed for multiple satellites and missing observations. The total number of fire pixels is 174 

normalized to the original fire pixel count. The corrected fire pixel count of the overpass in the 175 

grid cells of row i and column j is expressed as 𝑁𝑓𝑖𝑟𝑒
′ (𝑖, 𝑗, 𝑡), Giglio et al. (2006) gave the formula: 176 

𝑁𝑓𝑖𝑟𝑒
′ (𝑖, 𝑗, 𝑡) =

𝑁𝑓𝑖𝑟𝑒(𝑖, 𝑗, 𝑡)𝑁𝑑𝑎𝑦𝑠(𝑡)𝐴(𝑖)𝑁𝑒𝑞
𝑁𝑡𝑜𝑡𝑎𝑙(𝑖, 𝑗, 𝑡)𝐴𝑒𝑞

       (2.3) 

where 𝑁𝑓𝑖𝑟𝑒(𝑖, 𝑗, 𝑡) is number of active fire pixels detected in the grid cell over a given calendar 177 

month indexed by t; 𝑁𝑡𝑜𝑡𝑎𝑙(𝑖, 𝑗, 𝑡) is the total number of MODIS pixels that fell within the grid 178 

cell during the calendar month; 𝑁𝑑𝑎𝑦𝑠(t) is the number of days in the calendar month; A(i) is 179 

the area of the grid cell (solely a function of i due to the equal-angle grid used to composite 180 

pixels); 𝐴𝑒𝑞 is area of a grid cell along the Equator; 𝑁𝑒𝑞 is the expected number of MODIS 181 



pixels within a grid cell located along the Equator during a full 24-hour day of no missing 182 

observations (this value was determined empirically using one year of observations from 2001). 183 

2.2.3 Path analysis 184 

Studies have shown that (Fu et al., 2014; Zhu et al., 2018; Sahanavin et al., 2018; Wu et al., 185 

2015) in order to avoid mistakes in the process of human judgment of the importance of each 186 

factor in the analysis process, path analysis of each factor is necessary. This method was originally 187 

proposed by the quantitative geneticist Sewall Wright in 1921. The essence is to decompose the 188 

correlation coefficient, get the direct effect of a certain independent variable on the dependent 189 

variable, the indirect effect and total effect of the dependent variable through other independent 190 

variables. 𝑟𝑖𝑗 is the correlation coefficient of the independent variables 𝑋𝑖  and 𝑋𝑗. 𝑟𝑖𝑌 is the 191 

correlation coefficient of 𝑋𝑖  and the dependent variable Y, and 𝑃𝑖𝑌 is the direct path coefficient.  192 

  Path analysis starts with a simple correlation coefficient matrix and solves the normalized 193 

normal equation of the path coefficient to obtain the direct path coefficient and the inter-turn 194 

path coefficient. The principle is as follows: 195 

{
 
 

 
 
𝑃1𝑌 + 𝑟12𝑃2𝑌 + 𝑟13𝑃3𝑌 +⋯+ 𝑟1𝑘𝑃𝑘𝑌 = 𝑟1𝑌
𝑟21𝑃1𝑌 + 𝑃2𝑌 + 𝑟23𝑃3𝑌 +⋯+ 𝑟2𝑘𝑃𝑘𝑌 = 𝑟2𝑌
𝑟31𝑃1𝑌 + 𝑟32𝑃2𝑌 + 𝑃3𝑌 +⋯+ 𝑟3𝑘𝑃𝑘𝑌 = 𝑟3𝑌

……
𝑟𝑘1𝑃1𝑌 + 𝑟𝑘2𝑃2𝑌 + 𝑟𝑘3𝑃3𝑌 +⋯+ 𝑃𝑘𝑌 = 𝑟𝐾𝑌

       (2.4) 

For the normalized normal equations of the above path coefficients, 196 

(

 
 

1 𝑟12
𝑟21 1

𝑟13 ⋯ 𝑟1𝑘
𝑟23 ⋯ 𝑟2𝑘

𝑟31 𝑟32
⋮ ⋮
𝑟𝑘1 𝑟𝑘2

1 ⋯ 𝑟3𝑘
⋮ ⋯ ⋮
𝑟𝑘3 ⋯ 𝑟𝑘𝑌)

 
 

(

 
 

𝑃1𝑌
𝑃2𝑌
𝑃3𝑌
⋮
𝑃𝑘𝑌)

 
 
=

(

 
 

𝑟1𝑌
𝑟2𝑌
𝑟3𝑌
⋮
𝑟𝑘𝑌)

