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Abstract 22 

Irrigation is the greatest human interference with the terrestrial water cycle. Detailed 23 

knowledge on irrigation is required to better manage water resources and to increase water use 24 

efficiency (WUE). This study brings forward a novel framework to quantify net irrigation at 25 

monthly timescale at a spatial resolution of 1 km2 providing unprecedented spatial and temporal 26 

detail. Net irrigation refers to the evaporative loss of irrigation water. The study is conducted 27 

in the Haihe River Basin (HRB) in China encompassing the North China Plain (NCP), a global 28 

hotspot of groundwater depletion. Net irrigation is estimated based on the systematic 29 

evapotranspiration (ET) residuals between a remote sensing based model and a hydrologic 30 

model that does not include an irrigation scheme. The results suggest an average annual net 31 

irrigation of 126 mm (15.2 km3) for NCP and 108 mm (18.6 km3) for HRB. It is found that net 32 

irrigation can be estimated with higher fidelity for winter crops than for summer crops. The 33 

simulated water balance of the HRB was evaluated with GRACE data and it was found that the 34 

net irrigation estimates could close the water balance gap. Annual winter wheat classifications 35 

reveal an increasing crop area with a trend of 2200 km2 yr-1. This trend is not accompanied by 36 

a likewise increasing trend in irrigation, which suggests an increased WUE in the NCP. The 37 

proposed framework can easily be scaled up or transferred to other regions and support decision 38 

makers to tackle irrigation induced water crises and support sustainable water management. 39 

Plain language summary 40 

The irrigation of agricultural fields is taking place at unsustainable rates in many regions of the 41 

world. Despite the fact that irrigation is the largest anthropogenic impact on the water cycle, 42 

there exists limited knowledge of the applied irrigation amounts. This study brings forward a 43 

novel approach to estimate net irrigation, i.e. the evaporative loss of irrigated water. The 44 

approach is applied on the Haihe River Basin in North-Eastern China. For the estimation of net 45 

irrigation, two sources of evapotranspiration (ET) are considered. First, baseline ET is obtained 46 

from a rainfed hydrologic model without irrigation. Second, ET is obtained from a satellite 47 

remote sensing model, which represents rainfed and irrigated ET. We study the ET differences 48 

of the two sources to derive net irrigation amounts at monthly timescale at 1 km2 spatial 49 

resolution. Our analysis suggest an average annual net irrigation of 108 mm (18.6 km3). The 50 

results are evaluated against annual winter wheat classification maps as well as satellite based 51 

total water storage data (GRACE). Our results indicate an increasing water use efficiency as a 52 

result of promoting water savings in the agricultural sector.   53 
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1. Introduction 54 

It is estimated that 70% of the global freshwater withdrawals are attributed to irrigation, which 55 

makes agriculture the principal freshwater consumer (Foley et al., 2011; Siebert et al., 2010). 56 

Irrigated land produces 40% of the global food on just 20% of the total agricultural land 57 

(Vörösmarty & Sahagian, 2000). The steady population growth in combination with climate 58 

change will further increase the demand for irrigation agriculture (Rockström et al., 2012). 59 

Already today, over 40% of the applied irrigation originates from groundwater abstractions 60 

resulting in prolong periods of persistent groundwater depletion (Famiglietti et al., 2011; 61 

Siebert et al., 2010). The irrigation induced overexploitation of groundwater resources is likely 62 

to exacerbate in the coming decades, which will increase the need for quantification and 63 

mapping of irrigation in order to facilitate critical information for policy makers and water 64 

resources managers (Schwartz et al., 2020).  65 

Despite the tangible affect irrigation has on the freshwater resources (Döll et al., 2014), it is 66 

also considered an important anthropogenic climate forcing (Cook et al., 2015; Kang & Eltahir, 67 

2019). Irrigation alters the water and energy exchange between land surface and atmosphere 68 

leading to a cooling of the land surface as well as increasing atmospheric water vapor that 69 

modulates cloud cover and precipitation (Kang & Eltahir, 2018). It has been shown that 70 

irrigation has regionally dampened the potential warming caused by the greenhouse gas 71 

emissions (Thiery et al., 2020). 72 

Even though irrigation is the most important direct human interference with the terrestrial water 73 

cycle and irrigation has a distinct role as climate forcing, there exists limited knowledge on the 74 

extent of irrigated areas and in particular on the amount of water applied for irrigation. 75 

Traditionally, irrigated areas and requirements have been documented and mapped based on 76 

census-based national agricultural maps and surveys in combination with crop water models. 77 

For instance, Siebert et al. (2010, 2015) have worked on inventories of irrigation extents at 78 

global scale. With the rise of modern satellite remote sensing systems, mapping the extent of 79 

irrigation has been an active field of research since the early 2000s. For example, Ozdogan and 80 

Gutman (2008) have mapped irrigated areas across the continental U.S. using remotely sensed 81 

data on vegetation phenology and climate. Similar work has been carried out for China by Zhu 82 

et al. (2014), for northern India by Thenkabail et al. (2005) and at global scale Thenkabail et 83 

al. (2009). Recently, the focus has moved to high-resolution mapping of irrigated areas using 84 

data from the Landsat or Sentinel satellite missions (Bazzi et al., 2019; Deines et al., 2019; 85 

Xiang et al., 2019). Despite the advances in mapping historic irrigation extents, few 86 
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methodologies exist to estimate continuous irrigation amounts at relevant spatio-temporal 87 

scales. In recent years, the literature on this topic is growing quickly and the common ground 88 

of the published studies on irrigation quantification is that they rely on satellite remote sensing 89 

data. Retrievals of soil moisture (SM) or evapotranspiration (ET) are either used in stand-alone 90 

remote sensing approaches with auxiliary climate data or in conjunction with hydrologic 91 

models that either have an internal irrigation scheme or not. 92 

Approaches to model irrigation dynamically in hydrologic models follows the assumption to 93 

balance available water supply with plant and atmospheric water demand and, which is often 94 

based on simplified deficit rules applying predefined thresholds (Ozdogan et al., 2010). This 95 

framework is associated with large uncertainties due to the difficulties to correctly estimate 96 

plant water demand, predict management decisions and challenges related to the land cover 97 

maps that identify irrigated croplands (Lawston et al., 2015; Wisser et al., 2008). 98 

From the SM perspective, Brocca et al. (2018) used remotely sensed SM to invert the soil water 99 

balance equation to calculate irrigation at monthly timescale. Other recent SM based studies 100 

aiming at quantifying irrigation amounts were conducted by Zaussinger et al. (2019), Zohaib 101 

et al. (2020) and Kumar et al. (2015), both accounted irrigation to differences between remotely 102 

sensed SM and SM modelled by hydrologic models without irrigation schemes. Other recent 103 

work suggests to estimate irrigation through data assimilation of satellite based SM in 104 

hydrologic models (Abolafia-Rosenzweig et al., 2019; Felfelani et al., 2018). Jalilvand et al. 105 

(2019) found that the low spatial resolution of global SM products (~50km2) hindered to derive 106 

irrigation amounts at relevant spatial scales for regional analysis. Further, limitations of SM 107 

were highlighted by Escorihuela & Quintana-Seguí (2016) who compared various global SM 108 

satellite products in the context of irrigation quantification and conclude that the Soil Moisture 109 

and Ocean Salinity (SMOS) product was the only one able to detect an irrigation signal. 110 

