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Abstract

Denitrification in the hyporheic zone of river corridors is a crucial pathway to
remove excess nitrogen (N) in rivers from anthropogenic activities. However,
previous modeling studies of the effectiveness of river corridors in removing
excess nitrogen via denitrification were often limited to the reach-scale and low-
order stream watersheds. We developed a basin-scale river corridor model based
on SWAT-MRMT-R to account for denitrification in the hyporheic zone (HZ)
for the Columbia River Basin (CRB) with random forest models to identify
what factors control the spatial variation of HZ denitrification in streams with
different sizes and land uses. Our modeling results suggest that the combined
effects of hydrologic variability in streams and substrate availability influenced
by land-use control the spatial variability of HZ denitrification at the basin
scale. Hyporheic exchange flux can explain the denitrification extent in different-
sized streams, while among the streams affected by different land uses, the
combination of hyporheic exchange flux and stream concentration of dissolved
organic carbon (DOC) can explain the denitrification differences. Also, we can
generalize that the most influential watershed and stream variables controlling
denitrification variation are stream morphology parameters (D50, stream slope),
climate (annual precipitation), and stream DOC-related parameters (percent of
forest area). The modeling framework in our study can serve as a valuable tool
to identify the limiting factors in removing excess N pollution in large river
basins where direct measurement is often infeasible.

Keywords: hyporheic zone, denitrification modeling, random forest
model, stream sizes, and land uses

Key Points

• Hyporheic exchange flux controls the spatial variation of denitrification
across streams with different sizes and land uses.

• The combination of hyporheic exchange flux and stream DOC explains
the differences in denitrification for different land-use streams.

• D50, stream slope, precipitation, and forest area are important variables
explaining the spatial variability of denitrification.

1. Introduction
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An increase in air pollution and an excess in fertilizer often result in stream N
pollution, which increases the frequency of eutrophication, hypoxia, and harmful
algal blooms in lakes and estuaries (Boyer et al., 2006). The removal of nitrates
via the denitrification process in river corridors is the most effective way to
transform inorganic forms of excess nitrogen to a gas form (N2) emitted to the
atmosphere. With the importance of denitrification, there are still consider-
able uncertainties in modeling denitrification in terrestrial and aquatic systems
(Groffman, Butterbach-Bahl, et al., 2009) due to the high spatial/temporal het-
erogeneity of key controlling factors (oxygen, nitrate, carbon and pH, tempera-
ture, etc.).Therefore, quantifying denitrification in river corridors with varying
spatial and temporal scales is challenging, especially for the hyporheic zone at
large spatial scales.

Denitrification in the hyporheic zone (HZ) varies with local conditions including
substrate availability (dissolved organic carbon (DOC), dissolved oxygen (DO)
and nitrate), sediment properties (e.g., grain size), and hydrologic exchange
flux/residence time within the hyporheic zone (Kreiling et al., 2019, Seitzinger
et al., 2006, Fork and Heffernan 2014, Findlay et al., 2011, Boyer et al., 2006,
Tank et al., 2008, Zarnetske et al., 2015). Large-scale drivers—including land
use/cover, climate, and hydrologic conditions—can alter local conditions. For
example, agricultural/urban watersheds tend to have higher potential denitrifi-
cation than undisturbed watersheds (Mulholland et al., 2008). However, the key
controlling factors may change with scale and land use. Kreiling et al. (2019)
showed that stream nitrate availability is a key variable that controls the spa-
tial variation of denitrification in the Fox River watershed, Wisconsin, with a
mixed land use. Baker and Vervier (2004) showed that the first best predictor
for explaining spatial/temporal denitrification variables is the concentration of
low molecular weight organic acids. Even though we know that the combined
effects of hydrologic variability and substrate concentration control denitrifica-
tion, it is unclear which factor becomes more critical under which conditions.
Bardini et al. (2012) used numerical modeling to demonstrate the streambed
can transform from net nitrification to net denitrification by varying physical
transport. Their numerical simulation study showed that hydrologic variability
is more important than reaction substrate availability (DOC and NO−

3 ). The
relative importance of hydrologic and substrate variables may vary with land use
and stream sizes; for example, denitrification in agricultural streams is limited
by the hyporheic exchange flux, while in forest streams it is limited by substrate
availability (Myers, 2008).

Previous denitrification studies are often limited to reach-scale to lower-order
streams and have emphasized the importance of the role of lower-order streams
in denitrification (Alexander et al., 2000, 2007; Gomez-Velez et al., 2015). Due
to the higher ratio of benthic surface to water volume and nutrient loading in
lower-order streams, it is known that the efficiency of denitrification in lower-
order streams is higher than that of higher-order streams (W. M. Wollheim,
2016). This result may be relevant to the empirical studies’ sample bias, as
Tank et al. (2008) pointed out in their meta-analysis that most stream nutrient
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uptake studies for NH+
4 and NO−

3 were conducted at streams with less than 200
(l/s). Tank et al. (2008) also demonstrated that larger streams in the Upper
Snake River, Wyoming, USA (seventh order, and 12000 l/s), have higher in-
organic N uptake (NH+

4 and NO−
3 ) using a pulse method than smaller streams.