 
 
        (2.5) 

Let the coefficient matrix be B, then BP=r. Solve the direct path coefficient P = 𝐵−1𝑟. The 197 

remaining path coefficient 𝑝𝑦𝑒 = √1 − 𝑝1𝑦𝑟1𝑦 − 𝑝2𝑦𝑟2𝑦 −⋯− 𝑝𝑘𝑦𝑟𝑘𝑦. 198 

  Path analysis decomposes the simple correlation coefficient into direct path coefficients and 199 

inter-turn path coefficients, which is more accurate than correlation analysis and regression 200 

analysis, and provides a basis for in-depth study of the causal relationship between the causal 201 

variable and the outcome variable through the surface phenomena.  202 

 203 

3 Results 204 

3.1 The temporal and spatial changes of global wildfires 205 

3.1.1 The interannual variation of the number of global wildfires 206 

According to Fig.1, the year of frequent wildfires was in 2002, with 213,041 wildfires occurring 207 

worldwide in one year; followed by 2012, with 209,021 wildfires occurring worldwide in a year. 208 

The year with the least number of wildfires occurred in 2013, with 187,436 wildfires occurring 209 

worldwide in a year, followed by 2009, with 190,976 wildfires worldwide. In the 15 years from 210 

2001 to 2015, there were a total of 3000,364 wildfires worldwide, with an average of 200,024 211 

wildfires per year. The most frequent month of global wildfires is August, the total number of 212 

global wildfires can reach 327,083 times; the second is October, the total number of wildfires can 213 

reach 324,897; the least months are January, February and December. Among them, the number 214 

of global wildfires occurred in January was the lowest in 12 months, with 165,523 times, 215 

accounting for only 50.6% of the most wildfires in August (Fig.2). In the years when there are the 216 



most global wildfires, such as 2002 and 2012, there are more wildfires in the corresponding 217 

months. The most frequent occurrences of wildfires such as 2, 4, 5, 6, 7, 8, 9, and 11 are in one of 218 

2002 and 2012. In the years when there are fewer global wildfires, such as 2009 and 2013, the 219 

number of wildfires in each month is relatively small. 220 

 221 
Fig.1 Interannual variations of the number of global wildfires from 2001 to 2015. 222 

 223 

Fig.2 Statistics on the cumulative number of wildfires in each month in the 15 years from 2001 to 224 

2015, Different colors represent different years 225 

3.1.2 Spatial distribution characteristics of wildfires  226 

From the distribution of the world forest resources in Fig.3 (http://www.fao.org/home/zh/), it 227 

can be seen that the global forests are mainly distributed in central Africa, the Amazon basin in 228 

South America, the northern North America, the Asia-Pacific region, the Central and Western 229 

Europe regions. The South American Amazon Basin is the world's most extensive tropical 230 

rainforest region, accounting for half of the tropical rain forest area and 20% of the global forest 231 

area, and has an important regulatory role for climate and ecology. 232 



According to formula (2.3), the spatial distribution of global fire numbers can be obtained. 233 

Fig.4 shows the spatial distribution of global fires from 2001 to 2015. Compare Fig.3 with Fig.4, 234 

we find that the distribution of global wildfires has obvious spatial distribution characteristics: 235 

wildfires in North America are mainly distributed in Mexico, Canada, and the eastern United 236 

States, and there are fewer wildfires in Alaska; wildfires in South America are mainly distributed 237 

in Brazil in the Amazon basin; wildfires in Africa are mainly distributed in western Africa, southern 238 

Africa, parts of eastern Africa and central regions, and wildfires in the Congo Basin are 239 

particularly serious; European wildfires are mainly distributed in Western European countries and 240 

Russia; Asian wildfires are mainly distributed in Eastern Siberia alpine region and China; Oceania 241 

wildfires are mainly distributed in coastal areas, deserts are mainly in the central and 242 

southwestern parts of Australia. Among them, the more serious wildfires are Central Africa, 243 

Southern Africa and the Amazon Basin. 244 

Summarize the distribution and changes of global wildfires in the past 15 years: Brazil's forests 245 

in South America, central and southern Africa have serious disasters; there were no obvious 246 

observable wildfires in Alaska and Canada only in 2001, 2006, 2008, and 2014; in the eastern part 247 

of Russia in the Eurasian region, there were no obvious observable wildfires in 2004, 2006 and 248 

2011; in the Australian forest covered in Oceania, the wildfire disasters slowed significantly in 249 