Moreover, in order to convert volumetric SM into a corresponding water column depth, various 111 

assumption such as depth of soil, water capacity of the soil layer and other empirical parameters 112 

are necessary which introduce additional uncertainties.  113 

In the literature, studies deriving irrigation quantities based on ET have not emerged at the 114 

same fast pace as this is currently the case for SM based applications. The notion to infer 115 

regions where non-precipitation sources, such as irrigation, significantly affect ET fluxes, by 116 

comparing prognostic hydrologic models without irrigation schemes with diagnostic remote 117 

sensing retrievals, has been applied in just a few studies. Hain et al. (2015) applied this 118 
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framework to locate non-precipitation sources, such as irrigation, and sinks, such as drainage 119 

in the U.S.. For the first case, the satellite based ET retrievals show a systematic positive bias 120 

when being compared to hydrologic models that do not explicitly account for irrigation. 121 

Opposed, a systematic negative bias can be accounted to drainage. The same approach has been 122 

applied by Romaguera et al. (2012; 2014; 2014) at European scale as well as for other study 123 

sites in East Africa and China. These studies highlighted the need to correct the irrigation 124 

amounts with the ET bias over rainfed agriculture. The need for this hydrologic model 125 

correction is comprehensible, but it remains disputable if the bias can be assumed constant in 126 

space. Van Dijk et al. (2018) presented an alternative ET based approach to assess irrigation at 127 

globe scale using a hydrologic model without an irrigation scheme.. Satellite based land surface 128 

temperature (LST) was assimilated and it was assumed that any increase in ET was due to 129 

irrigation. It is questionable if the baseline model represents plausible rainfed conditions and if 130 

assimilating LST realistically affects ET. 131 

Here we present a novel methodology designed to quantify monthly net irrigation amounts that 132 

account for the evaporative loss of irrigated water at 1 km2 spatial resolution. The ET based 133 

approach is favored over the alternative SM based approach, because it has the advantage of 134 

providing a direct estimate of water loss due to irrigation (mm) at a spatial scale that is relevant 135 

to regional water management. Moreover, a remote sensing based ET model can be setup to be 136 

particularly tailored to the region of interest. A key novelty of this study is that the applied 137 

hydrologic model, which is used as ET baseline without irrigation, is specifically calibrated to 138 

perform well for rainfed conditions. 139 

The study site is the Haihe River basin (HRB) in China. The HRB comprises the North Chin 140 

Plain (NCP), which is a global hotspot of prolonged groundwater depletion induced by 141 

irrigation agriculture (Taylor et al., 2013; Thenkabail et al., 2009). It is indisputable that 142 

irrigation is the main driver of the observed decline in groundwater heads, as agriculture 143 

consumes 70% of the total water use in the HRB of which 70% are sustained by groundwater 144 

abstraction (Huang et al., 2015; Pan et al., 2017; H. Shen et al., 2015). The water crisis of the 145 

NCP has been intensively studied and the emerging environmental and societal risks have been 146 

clearly identified (Cao et al., 2013; Huanhuan Qin et al., 2019; Zheng et al., 2010). Despite the 147 

eminence and the awareness that irrigation agriculture is the principal driver of the groundwater 148 

depletion, there exist little knowledge on historic irrigation amounts at spatio-temporal scales 149 

that are required to tackle the water crisis. 150 
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The four main objectives of this paper are as follows: (1) to set up a remote sensing based ET 151 

model for the HRB, (2) to set up a hydrologic model without irrigation scheme and to 152 

specifically calibrate it for rainfed conditions, (3) to quantify monthly net irrigation amounts at 153 

1 km2 spatial resolution for a 15 year period and (4) to evaluate the derived net irrigation 154 

amounts against satellite based total water storage data as well as with land use maps.  155 
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2. Study area and data 156 

2.1. Haihe River Basin 157 

The Haihe River Basin (HRB) covers an area of approximately 320,000 km2 and encompasses 158 

mountainous regions in the west and north and lowlands in the east and south. The lowlands 159 

refer to the North China Plain (NCP), which covers approximately 140,000 km2 of the HRB 160 

(Figure 1). The western boundary of NCP are the Taihang Mountains and the Bohai Sea in the 161 

East. The NCP is home to over 135 million people, including the megacities Beijing and 162 

Tianjin, and produces around 30% of China’s wheat and 20% of its maize (Guo & Shen, 2015; 163 

Pan et al., 2017; Huanhuan Qin et al., 2019). The HRB is dominated by a monsoon climate 164 

with an average annual rainfall of around 475 mm (2002 - 2016) of which 70% to 85% occurs 165 

during the summer months (June - September). Agricultural is the major land use in the NCP, 166 

covering over 80% of the land, and the cropland is cultivated with a rotation system consisting 167 

of winter wheat (October-June) and summer maize (June-October). The summer maize 168 

growing season coincides with the rainy season and water requirements are therefore to a large 169 

degree met by rainfall. In contrast, the winter wheat growing season spans over the dry season 170 

and crop water requirements depend heavily on irrigation. The flood irrigation technique is 171 

widely applied in NCP and typically takes place at few occasions during the winter crop season 172 

(Qin et al., 2013). The average annual cropland Normalized Difference Vegetation Index 173 

(NDVI) in Figure 1 indicates high values in the NCP as a result of the applied two crop growing 174 

season. However the spatial variability of NDVI within the NCP suggests that the two stage 175 

crop rotation system and thereby irrigation is not applied uniformly. Following Shen et al. 176 

(2015), at least 70% of the total irrigation is sustained by groundwater abstractions which puts 177 

winter wheat cultivation at the center of the NCP water crisis. 178 
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 179 

Figure 1. Map of the Haihe River basin (HRB) containing the North China Plain (NCP) 180 

domain. The depicted river network represents the natural drainage system. The map of mean 181 

annual Normalized Difference Vegetation Index (NDVI) is differentiated into cropland and 182 

natural vegetation based on a MODIS land cover classification. Based on this classification, 183 

urban areas are shown in grey, waterbodies in blue and barren soil in brown. The name of the 184 

eight discharge stations corresponds to the IDs in Table 1. The top left panel indicates the HRB 185 

in dark grey and China in medium grey.  186 

2.2. MODIS  187 

For the present study, a broad range of satellite remote sensing based datasets were acquired. 188 

A prime data source were the MODIS instruments (Moderate Resolution Imaging 189 

Spectroradiometer) onboard Terra and Aqua satellites. Normalized Difference Vegetation 190 

Index (NDVI) data were obtained from the 16-day MOD13A2.006 and MYD13A2.006 191 

products at 1km resolution. The MCD15A2H.006 product was used to acquire data on leaf area 192 
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index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR) at 8-day 193 

interval and 500 m resolution. Land surface temperature (LST) datasets at daytime and 194 

nighttime were assembled from the daily 1 km products of MOD11A1.006 and 195 

MYD11A1.006. The approximate nighttime and daytime overpass times for Terra and Aqua 196 

are 11 p.m., 11 a.m. and 1 a.m. and 1 p.m., respectively. Missing nighttime LST observations 197 

have been filled using linear interpolation. Opposed to LST, emissivity was sufficient at coarser 198 

temporal resolution and therefore emissivity was acquired from the 8-day MOD11A2.006 and 199 

MYD11A2.006 products at 1 km spatial resolution. The 16-day MCD43A3.006 product was 200 

used to retrieve albedo at 500 m. An annual land cover classification at 500 m was obtained 201 

from MCD12Q1.006. If not already available at 1 km, all variables were resampled to 1km for 202 

further analysis. MODIS quality flags were used to only extract high quality observation. In 203 

order to get robust timeseries and thereby deal with missing data, we first calculated the average 204 

annual climatology for each grid for the MODIS datasets based on data from 2002 to 2016. 205 

This processing step was applied to NDVI, LAI, FAPAR, albedo and emissivity. In the 206 

following, the relative deviation between the actual observations and the coinciding 207 

climatology was calculated by division of the first with the latter. Subsequently, the deviation 208 

was interpolated in time for the missing observations using linear interpolation. A Gaussian 209 

filter was applied to the interpolated deviations with the purpose to smooth the timeseries. 210 