2003, 2004, 2005, 2008, 2010 and 2013; the wildfires in Africa and South America were the most 250 

serious in 2002 and 2012. The wildfire disasters slowed down in 2004, 2009 and 2013, which is 251 

consistent with the cumulative results of the number of global wildfires in the year, indicating 252 

that the central and southern regions of Africa and the Amazon basin in South America are The 253 

region with the most serious wildfires in the world is also the region with the largest ‘contribution’ 254 

of accumulated wildfires in a year. 255 



 256 

Fig.3 The distribution of the world’s forests 257 

 258 



 259 

 260 



 261 

Fig.4 The spatial distribution of global fires from 2001 to 2015 262 

3.1.3 Interannual variation of partial combustion zones of global wildfires 263 

The GFEDv4 series of data divides the world into 14 sub-areas, namely BONA (Boreal North 264 

America), TENA (Temperate North America), CEAM (Central American), NHSA (Northern South 265 

America), SHSA (Southern Hemisphere South America), EURO (Europe), MID (Middle East), NHAF 266 

(Northern Hemisphere Africa), SHAF (Southern Hemisphere Africa), BOAS (Boreal Asia), CEAS 267 

(Central Asia), SEAS (Southern Asia), EQAS (Equatorial Asia), AUST (Australia and New Zealand) 268 

(Fig.5). According to the interannual variation of different regions of the global wildfires area, in 269 

most areas, especially in SHSA, NHAF, SHAF, CEAS, AUST, the wildfires have the largest burned 270 

area in 2002 and 2012, which is consistent with the maximum the wildfires area of global; in 271 

most areas of 2006, 2009, and 2013, the area of wildfires is relatively small, consistent with 272 

global results; the results of wildfires area and the number of wildfires are basically the same. In 273 

addition, SHSA (Southern Hemisphere South America), NHAF (Northern Hemisphere Africa), 274 

SHAF (Southern Hemisphere Africa), AUST (Australia and New Zealand) have a large wildfires area, 275 

which is highly consistent with the results obtained in Fig. 4. Besides, NHAF (Northern Africa), 276 

SHAF (Southern Africa), and SHSA (South America) are the main wildfires-affected areas, the total 277 

wildfires area from 2001 to 2015 is about 2148 million ha, accounting for nearly 80% of the global 278 

wildfires area in these 15 years. (Fig. 6). The results indicate that the wildfires area and the 279 

number of wildfires as two different reflections have high consistency. 280 



 281 
Fig.5 The 14 sub-areas of the GFEDv4 series 282 



 283 

 284 



 285 

 286 

Fig.6 Interannual variation of different divisions of global wildfires area 287 

3.2 Correlation analysis of wildfires and meteorological elements 288 

3.2.1 Correlation analysis of global wildfires and meteorological elements 289 

From Fig. 7(a)-7(d): Globally, the wildfires area is generally positively correlated with 290 

temperature, and the average of the global correlation coefficient 𝑟𝑇 = 0.47. Except for a few 291 

regions in Eurasia and parts of Africa, the world is positively correlated; The wildfires area and 292 

wind speed are positively correlated in some regions, such as BONA and SHAF, and negatively 293 

correlated in a few regions, such as TENA and NHSA. The average of the global correlation 294 

coefficient 𝑟𝑤𝑖𝑛𝑑 = 0.17; The wildfires area and precipitation are generally negatively correlated. 295 

The average of the global correlation coefficient 𝑟𝑟𝑎𝑖𝑛 = −0.41, except for some areas of central 296 



Africa, both are almost negatively correlated; The wildfires area is positively correlated with 297 

relative humidity in some areas, such as central South America, central Africa, and southern 298 

Africa. Most areas are negatively correlated, such as North America and Eurasia. The average 299 

global correlation coefficient 𝑟𝑅𝐻 = −0.19. 300 

It can be seen that on a global scale, the wildfires area is generally positively correlated with 301 

temperature, generally negatively correlated with precipitation. And in many areas positively 302 

correlated with wind speed and negatively correlated with relative humidity. 303 

 304 

Fig. 7 Correlation between global wildfires area and meteorological elements 305 

a for temperature, b for wind, c for precipitation, d for relative humidity 306 

3.2.2 Correlation analysis of wildfires and meteorological elements in some areas 307 

Considering that six of the nine observation stations for oxygen concentration are located on 308 

the ocean or in the polar regions, three regions with oxygen concentration observation stations 309 

on land were selected, namely the Boreal North America (BONA, COLD BAY), the Temperate 310 