Lastly, the smoothed timeseries represented the relative deviation of a given year to the 211 

climatology and could simply be multiplied with the climatology to obtain a full timeseries for 212 

a given year. With this processing of the MODIS data we obtained robust and complete 213 

timeseries of all variables. The climatology was used as reference, but multiplying it with the 214 

smoothed deviations allowed to differentiate between the years and thereby adjusting the 215 

climatology respectively.  216 

2.3. ERA-Interim 217 

ERA-Interim is a global reanalysis dataset of atmospheric and land surface variables provided 218 

by the European Centre for Medium-Range Weather Forecasts (ECMWF). Data is available at 219 

3 hourly temporal resolution at a spatial resolution of 0.75 degrees. We acquired daily 220 

shortwave downward radiation and daily mean, minimum and maximum temperature data. 221 

Furthermore, daytime LST data were processed to gap fill daily MODIS LST.  222 

2.4. GRACE 223 

Monthly total water storage anomalies (TWSA) from the Gravity Recovery and Climate 224 

Experiment (GRACE) satellite mission were acquired from level-2 release 05 spherical 225 
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harmonics from the Center for Space Research (CSR), Jet Propulsion Laboratory (JPL) and 226 

GeoForschungsZentrum (GFZ) solutions. GRACE data are available at 1 degree spatial 227 

resolution since April 2002. The monthly TWSA is relative to the baseline average over 228 

January 2004 to December 2009. As suggested by Landerer & Swenson (2012), the scaling 229 

coefficients were applied to the TWSA data to account for attenuated smalls scale mass 230 

variations in the 1 degree processing. For this study, GRACE data were averaged in space for 231 

the entire HRB (30 1-degree grids) as well as for the three solutions (CSR, JPL and GFZ) to a 232 

single timeseries. 233 

2.5. Discharge 234 

Discharge measurements were available at eight stations across the HRB. These stations were 235 

selected due to their relatively undisturbed flow conditions. The discharge data was previously 236 

employed by Davidsen et al. (2015) and Martinsen et al. (2019) to optimize hydrologic models. 237 

The land surface model applied in this study only simulates natural flow conditions and 238 

therefore catchments that are excessively managed, by i.e. diversions and reservoirs, cannot be 239 

used for evaluation purposes. As shown by Figure 1 the eight stations are located upstream the 240 

NCP, in the areas where anthropogenic influences are less dominant. The size of the upstream 241 

area of the selected stations varied between 2,000 km2 and 18,000 km2 (Table 1). The data 242 

coverage varied significantly among the stations where two had full timeseries of nine years 243 

with daily observations while others had only a few hundred measurements spread out over 244 

several years. 245 

Table 1. Overview of the eight discharge stations that were applied in the model calibration. 246 

The IDs correspond to the ones in the map (Figure 1). The observartion period refers to the 247 

years were data is avaiable and the data coverage is with respect to the stated period. n is the 248 

number of daily discharge observations.  249 

ID Name Area (km2) Longitude / Latitude Observation Period Data Coverage 

Q1 Goutaizi (古太子) 2050 117.03 E / 41.35 N Jan/2006 – Dec/2014 100 % (n=3287 ) 

Q2 Sandaohezi (三道河子) 18234 117.7 E / 40.97 N Jan/2006 – Dec/2016 17.2 % (n=691) 

Q3 Zhangfang (张坊) 3041 115.68 E / 39.57 N Jan/2006 – Dec/2014 6.3 % (n=206) 

Q4 Zhongtangmei (中唐梅) 3562 114.88 E / 38.88 N Jan/2006 – Dec/2014 13.9 % (n=455) 

Q5 Jishengqiao (济胜桥) 11874 113.06 E / 38.38 N Jan/2006 – Dec/2010 100 % (n=1826) 

Q6 Xiao Jue (小觉) 14051 113.43 E / 38.23 N Jan/2006 – Dec/2010 100 % (n=1826) 

Q7 Pingshan (平山) 6268 114.12 E / 38.15 N Jan/2006 – Dec/2010 99.9 % (n=1824) 

Q8 Kuangmenkou (狂门口) 4932 113.47 E / 38.15 N Jan/2006 – Dec/2014 100 % (n=3287 ) 

 250 
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2.6. Annual winter wheat classification 251 

Annual winter wheat maps between 2002 and 2016 were derived by analyzing all available 252 

Landsat-5, Landsat-7 and Landsat-8 surface reflectance Tier 1 data between October 1 and 253 

June 30 in the following year. The data were processed in Google Earth Engine (GEE) to 254 

monthly Enhanced Vegetation Index (EVI) maps. The training and validation data were 255 

collected from multiple reference sources that were comprised of GEE, Sentinel-2 and Landsat, 256 

which were used in combination with the monthly EVI time series in a Random Forests (RF) 257 

Classifier. The winter wheat labeled data used to train the RF model were extracted manually 258 

from the sources above and split randomly into equal training and validation subsets. The 259 

overall accuracy of the binary maps (winter wheat and non-winter wheat) varied slight across 260 

the years with an average of around 98%. 261 

3. Methods 262 

3.1. Remote sensing evapotranspiration model 263 

In this study, we apply the PT-JPL model to estimate daily actual evapotranspiration (ET) 264 

(Fisher et al., 2008). In particular, we use the PT-JPL thermal model, developed by García et 265 

al. (2013) who extended the traditional PT-JPL model to incorporate land surface temperature 266 

(LST) as a proxy for the soil moisture control on ET. PT-JPL initially estimates potential ET 267 

(PET) for soil (𝑃𝐸𝑇𝑠) and canopy (𝑃𝐸𝑇𝑐) based on the approach by Priestley and Taylor (1972) 268 

where the net radiation is split between soil and canopy based on the LAI (Norman et al., 1995). 269 

Subsequently the potential levels are reduced to their actual levels using various constraints. 270 

The constraints reflect the plant physiological status and soil moisture availability and act as 271 

multipliers that can vary between 0 and 1. Finally, total actual ET is expressed as the sum of 272 

actual canopy transpiration (𝐸𝑇𝑐) and actual soil evaporation (𝐸𝑇𝑠): 273 

 𝐸𝑇 = 𝐸𝑇𝑐 + 𝐸𝑇𝑠.      (eq.1) 274 

Canopy transpiration is calculated based on three physiological constraints: 275 

 𝐸𝑇𝑐 = 𝑓𝑔 ∙ 𝑓𝑇 ∙ 𝑓𝑀 ∙ 𝑃𝐸𝑇𝑐,      (eq.2) 276 

where 𝑓𝑔represents the green canopy fraction, 𝑓𝑇 is the plant temperature constraint and 𝑓𝑀 277 

captures the plant moisture constraint.  278 

Soil evaporation is calculated by considering a single soil moisture constraint (𝑓𝑆𝑀): 279 

 𝐸𝑇𝑠 = 𝑓𝑆𝑀 ∙ 𝑃𝐸𝑇𝑆𝑀.      (eq.3) 280 
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Equations for the four applied biophysical constraints are stated in Table 2 and more details of 281 

the PT-JPL thermal model can be found in García et al. (2013) and Moyano et al. (2018). LST 282 

and albedo are used to calculate the apparent thermal inertia (ATI) term used in 𝑓𝑆𝑀. ATI 283 

requires a nighttime and a daytime LST observation. We calculated PT-JPL with ERA-Interim 284 

and MODIS LST. On days when MODIS did not provide a clear sky LST observation, ERA-285 

Interim was used for gap filling. 286 

Table 2. Equations used to calculate the biophysical constraints for the PT-JPL model. 𝑓𝐴𝑃𝐴𝑅 287 

is the fraction of absorbed photosincally active radiation, 𝑓𝐼𝑃𝐴𝑅 is the fraction of intercepted 288 

photosincally active radiation, calculated by the NDVI relationship proposed by Myneni & 289 

Williams (1994) , 𝑇𝑜𝑝𝑡 is the optimum temperature for plant growth (25°C), 𝑇𝑎𝑚 is the daily 290 

mean air temperature (°C), 𝑓𝐴𝑃𝐴𝑅𝑚𝑎𝑥 is the maximum 𝑓𝐴𝑃𝐴𝑅, which was set to the 95th 291 

percentile in this study, 𝐴𝑇𝐼 is the apparent thermal inertia index and in this study, 𝐴𝑇𝐼𝑚𝑎𝑥 and 292 

𝐴𝑇𝐼𝑚𝑖𝑛 related to the 95th and 5th percentiles, respectively. 293 

Constraint Description Equation Reference 

𝑓𝑔 Green canopy 

fraction 
𝑓𝐴𝑃𝐴𝑅/𝑓𝐼𝑃𝐴𝑅 Fisher et al. (2008) 

𝑓𝑇 Plant 

temperature 

constraint 

1.1814 ∙ [1 + 𝑒(𝑇𝑜𝑝𝑡−10−𝑇𝑎𝑚)]
−1

 Potter et al. (1993) 

𝑓𝑀 Plant moisture 

constraint 

𝑓𝐴𝑃𝐴𝑅/𝑓𝐴𝑃𝐴𝑅𝑚𝑎𝑥 Fisher et al. (2008) 

𝑓𝑆𝑀 Soil moisture 

constraint 

𝐴𝑇𝐼 − 𝐴𝑇𝐼 𝑚𝑖𝑛

𝐴𝑇𝐼𝑚𝑎𝑥 − 𝐴𝑇𝐼𝑚𝑖𝑛
 

Verstraeten et al. 

(2006) 

 294 

3.2. Hydrologic model 295 

This study applies version 5.9 of the multiscale Hydrologic Model (mHM). mHM is a grid 296 

based spatially distributed hydrologic model that accounts for key hydrologic processes and 297 

includes a routing scheme (Samaniego et al., 2010). A multi-parameter regionalization 298 

technique enables mHM to consolidate three different spatial scales: meteorological forcing at 299 

coarse scale, an intermediate model scale and morphological data at a fine scale. In case of the 300 

HRB model, forcing data is resampled to 4 km resolution, the morphological data, such as the 301 

digital elevation model (DEM) or soil texture is used at 500 m resolution and the model is 302 

executed at 5 km scale during calibration and at 1 km for a final production run after calibration. 303 

Effective parameters at the modelling scale are regionalized through nonlinear transfer 304 

functions which link spatially distributed basin characteristics at finer scale by means of global 305 

parameters which can be determined through calibration. This regionalization framework has 306 

the advantage of providing seamless parameter fields to mHM (Samaniego et al., 2017). 307 

Following the work presented by Demirel et al. (2018), a dynamic scaling enables mHM to 308 
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downscale potential ET to the model resolution using the monthly climatology of LAI. For this 309 

study, MSWEP v2 was used as precipitation forcing (Beck et al., 2017, 2019), daily mean air 310 

temperature was acquired from ERA-Interim and potential ET was used as computed by PT-311 

JPL. Soil texture data was obtained by the Harmonized Soil World database (FAO & IIASA, 312 

2009) which contains around 300 soil classes in the HRB. The DEM was obtained from the 313 

NASA's Shuttle Radar Topography Mission (Farr et al., 2007). The MODIS MCD15A2H.006 314 

LAI product was utilized to derive the monthly climatology maps.  315 

3.3. Model calibration 316 

A multi-objective and multi-variable calibration framework has been designed to yield robust 317 

model performance during rainfed conditions. ET simulated by the rainfed hydrologic model 318 

without irrigation scheme is used as baseline in the net irrigation estimation. For this purpose, 319 

land cover was classified into natural vegetation, rainfed cropland and irrigated cropland. 320 

Initially, the MODIS land cover product was used to differentiate between cropland and natural 321 

vegetation. In a next step, the MODIS NDVI climatology was analyzed to further split the 322 

cropland into irrigated and rainfed grids. For this, two constraints were applied, (1) if the NDVI 323 

slope during spring (February to May) was below 0.075 per month and (2) the maximum NDVI 324 

of that period was below 0.35, a cropland grid was classified as being rainfed. The resulting 325 

classification is depicted in Figure 2 and underlines that large parts of the NCP cropland is 326 

affected by irrigated. The map resembles the irrigation classifications shown by Mo et al. 327 

(2005) and Guo and Shen (2015). In the coastal plain, irrigation is not feasible from the shallow 328 

aquifers due to saltwater intrusion of the aquifers. The concentrated patch of rainfed crops in 329 

the center of NCP coincides well with very sandy soils, which may explain the absence of 330 

irrigation in this area. Observations of the two most important water balance outflows, namely 331 

discharge (Q) and ET were considered. The observed ET data, obtained from the PT-JPL model 332 

covering the years 2002 to 2016, has been used in several ways. For the three land cover classes, 333 

rainfed cropland, all cropland and natural vegetation the monthly MAE was calculated. The 334 

MAE of ET over natural vegetation was used as calibration target for all months throughout 335 

the years. The MAE associated to rainfed cropland was utilized during the winter wheat 336 

growing season (October - May) and the MAE for all cropland was used during the monsoon 337 

months (June - September). Urban areas, water bodies and barren soil were excluded in the ET 338 

calibration. With this calibration design, the hydrologic model was calibrated exclusively 339 

against ET under rainfed conditions to minimize the influence of irrigation. In order to target 340 

the calibration on the spatial pattern performance, the multi-component Spatial Efficiency 341 
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(SPAEF: Koch et al. (2018)) metric was applied to the multi-year average monthly simulated 342 

and observed ET maps. SPAEF was used to assess the simulated spatial patterns under rainfed 343 

conditions for the months March to October. The ET patterns during the four winter months 344 

are characterized by a very low variance, which disqualifies them for a meaningful spatial 345 

pattern calibration. In the summer crop season from June to September, SPAEF was applied 346 

on the combined area of natural vegetation and cropland. For the remaining months, irrigation 347 

is expected to significantly affect ET and thereby, SPAEF was solely calculated for the 348 

combined area of natural vegetation and rainfed cropland. mHM incorporates a LAI driven 349 

scaling function to estimate a PET multiplier, in similar fashion to the well-known crop 350 

coefficient, and the MODIS based LAI data had to be corrected to remove the effect of 351 

irrigation. This was achieved by reducing LAI of irrigated cropland, using the above-mentioned 352 

NDVI based mask, in the months from October to May, to the average LAI of rainfed cropland 353 

of that particular month. A global optimizer scheme within PEST (Doherty, 2005) that is based 354 

on a covariance matrix adaptation estimation strategy (CMA‐ES) was applied to calibrate 355 

mHM parameters. For Q, the mean absolute error (MAE) for each of the eight stations (Figure 356 

1) was used as objective function. Achieving the best possible accuracy of Q dynamics is not 357 

at the center of this study and therefore a simple water balance objective function, as the MAE, 358 

has been applied. The set of objective functions was weighted as follows, 40 % was allocated 359 

to the MAE for the 8 discharge stations, 20 % to the SPAEF applied to eight mean monthly ET 360 

maps (March - October), 20 % to the MAE of all cropland ET (June – September, 15 years), 361 

10 % to the MAE of the rainfed cropland (October – May, 15 years) and 10 % to the MAE of 362 

natural vegetation (January – December, 15 years). The weighting has been implemented with 363 

respect to the residuals as obtained from the initial parameter set. Net irrigation estimation. 364 
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 365 

Figure 2. The map in a) depicts the land cover classification applied in the ET calibration to 366 

differentiate between irrigated cropland, rainfed cropland and natural vegetation. Two 367 

examples of the winter wheat classification maps by Zheng et al. (2020) are shown for 2004 368 