North American (TENA, La Jolla), Australia (AUST, Cape Grim), to do the correlation analysis 311 

between wildfires and meteorological elements.  312 

As shown in Fig. 9, the correlation coefficients obtained by NCEP/NCAR reanalysis data and 313 

ERA5 reanalysis data are basically the same. From Fig. 9(a)-9(d): In BONA, the temperature has a 314 

positive correlation with the forest burning area, except for 2005, 2006, and 2007; The 315 

precipitation is negatively correlated with the wildfires area, except for 2006 and 2010; Relative 316 

humidity is generally negatively correlated with the wildfires area, except for 2003 and 2009, but 317 

the correlation is weaker than the precipitation and temperature; The wind speed is positively 318 

correlated with the wildfires area, except for 2002, 2006 and 2009. From Fig. 8(a)-8(d): The 319 

change of wildfires area in most years is consistent with temperature; The wildfires area is 320 

basically opposite to the change of precipitation, but the interannual change of wildfires area has 321 

a certain downward trend, and the upward trend is not shown on the precipitation line; In most 322 

years, the relative humidity is opposite to the change in wildfires area; The change in wind speed 323 



is consistent with the change in wildfires area. 324 

From Fig. 9(e)-9(h): In TENA, the temperature has a positive correlation with the wildfires area; 325 

There is a negative correlation between the precipitation and wildfires area; Relative humidity 326 

has a certain negative correlation with fire burning area, Except for 2004, 2009, and 2013. But the 327 

correlation is weaker than the precipitation and temperature; The wind speed is negatively 328 

correlated with the wildfires area in the TENA, but the correlation is weak. From Fig. 8(e)-8(h), 329 

the wildfires area in most years is consistent with changes in air temperature, which is basically 330 

opposite to precipitation, relative humidity, and wind speed. 331 

From Fig. 9(i)-9(l): In AUST, the temperature has a positive correlation with the wildfires area, 332 

except for 2005, 2008, 2012, and 2013; The precipitation is negatively correlated with the 333 

wildfires area, except for 2005, 2010, and 2013; Relative humidity is negatively correlated with 334 

wildfires area, but the correlation is weaker than that of air temperature and precipitation; The 335 

correlation between wind speed and wildfires is difficult to draw.  336 

In summary, the wildfires in different areas is related to various meteorological elements. In 337 

BONA, the wildfires area is positively correlated with air temperature and wind speed, negatively 338 

correlated with relative humidity and precipitation. In TENA, the wildfires area is positively 339 

correlated with air temperature, negatively correlated with wind speed, relative humidity, and 340 

precipitation. In AUST, the wildfires area is positively correlated with air temperature, negatively 341 

correlated with relative humidity and precipitation. 342 

 343 



 344 

 345 

Fig.8 The annual variation of the wildfires area and meteorological elements in BONA, TENA and 346 

AUST 347 



 348 

 349 



 350 

Fig. 9 The correlation between the wildfires area and the meteorological elements in BONA, 351 

TENA and AUST  352 

3.3 Comprehensive analysis of meteorological elements and oxygen concentration 353 

in wildfires 354 

3.3.1 Correlation between wildfires and oxygen concentration in some areas 355 

Three areas BONA, TENA and AUST were selected for correlation analysis between wildfires 356 

area and oxygen concentration. From Fig. 11(a), except for 2005 and 2010, the oxygen 357 

concentration in the BONA has a positive correlation with the wildfires area; From Fig. 10(a), 358 

from 2001 to 2015, the correlation coefficient between oxygen concentration and wildfires area 359 

is 𝑟𝑂2 = 0.61. Meanwhile, the oxygen concentration showed a downward trend, and the 360 

wildfires area also showed a certain downward trend, but in some years, such as 2010, the two 361 

showed opposite changes. From Fig. 11(b), the oxygen concentration has a positive correlation 362 

with the wildfires area; From Fig. 10(b), the correlation coefficient is 𝑟𝑂2 = 0.62. The oxygen 363 

concentration showed a downward trend, the wildfires area also showed a certain downward 364 

trend, and the positive values of the wildfires area in 2002, 2007, and 2014 were also the 365 

corresponding extreme points of the oxygen concentration. From Fig. 11(c), except for 2009 and 366 

2014, the oxygen concentration in AUST has a positive correlation with the wildfires area.; From 367 