(b)) and 2016 (c)). NCP domain indicated with dashed line.  369 

Net irrigation (𝑛𝑒𝑡𝐼𝑟𝑟) amounts are quantified at monthly time scale at 1 km2 spatial resolution 370 

based on the ET residuals of PT-JPL and mHM. Net irrigation refers to the water column depth 371 

of the evaporative loss of irrigated water. With the absence of irrigation in the hydrologic model 372 

it can be assumed that mHM systematically underestimates ET at times of irrigated crop growth 373 

as compared to PT-JPL: 374 

𝑛𝑒𝑡𝐼𝑟𝑟 = 𝐸𝑇𝑃𝑇−𝐽𝑃𝐿 − 𝐸𝑇𝑚𝐻𝑀.     (eq.4)  375 

Negative 𝑛𝑒𝑡𝐼𝑟𝑟 estimations, caused by to overestimations of 𝐸𝑇𝑚𝐻𝑀, are conceivable, 376 

especially in periods of high precipitation. Therefore, we investigate two hypotheses to 377 

quantify net irrigation. The first (h1), neglects negative residuals in equation 4 whereas the 378 

second (h2) takes both, positive and negative residuals into consideration. h2 can be considered 379 

a conservative estimate of irrigation. In case the hydrologic model overestimates ET with 380 

respect to the remote sensing based model, h2 can yield unrealistic negative irrigation amounts. 381 
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Nevertheless, h2 is included to shed light on some of the uncertainties related to an approach 382 

based on the residual of two independent ET estimates, each associated with their own 383 

uncertainties. In the analysis, net irrigation is separated into a winter- and a summer-fraction. 384 

The first corresponds to the winter wheat growing season (October-June), whereas the latter 385 

covers the summer crops (June-September).  386 

4. Results 387 

4.1. Remote sensing model 388 

The PT-JPL model was used to estimate daily ET at 1 km2 spatial resolution across the entire 389 

HRB from 2002 to 2016. As stated in the method section, most of the MODIS derived inputs 390 

to the PT-JPL model underwent a processing step using the multi-year climatology to obtain 391 

robust daily timeseries with full coverage. Figure 3 exemplifies this processing for NDVI at 392 

two grids near the city of Baoding. One of the grids exhibits the typical dual crop rotation 393 

system constituted by winter wheat and summer maize, while the other one is characterized by 394 

just a single summer crop. In NCP, winter wheat is sown in October, after which the plant goes 395 

through dormancy until spring, peaks in May and is typically harvested in June. Afterwards the 396 

summer cropping cycle begins which ends with harvest in September. These well-studied crop 397 

dynamics are captured accordingly by the NDVI timeseries in Figure 3. The climatology based 398 

processing provides realistic dynamics compared to simple interpolation techniques, which are 399 

prone to errors, and allows to differentiate intra-year variability. 400 

Daytime LST data from three different sources, namely MODIS Terra, MODIS Aqua and 401 

ECMWF ERA-Interim were acquired to calculate the soil moisture constraint in the PT-JPL 402 

model. All of the above use the same MODIS based nighttime LST data to calculate the 403 

apparent thermal inertia (Table 2). The results are illustrated in Figure 3 and differences are 404 

entirely due to different actual soil evaporation terms, as the canopy transpiration term is not 405 

affected by LST. MODIS LST is only available at clear sky days and therefore, the derived ET 406 

values do not show the same abrupt fluctuations as the ECMWF based ET timeseries, which is 407 

a result of low available energy during cloudy days. Overall, the bias between PT-JPL forced 408 

by Terra LST and Aqua LST is 0.02 mm d-1 using only grids with coinciding observations. The 409 

bias between ECMWF derived ET and Terra and Aqua is 0.03 mm d-1 and 0.04 mm d-1, 410 

respectively.  411 

The resulting daily ET dataset is a combination of the three PT-JPL models forced with the 412 

above-mentioned LST datasets. For the final dataset, MODIS LST based ET was always 413 
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favored over ERA-Interim LST. In case both, Terra and Aqua provide a LST observation for 414 

the same day, the average of the two ET retrievals was used. Annual cumulative distribution 415 

functions are plotted in the bottom row of Figure 3. The effect of irrigation becomes evident in 416 

the winter wheat example, where the high ET rates in spring are not sustained by the available 417 

precipitation, which is a strong indication for an additional non-precipitation source of water. 418 

 419 

Figure 3. Example timeseries for two 1 km2 grid cells over two years (2015 - 2016) close to 420 

the city of Baoding, located in NCP. The first depicts an example of rainfed crops without 421 

winter crop in the left column and the second showcases the crop rotation system of irrigated 422 

winter crop and rainfed summer crop in the right column. The first row shows the multi-year 423 

NDVI climatology which is adjusted to capture actual observations (green points) while 424 

providing a robust interpolation on days of missing data. The middle row contains ET based 425 

on the PT-JPL model using land surface temperature (LST) from Aqua, Terra and ECMWF. 426 

The cumulative density functions of precipitation and ET are shown in the bottom row. In case 427 

of ET, data obtained with ECMWF LST was used to gap fill days without MODIS 428 

observations. 429 

Figure 4 depicts the average annual remote sensing based ET pattern for the HRB for the years 430 

2002 to 2016 at 1 km2 spatial resolution. The average annual ET for the HRB and NCP domains 431 

are 483 and 511 mm/year, respectively. The highest ET fluxes are found in the mountainous 432 
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regions north and west of the NCP that are covered by forest. The spatial pattern of ET in the 433 

NCP does to a large degree reflect patterns of agriculture. ET is generally high in the southern 434 

part of the NCP towards the Yellow River. Another region of high ET is the so-called Piedmont 435 

Plain, which is the part of NCP that is located on the foothills of the Taihang Mountains. Low 436 

ET corresponds well to the areas of rainfed cropland as classified in Figure 2 and areas of low 437 

NDVI in Figure 1. 438 

 439 

Figure 4. Multi-year average (2002-2016) of remote sensing based ET using the PT-JPL 440 

model. NCP domain indicated with dashed line. 441 

4.2. Hydrologic model 442 

The comparison of monthly ET aggregated to NCP for PT-JPL and mHM is shown in Figure 443 

5. The hydrologic model has been calibrated for rainfed conditions and does clearly not reflect 444 

the effect of winter wheat irrigation. There is a systematic mismatch between ET simulated by 445 

the hydrologic model and the remote sensing based model during the spring months. The 446 



Manuscript submitted to Water Resources Research 

 

natural ET variability is driven by climate seasonality with an annual range from 10 mm/month 447 

in winter to 100 mm/month in summer, which is represented accordingly by mHM. 2002 and 448 

2014 were characterized by low precipitation, which likely entailed extended summertime 449 

irrigation that could explain the underestimations of summertime ET of mHM for the respective 450 

years. After calibration, the average monthly MAE of rainfed cropland was 9.6 mm for the 451 

summer months and 10.6 mm for the winter months. The MAE for natural vegetation was 11.6 452 

mm. The spatial pattern metric SPAEF has an optimal value of 1, and the calibrated rainfed ET 453 

patterns for the multiyear averages of the months March till October varied between 0.14 (July) 454 

and 0.71 (September) with an average of 0.5.  455 

 456 

Figure 5. Timeseries of monthly ET obtained for all cropland (irrigated and rainfed) in NCP 457 

by the remote sensing model (PT-JPL) and the calibrated hydrologic model (mHM). 458 

The MAE at the eight discharge stations was used as calibration target and the resulting Q 459 

performance is stated in Table 3. Q data was included in the calibration to get the overall 460 

waterbalance in place. Nevertheless, some stations are associated with large errors that may be 461 

a result of anthropogenic interference and uncertainties in the precipitation forcing or Q 462 

observations. 463 

Table 3. Discharge performance obtained through calibration. The station names refer to the 464 

ones in Figure 1 and to the IDs in Table 1. The first two rows state the observed discharge. The 465 

residuals were calculated by subtracting the observed from the simulated discharge. 466 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

observed (m3/s) 1.6 12.9 6.1 6.0 2.0 8.7 7.7 2.0 

observed (mm/year) 24.0 22.2 63.5 53.4 5.4 19.4 38.5 12.5 

residual (m3/s) -1.2 0.3 -4.9 -4.5 4.5 -1.6 -0.4 3.4 

residual (% of observed) -79 2 -80 -74 221 -18 -5 174 
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 467 

Table 4 provides an overview of the annual water balance components of NCP and HRB. 468 

Despite two drought years in 2002 and 2014 there is no notable trend in precipitation. Based 469 

on PT-JPL, ET more or less equals precipitation, given that not all available water is likely to 470 

evaporate, but will also generate recharge and runoff, this is a strong indicator for the extensive 471 

irrigation scheme. For the HRB, discharge amounts to approximately 10 % of precipitation and 472 

recharge constitutes 8.5 %. The variance across the 15 years of annual ET simulated by mHM 473 

is much larger than for PT-JPL. Thereby, irrigation counteracts precipitation variability, 474 

keeping ET more constant than it would be under natural conditions. 475 

Table 4. Overview over annual and average water balance components for the NCP and the 476 

HRB. All values are stated in mm yr-1. Precipitation was obtained from MSWEP v2. Simulated 477 

discharge (surface runoff), groundwater recharge (percolation from bottom soil layer) and 478 

potential ET (PET) were taken from the calibrated mHM model. ET is given for the remote 479 

sensing model (PT-JPL) and calibrated hydrologic model (mHM). Irrigation was calculated 480 

based on the two hypothesis defined in section 3.3. 481 

NCP 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 avg 

Precipitation 331 647 544 490 432 474 495 548 527 526 552 553 416 560 644 516 

Discharge 15 94 121 75 50 49 61 67 90 73 104 111 36 77 160 79 

Recharge 18 79 100 64 45 45 55 60 72 64 83 89 35 64 123 66 

PET 728 694 727 751 729 765 748 754 736 732 744 763 725 733 715 736 

ET PT-JPL 485 478 496 514 500 528 527 517 498 505 519 519 527 528 527 511 

ET mHM 332 373 452 430 401 413 426 435 419 414 444 456 397 416 442 417 

Irrigation h1 169 132 92 120 125 145 128 117 112 124 117 112 156 140 125 128 

Irrigation h2 154 105 44 84 99 115 101 82 78 91 76 63 130 112 84 94 

                 

HRB 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 avg 

Precipitation 358 554 480 442 404 440 473 450 492 472 508 520 416 511 623 476 

Discharge 13 56 69 44 32 29 37 37 50 44 63 68 27 43 103 48 

Recharge 13 48 56 37 27 26 33 32 41 38 50 55 23 37 80 40 

PET 901 880 910 935 927 959 952 948 939 949 940 967 927 925 925 932 

ET PT-JPL 468 458 463 480 466 501 498 488 484 480 483 492 496 495 495 483 

ET mHM 349 383 442 418 392 396 429 400 414 419 432 466 403 413 480 416 
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Irrigation h1 139 111 72 99 100 133 103 120 109 103 96 82 125 116 83 106 

Irrigation h2 119 76 21 62 74 105 69 89 70 61 50 26 92 81 15 67 

 482 

4.3. Net irrigation estimation 483 

Irrigation was quantified based on the ET residuals from a hydrologic model and a remote 484 

sensing model following two hypotheses. Table 4 contains the results for annual estimated 485 

irrigation amounts for h1, which neglects any negative residuals (ET overestimations by mHM) 486 

whereas h2 takes both, positive and negative residuals into consideration. Logically, annual net 487 

irrigation based on h1 is larger than h2 with an average of 126 mm (15.2 km3) for NCP and 488 

108 mm for HRB (18.6 km3). 489 

Figure 6 illustrates the spatial pattern of mean annual net irrigation. Irrigation agriculture is 490 

concentrated along the Piedmont Plain and the southern part of NCP, which corresponds well 491 

with areas of high ET based on Figure 4. The spatial resolution of 1 km2 reveals many 492 

interesting details on the irrigation pattern, such as the absence of irrigation agriculture along 493 

the broad riverbeds intertwined in the Piedmont plain. The irrigation analysis is performed at 494 

monthly timescale which allows to separate the irrigation activities into a summer- and a 495 

winter-fraction. Following the results presented in Figure 6, the majority of irrigation takes 496 

place during the winter wheat cropping period between October and May. Summertime 497 

irrigation is generally lower and limited to the center part of NCP were large-scale fruit 498 

orchards are located. On average 77 % of the annual net irrigation takes place during the winter 499 

cropping season. At monthly scale, May is the month with the largest fraction of annual 500 

irrigation (33 %), followed by April (21 %) and August (10 %).  501 

The differences between the two hypothesis is investigated in Figure 6 to analyze the 502 

uncertainties related to neglecting negative ET residuals in h1. The uncertainties are large along 503 

the southern and northeastern boundary of the NCP and the Piedmont Plain. However, a 504 

majority of the uncertainty (58 %) can be attributed to the net irrigation during the summer 505 

months. During summer, precipitation is high which makes it more challenging to isolate the 506 

irrigation signal. Since irrigation is not equally divided between summer and winter cropping 507 

season, the irrigation uncertainty is 11.2 % for the winter season and 48.0 % for the summer 508 

season relative to the irrigation estimates using h1. 509 
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 510 

Figure 6. a) Average annual net irrigation (2002-2016) as obtained from h1 (section 3.3). b) 511 

and c) split a) into a winter- and a summer fraction, respectively. d), e) and f) depict the 512 

differences between the two hypotheses (h1 - h2) to investigate uncertainties of a), b) and c), 513 

respectively. 514 

Figure 7 further investigates the inter-annual variability of net irrigation, the partitioning 515 

between winter and summer crop as well as the differences between h1 and h2. For NCP, the 516 

annual net irrigation varies between 89.4 mm (10.7 km3) and 168.8 mm (20.3 km3). The 517 

variability partly relates to precipitation anomalies, as the two driest years, 2002 and 2014, 518 

show the largest irrigation. However, this dependency seems to be only valid to the summer 519 

crop irrigation, which is in phase with the monsoon precipitation and therefore more dependent 520 

on precipitation. The differences between h1 and h2 are largely controlled by summer 521 

irrigation, which underlines that winter irrigation amounts are estimated with a higher certainty. 522 

Following h2, some years (i.e. 2004, 2012, 2013 and 2016) have an overall negative summer 523 

irrigation as consequence of a systematic overestimation of ET in mHM. These results are 524 

unrealistic and emphasize the larger uncertainties related to the summertime irrigation 525 

quantification, when precipitation is high, in comparison to the wintertime assessment, when 526 

precipitation is low.  527 
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 528 

Figure 7. Top row: Annual analysis of net irrigation based on the two hypothesis (h1 and h2) 529 

split up into a winter- and a summer fraction. The dashed line indicates the fitted linear trend 530 

of winter irrigation based on h1. Middle row: Annual precipitation anomalies with respect to 531 

the 2002 to 2016 mean. Bottom row: Annual winter wheat area, as classified by Zhang et al. 532 

(2020), with fitted linear trend (dashed line). 533 

4.4. Net irrigation evaluation 534 

Figure 7 also contains the development of winter wheat cultivation areas in NCP, which is 535 

characterized by a clear increasing trend of 2200 km2 yr-1. This trend does not entail a clearly 536 

increasing trend of winter wheat irrigation amounts, which suggests that irrigation water use 537 

may have become more efficient. The detailed winter wheat classification maps are a valuable 538 

source to evaluate the net irrigation estimates spatially. Figure 8 depicts the winter wheat 539 

classification for the years 2004 and 2016, as already shown in Figure 2, but zoomed into NCP. 540 