Fig. 10(c), the correlation coefficient is 𝑟𝑂2 = 0.60.  Meanwhile, the oxygen concentration 368 

showed a downward trend, the wildfires area also showed a certain downward trend in most 369 

years, and the positive values of the wildfires area in 2002, 2008, and 2010 were also the 370 

corresponding extreme points of the oxygen concentration.  371 

Because air density is affected by altitude, the higher the altitude, the lower the air density, 372 

and therefore, the lower the oxygen concentration. The sea level pressure is also related to 373 



altitude. The higher the altitude, the lower the sea level pressure. Fig. 12 is the correlation of the 374 

global wildfires area and the sea level pressure. As can be seen from Fig. 12, on the global scale, 375 

the wildfires area is generally positively correlated with the sea level pressure, the average value 376 

of the global correlation coefficient 𝑟𝑝 = 0.38, except for a few areas in Eurasia and parts of 377 

Africa, the wildfires area is basically positively correlated with the sea level pressure. 378 

 379 

Fig. 10 The annual variation of the wildfires area and oxygen concentration in BONA, TENA and 380 

AUST 381 



a for BONA, b for TENA, c for AUST 382 

 383 

Fig. 11 The correlation between the wildfires area and the oxygen concentration in BONA, TENA 384 

and AUST  385 



 386 

Fig. 12 Correlation between global wildfires area and sea level pressure 387 

3.3.2 Comprehensive analysis of meteorological elements and oxygen concentration in 388 

wildfires 389 

In the Boreal North America (BONA), the Temperate North America (TENA), the Australia and 390 

New Zealand (AUST), the effects of five factors on the wildfires area are as follows: oxygen> 391 

temperature> precipitation> wind> relative humidity. Relative to the simple correlation 392 

coefficient, the direct path coefficients of oxygen and wind are relatively large, indicating that the 393 

impact of the two on the wildfires area mainly comes from its own role. The direct path 394 

coefficients of precipitation and relative humidity on the wildfires area are small, indicating that 395 

precipitation and relative humidity affect wildfires mainly by using other factors such as 396 

temperature. According to the calculation, the remaining path coefficients 𝑝𝑦𝑒1 = 0.52 , 397 

𝑝𝑦𝑒2 = 0.61, 𝑝𝑦𝑒3 = 0.55, the values are relatively large, indicating that there are still other 398 

factors (such as the terrain and the types of forests) that have a great impact on the wildfires 399 

area (Table 3). 400 

Table3 The direct path coefficients of different meteorological elements in BONA, TENA, AUST 401 

area 

         the direct path coefficients of different elements                    

Temperature Precipitation 
Relative 

humidity 
Wind 

Oxygen 

concentration 

BONA 0.36 -0.26 -0.13 0.22 0.38 

TENA 0.34 -0.21 -0.08 0.18 0.37 

AUST 0.35 -0.23 -0.17 0.2 0.39 

 402 

4 Discussion and conclusion 403 

4.1 Discussion 404 

    In the analysis of the correlation between global wildfires and meteorological elements, 405 

some studies have shown that (Qin, 2005) wildfire risks are determined by the state of 406 

combustibles and the comprehensive background in which they are located. A very important 407 



part of comprehensive background is the meteorological factors (temperature, relative humidity, 408 

precipitation, wind speed, etc.). Qin (2005) define an index of the impact of meteorological 409 

elements on wildfires, which named F(WI). The index F(WI) can be expressed as: 410 

F(WI) = F(T, H, P, S) 

Where T, H, R, S represent temperature, relative humidity, precipitation, wind speed, respectively. 411 

  In terms of the correlation between wildfires and wind, some studies have found that (Jia et al., 412 

1987) general wildfires have a small fire area, short duration, and limited wind field impact; 413 

however, the mega-wildfires will form a small-scale weather system (a new low-pressure system) 414 

with its own temperature and pressure field configuration, which has a significant influence on 415 

the spread and attenuation of the wildfires. Studies have shown that (Grenier et al., 2005; Li et al., 416 