Based on the selected years, the area used for winter wheat expanded from approximately 541 

38,000 km2 to 65,000 km2 which marks an increase of 70 %. The continuous winter net 542 

irrigation estimates are classified into three classes for better visual comparison with the winter 543 

wheat classification. Overall, the spatial expansion is well represented between the two 544 

approaches. Winter wheat and thereby irrigation expands drastically in the Eastern and 545 

Northern part of NCP and in general the cropping area becomes more compact. Based on the 546 

three selected thresholds in Figure 8, greater than 50 mm yr-1, 100 mm yr-1 and 150 mm yr-1, 547 
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the irrigated areas expand from 83,000 km2, 39,000 km2 and 12,000 km2 in 2004 to 98,000 548 

km2, 66,000 km2, 35,000 km2 in 2016, which marks an increase of 18 %, 69 %, 190 %, 549 

respectively. The best agreement with the winter wheat classification maps is obtained with the 550 

second threshold, namely, greater than 100 mm yr-1. 551 

 552 

Figure 8. Spatial evaluation of the net irrigation estimates for NCP. The winter wheat 553 

classification is shown as reference for the years 2004 and 2016 in panels a) and c), 554 

respectively. The estimated winter irrigation is classified in four classes for the same years 555 

(panels b) and d)) to be comparable with the binary winter wheat map.  556 

The GRACE based total water storage anomalies (TWSA) clearly support the observed 557 

groundwater depletion of the NCP with a decreasing trend of -9.0 mm yr-1 (Figure 9). The 558 

monthly TWSA simulated by mHM were calculated based on hydrologic state variables at the 559 

land surface, in the soil layers and in the subsurface. The storage anomalies of mHM possess a 560 

slight positive trend (3.6 mm yr-1). Thereby, mHM does not follow the observed GRACE 561 

signal, which constitutes that the negative trend in the GRACE data cannot be attributed to 562 
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climate variability. mHM has an overall dampened TWSA amplitude in comparison to 563 

GRACE, due to the absence of groundwater withdrawals for irrigation as well as a general 564 

simplified groundwater description. The comparison of GRACE and mhM is further hampered 565 

by the absence of key processes in mHM controlling water storage, such as reservoirs, wetlands 566 

and water diversion. The trend corrected TWSA climatology of mHM and GRACE underline 567 

the effect of extensive irrigation activities. Both have a clear increasing trend in the summer 568 

monsoon months from June to August driven by high precipitation. The TWSA data disagrees 569 

most in the spring months where GRACE shows a clear negative trend induced by groundwater 570 

abstractions for irrigation, whereas this is not captured by the purely rainfed mHM setup. These 571 

findings are further supported by the total water storage change (TWSC) calculated as the 572 

difference of TWSA in a particular month and the TWSA of the subsequent month. Agreement 573 

between mHM and GRACE can be found in the summer months that are mainly driven by 574 

precipitation whereas a strong disagreement can be attested to the spring months where 575 

GRACE possess negative TMSC that are not represented by mHM. The springtime 576 

discrepancies can be alleviated by taking the estimated net irrigation amounts into 577 

consideration and subtracting them from the mHM based TWSC. 578 

 579 

Figure 9. The monthly total water storage anomalies (TWSA) based on GRACE and mHM for 580 

the entire HRB are shown in a) with their respective fitted linear trends as dashed lines. The 581 

average TWSA are shown in b) based on the trend-removed monthly data in a). The average 582 

total water storage change (TWSC) based on the data in a) is illustrated in c) including a 583 

scenario where mHM was corrected for net irrigation (netIrr).  584 
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5. Discussion 585 

5.1. Irrigation in the North China Plain 586 

There exists a broad variety of NCP irrigation studies in the water resources as well as in the 587 

agronomy literature that can be utilized to evaluate our results. However, direct comparison are 588 

not always trivial due to deviating study periods, spatial resolutions that vary from plant scale 589 

studies to administrative unit scale, but more importantly the term irrigation can have different 590 

notions, such as optimal crop irrigation water requirement, the actual applied irrigation to the 591 

field or the net irrigation as the actual evaporative loss. Yang et al. (2010) applied agronomic 592 

crop models and reported an overall irrigation water requirement of 16.5 km3 in 2001 with the 593 

highest requirements along the Piedmont Plain and the southern part of NCP. Moreover, April 594 

and May were found to be the months accounting for the largest fraction of the annual 595 

irrigation, with 18 % and 25 %, respectively. These findings are in very good agreement with 596 

our analysis. Likewise, average agricultural water use for the HRB was estimated around 17.7 597 

km3 yr-1 by Shen et al. (2015). Hu et al. (2016) estimated average annual irrigation based as the 598 

residual term of the soil water balance equation which amounted to 317 mm yr-1 with irrigation 599 

to ET rations of about 0.5. Our irrigation estimates are half of their reported values. To solve 600 

the soil water balance equation, Hu et al. (2016) interpolated in situ soil moisture data for NCP 601 

and groundwater recharge was estimated and interpolated based on in situ tracer experiments, 602 

which may have introduced large uncertainties. A GRACE based water balance analysis 603 

yielded annual ET of 521 mm yr-1 which was compared to three land surface models 604 

(GLADAS) without irrigation schemes (Pan et al., 2017). GRACE based ET was 12 % higher 605 

than the GLDAS models, which is in good agreement with our analysis, where PT-JPL based 606 

ET is 13.8% higher than mHM. An integrated subsurface-surface hydrologic model was 607 

applied by Qin et al. (2013) where irrigation amounts and frequencies were prescribed based 608 

on literature. Annual NCP irrigation was estimated to be around 180 mm yr-1, which is slightly 609 

higher than our estimates. For a similar model setup, irrigation was reported to be 290 mm yr-610 

1 for an irrigation district within NCP (Shu et al., 2012). The two above-mentioned studies 611 

specified actual irrigation amounts applied to the field and return flows have to be considered 612 

before being directly comparable to net irrigation estimations. Despite the deviation to our 613 

findings, we regard our approach more trustworthy as it is more observational based compared 614 

to the simple deficit rules applied in hydrologic models. Based on the literature review, our 615 

irrigation estimates at 1 km2 provide critical information at an unprecedented spatial and 616 

temporal resolution, which can build an important asset in future research as boundary 617 
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condition of groundwater models investigating depleting aquifers (Cao et al., 2013), input to 618 

water resources management scenarios (Huanhuan Qin et al., 2019) or calibrating irrigation 619 

parameters in land surface models (Lei et al., 2015), which build an important boundary 620 

condition to regional climate models. The importance of irrigation for the NCP water crisis 621 

have been well discussed in literature. However, recent NCP studies also highlight the 622 

interactions between irrigation and the atmosphere, resulting in a cooling of the land surface 623 

(Q. Yang et al., 2020) or increasing the risk of heatwaves due to increases in humidity (Kang 624 

& Eltahir, 2018). This further promotes the importance of our work, as more detailed 625 

knowledge on irrigation may help explain the complex micro-climatic interactions. 626 

Based on the winter wheat classification we could draw the conclusion that the irrigation water 627 

use efficiency (WUE) must have improved in NCP since the early 2000s. Fang et al. (2020) 628 

found a significant trend in winter wheat ET of 1.28 mm yr-1 due to anthropogenic influence, 629 

which can be supported by our irrigation results as seen by the trend line in Figure 7. However, 630 

this trend does not correspond to the doubling in winter wheat cultivation area, which implies 631 

the increase in WUE. Mo et al. (2017) studied trends in ET and gross primary productivity for 632 