2009) precipitation anomalies are one of the easiest ways to measure the anomaly of 417 

precipitation in a region. For wildfires and precipitation, precipitation will directly affect the water 418 

content of combustibles in the forest area. The more humid the surface, the higher the water 419 

content of the vegetation, the lower probability of wildfires, so the precipitation anomaly has a 420 

correlation with the occurrence of wildfires. For wildfires and air humidity, air humidity has a 421 

certain influence on the water content of combustibles. However, because the relative humidity 422 

is determined by meteorological factors such as temperature and air moisture content, air 423 

humidity has an impact on wildfires but limited. For wildfires and temperature, the increase in 424 

temperature will cause the relative humidity to decrease, and the increase in temperature can 425 

reduce the water content of the combustibles, and bring the surface temperature of the 426 

combustibles closer to the point of ignition. 427 

  The burning of forests must have three conditions: combustible, combustion-supporting, and 428 

ignition (Li et al., 2009). Studies indicate that (Hamins, 2003; Laurent et al., 2013) for the fire 429 

model modeling, consider its own elements such as HGL temperature (hot flue gas layer 430 

temperature), HGL thickness (hot flue gas layer thickness), top jet temperature, fire plume 431 

temperature, flame height, oxygen concentration, smoke concentration, heat radiation flux, etc. 432 

Changing the oxygen concentration by 1% can change the results of the fire model by 8%-9%. 433 

Oxygen consumption during combustion is proportional to the rate of combustion. The following 434 

formula is used to describe the relationship between the oxygen consumption 𝑌𝑖  and the initial 435 

oxygen concentration 𝑦𝑖 during combustion: 436 

𝑌𝑖 =
𝑦𝑖𝑚̇

𝑚̇𝑒
=

𝑦𝑖𝑄̇

𝜒𝑎𝐻𝑐𝑚̇𝑒
 

𝑚̇ = 𝑄̇ 𝜒𝑎𝐻𝑐⁄ , 𝑚̇ is the fuel mass burn rate, 𝑄̇ is the heat release rate, H𝑐 is the flame height, 437 

𝜒𝑎 is the burning index, and 𝑚̇𝑒 is the oxygen mass rate entering the hot flue gas layer. 438 

  Since oxygen directly affects the wildfire by affecting the combustion process, the change in 439 

oxygen concentration has a great impact on the occurrence of wildfires, and the two have a high 440 

correlation. Paleoclimate studies have shown (Abdallah et al., 2012) that fossil charcoal, 441 

inertinites, and the pyrogenic polycyclic aromatic hydrocarbons (PAHs) are the only direct 442 

evidence of the occurrence of ancient wildfires. These evidences indicate that the frequency of 443 

wildfires in the early Triassic period has dropped significantly, and this is related to a significant 444 

drop in atmospheric oxygen concentrations after or during the end of the Permian mass 445 

extinction event. Scholars (Belcher et al., 2010b; Berner,2009) generally believe that the decline 446 

in oxygen concentration is the main reason for the low number of wildfires during that period. 447 

This also confirms that the oxygen concentration has a very important impact on the occurrence 448 



of wildfires. 449 

  The current trend of decreasing O2 concentration in the atmosphere is significant. Population 450 

growth, fossil fuel combustion, deforestation, and dry land expansion further exacerbate the 451 

decline in global oxygen concentrations (Huang et al., 2018; Keeling, 1988). In addition, in the 452 

context of global warming, the contribution of temperature is getting sincerely important. 453 

However, the global meteorological factors and oxygen concentration changes are complex. 454 

Therefore, the next step is to improve the wildfire models, analyze the contribution of different 455 

factors to wildfires occurrence, and then estimate future wildfires in the context of global 456 

warming. 457 

4.2 Conclusion 458 

This study used MOD14A2 data, NCEP/NCAR reanalysis data set Ⅰ, ERA5 reanalysis data, 459 

GFEDv4 data and the Scripps O2 data, using the correlation analysis and path analysis to analyze 460 

the correlation between wildfires, meteorological elements and oxygen concentration in BONA, 461 

TENA and AUST. The following preliminary results were obtained: 462 

1) Global wildfires occurred more frequently in 2002 and 2012, with severe wildfires disasters 463 

in the South America, Northern Africa, and Southern Africa. These areas accounted for nearly 80% 464 

of the global wildfires area from 2001 to 2015. 465 

2) Different meteorological elements have very different effects on the occurrence of wildfires. 466 

Globally, the correlation coefficient between temperature and wildfires area is 0.47, between 467 

wind speed and wildfires area is 0.17, between precipitation and wildfires area is -0.41; between 468 

relative humidity and wildfires area is -0.19. 469 

3) Oxygen concentration can be regarded as a variable independent of meteorological 470 

elements. In BONA, from 2001 to 2015, the correlation coefficient between oxygen concentration 471 

and wildfires area is 0.61; In TENA, the correlation coefficient is 0.62; In AUST, the correlation 472 

coefficient is 0.6. 473 
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