NCP and found increasing WUE in the winter wheat growing season. These findings were 633 

supported by Zhang et al. (2017) and Lu et al. (2016) for detailed yield and ET records at 634 

agronomic research sites in NCP.  635 

5.2. Irrigation uncertainties 636 

At the core of the irrigation quantifications lies the dual modelling of ET using a rainfed 637 

hydrologic model and a remote sensing based ET model, both of which are subject to 638 

uncertainties. PT-JPL was used for the latter and generally, it has been reported that PT-JPL 639 

provides accurate ET estimations, especially under semi-arid conditions (Fisher et al., 2008; 640 

García et al., 2013; McCabe et al., 2019). In principle, different ET models are available, such 641 

as GLEAM, ALEXI or MOD16, and future research should utilize ensembles of remote sensing 642 

based ET data to investigate uncertainties related to the irrigation quantifications. Based on PT-643 

JPL, ET was estimated to be 511 mm yr-1 for NCP and 483 mm yr-1 for HRB. Based on various 644 

approaches, annual ET rates ranging from 480 to 600 mm yr-1 have been reported in the 645 

literature (Guo & Shen, 2015; Hu et al., 2016; H. Li et al., 2008; X. Li et al., 2013; X. Mo et 646 

al., 2005; Pan et al., 2017; H. Qin et al., 2013), which underlines the general plausibility of the 647 

PT-JPL results. Based on in situ eddy covariance ET observations at several agricultural sites 648 

in NCP, daily ET reached approximately 6 mm d-1 during the peak of the cropping season (Guo 649 

& Shen, 2015; Lei & Yang, 2010; Shu et al., 2011) which is in good agreement with the daily 650 
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PT-JPL dynamics (Figure 2). Moreover we expect that the effect of a potential bias in the ET 651 

dataset to quantify net irrigation will be diminished by calibrating the hydrologic model against 652 

the ET data during rainfed conditions. 653 

We believe that the choice of hydrologic model is less crucial than the choice of precipitation 654 

forcing to the model for the estimation of rainfed ET, as long as the hydrologic model does not 655 

simulate irrigation. We applied mHM due to its favorable regionalization scheme which 656 

enables the simulation of physically meaningful spatial patterns of hydrological states and 657 

fluxes (Demirel et al., 2018; Samaniego et al., 2017). MSWEP v2 was used as precipitation 658 

forcing, which recently has been reported to be accurate for China (Xu et al., 2019). The HRB 659 

total water storage trend of the GLDAS models was found to be 2.7 mm yr-1 (Pan et al., 2017), 660 

which is in good agreement with the 3.6 mm yr-1 predicted by mHM. In future research, an 661 

ensemble of precipitation forcing could be utilized to quantify the uncertainty of the irrigation 662 

quantification. The ability of mHM to simulate rainfed ET was ensured by means of the 663 

proposed calibration strategy. Uncertainties may arise due to fact that minor irrigation also 664 

takes place during the summer crop season, which was assumed to be rainfed in our calibration 665 

design. This simplification in combination with uncertain precipitation forcing may result in 666 

overestimations of ET in mHM, which we addressed by applying two hypotheses for the 667 

estimation of net irrigation. 668 

Comparing the two hypotheses to quantify net irrigation revealed that winter crop irrigation 669 

could be estimated with a higher certainty than summer crop irrigation. This relates to the fact 670 

that it is easier to isolate the irrigation signal during dry periods in comparison to wet periods 671 

where precipitation is the dominating source. This finding is important to take into 672 

consideration for transferring the proposed method to other regions. 673 

The proposed approach estimates net irrigation, i.e. the evaporative loss of irrigated water, 674 

which will naturally be smaller than the actual irrigation applied to the fields (Van Dijk et al., 675 

2018). Flood irrigation is typically practiced in NCP (Cao et al., 2013) and irrigation return 676 

flows can be significant. Shen et al. (2015) reported that return flows constitute 15 % of 677 

recharge to the shallow aquifer in HRB, which relates to approximately 1.5 km3 yr-1. The 678 

advantage of estimating net estimation is that uncertain assumptions on return flows are not 679 

required.  680 
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5.3. Irrigation management 681 

The central government of China has from the 1950’s to 2010 supported the development of 682 

the Chinese irrigation infrastructure (Liu et al., 2013). Ever since the water scarcity in several 683 

regions of China became increasingly evident, water scarcity alleviating measures, such as 684 

increasing WUE, has been given special attention in policies and guidelines. In 2010, the No. 685 

1 Central Document for 2011 (Ministry of Agriculture of the People’s Republic of China, 686 

2010), issued by the Ministry of Agriculture, laid out an ambitious plan about the ‘most 687 

stringent water management’ to achieve sustainable use of water resources and promote water 688 

savings. The following year the Three Red Lines (Global Water Partnership, 2015), defined 689 

national targets for capping water use, increasing WUE and reducing water pollution. Across 690 

NCP, the cultivation of grain crops like the winter wheat summer maize crop rotation system 691 

is mostly done on family-run small parcels of land with an average size of 0.1 hectare (Chen et 692 

al., 2011), which complicates the implementation of water policies. Moreover, the political 693 

plans and guidelines are challenged by traditional means of flood irrigation that has long 694 

prevailed, and is applied on more than 70 % of irrigated land in China, according to Deng et 695 

al. (2006). In addition to tripling the investments in agricultural research from 7 billion 696 

renminbi in 2000 to 24.4 billion renminbi in 2009, the Chinese government has taken initiatives 697 

to transfer know-how on increasing WUE from experimental research fields to practice. More 698 

than 12,000 researcher-led demonstrations of soil- and crop management improvements were 699 

carried out across China and subsidies of around 1.5 billion renminbi were given to soil-testing 700 

of farm land in 2012 (Zhang et al., 2013). Since 2011 there has been a focus on water pricing 701 

reforms to promote water savings in the agricultural sector. The fundamental role of agriculture 702 

in China’s economy and food security complicates economic reforms in agricultural water 703 

management and the sector is still subsidized, not realizing cost recovery of irrigation water 704 

supply (Shen & Wu, 2017). Our analysis suggested an increase in WUE across the NCP, which 705 

can be supported by the described efforts toward a more sustainable water resource 706 

management in Eastern China. Despite the past advances of increasing WUE, groundwater 707 

abstraction is still unsustainable and groundwater tables decline by approximately 4 cm yr-1 708 

across NCP with accelerating depletion rates since 2013 (Zhao et al., 2019).   709 
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6. Conclusions 710 

This study brings forward a novel framework to estimate net irrigation amounts at regional 711 

scale for the Haihe River Basin (HRB), encompassing the North China Plain (NCP), based on 712 

dual modelling of evapotranspiration (ET). The systematic differences between a rainfed 713 

hydrological model and a remote sensing based model of ET provide realistic irrigation 714 

estimates at unprecedented spatio-temporal detail. We draw the following general conclusion 715 

from our work: 716 

1. Calibrating the hydrological model for rainfed ET conditions contributes to the fidelity 717 

of the irrigation estimates. 718 

2. The irrigation signal can be isolated with higher certainty during dry periods, whereas 719 

high precipitation leads to more ambiguous irrigation amounts in the wet periods.  720 

3. Annual net irrigation is estimated to be 128 mm and 106 mm for NCP and HRB, 721 

respectively, which constitutes approximately 25 % of ET.  722 

4. Summer irrigation is more sensitive to inter-annual precipitation variability, while 723 

winter irrigation is less affected.  724 

5. GRACE based total water storage data underline the plausibility of the quantified 725 

irrigation amounts. 726 

6. Evaluation of winter irrigation coverage and amounts implies increasing areas under 727 

irrigation accompanied by an increase in water use efficiency.  728 
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