Ensign and Doyle (2006) analyzed the result of nutrient spiraling experiments
spanning from first-order to fifth-order streams and found that cumulative up-
take rate of NO−

3 increases with stream orders. Similarly, a recent modeling
study showed the potentially important role in removing excess nitrogen in
larger rivers (W. M. Wollheim, 2016). Therefore, it is vital to investigate fur-
ther how stream size affects hyporheic exchange processes. Furthermore, many
previous modeling studies did not separate the role of HZ denitrification from
whole stream denitrification. Therefore, it is critical to study HZ denitrification
along streams with varying hydrologic and biogeochemical conditions.

Previously, few basin-scale models have been developed to simulate the role
of river corridor process in removing excess nitrogen from streams and rivers
(Alexander et al., 2007, 2009; Curie et al., 2011; Fang et al., 2020; Gomez-Velez
& Harvey, 2014). However, most of the basin-scale models are based on em-
pirical reaction models, or the reaction parameters are estimated by fitting the
empirical data (Alexander et al., 2000, 2009). For example, The Networks with
Exchange and Subsurface Storage (NEXSS) model used an empirical hydrogeo-
morphic model and a suite of hydraulic/groundwater models to compute the ex-
change flux/residence time between stream/river waters and the hyporheic zone
(Gomez-Velez et al., 2015; Gomez-Velez & Harvey, 2014). The NEXSS model
computes potential denitrification based on the ratio of computed Damkohler
number and river turnover length. However, this potential denitrification as-
sumes constant and uniform biogeochemical time scale and does not consider
the limitation of substrate availability in denitrification rate. The SPAtially
Referenced Regressions on Watershed attributes (SPARROW) model was used
to estimate in-stream removal of nitrogen (Alexander et al., 2000, 2007) in the
Mississippi River Basin. In-stream removal of nitrogen was estimated by fitting
the model parameters with the measured mean nitrogen fluxes without consider-
ing explicitly nitrogen processes in streams. Also, this model does not separate
the N removal from water column and the hyporheic zone. On the other hand,
Fang et al. (2020) developed SWAT-MRMT-R, a model that couples the wa-
tershed water quality model, Soil and Water Assessment Tool (SWAT), with
the reaction module from a flow and reactive transport code (PFLOTRAN). It
can compute aerobic respiration and denitrification in the hyporheic zone. The
model was successfully tested in the upper Columbia–Priest Rapids watershed
in the Columbia River Basin (CRB), and it shows the spatial variation of HZ
denitrification depends on a combination of varying hyporheic exchange and
source locations of nitrate.

In this study, we adopted the reaction network model from the SWAT-MRMT-
R to study the role of the hyporheic zone in removing excess nitrogen at the
basin scale. We expanded this modeling framework to the CRB with varying
stream sizes/land uses and improved the model resolution by using the National
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Hydrography Dataset PLUS (NHDPLUS v2). A detailed description follows in
the methodology section. In this study, we used the CRB as a testbed to study
the spatial variation of HZ denitrification at the basin scale. The CRB has
been historically of particular interest due to its significant multipurpose river
system benefits in ecology, environment, irrigation, navigation, recreation, flood
control, and hydropower generation. However, even though significant research
has been performed on the hydrology of the CRB (e.g., Hamlet et al., 2013),
river corridor modeling studies are limited, except for river reach-scale modeling
studies (Zarnetske et al., 2015).

This study developed a basin-scale HZ river corridor model (RCM) to quantify
the spatial variation of HZ denitrification across the streams of the CRB and
used a machine learning (ML) approach (i.e., random forest model) to identify
what factors control the spatial variation of HZ denitrification at the basin scale
(Figure 1). Specifically, we asked two scientific questions:

1. What are the important variables in explaining the spatial variation of HZ
denitrification in the CRB? We hypothesized that the relative importance
of hydrologic variability/substrate availability can control spatial varia-
tion of HZ denitrification, and their importance may change with stream
sizes and dominant land use. We built random forest models with key
model input variables and modeled denitrification and tested what vari-
ables can better explain the spatial variation of modeled denitrification
across streams with different sizes and land uses.

2. Which watershed/stream characteristics can better explain the spatial
variation of HZ denitrification in the CRB? We extended our efforts to de-
velop another random forest model to capture the modeled denitrification
in the CRB with publicly available watershed and stream characteristic
data. This random forest model can generalize what watershed/stream
characteristics can better explain the spatial variation of the HZ denitrifi-
cation in the CRB.

1. Methodology

(a) Columbia River Basin

This study site is the CRB (Figure 2), and the modeling domain only covers the
United States (US)-CRB regions due to different level of data availability. For
example, the detailed stream network map (e.g., National Hydrography Dataset
(NHD) PLUS v2 flowlines) are only available for the USA-CRB region, and the
key input data for our river corridor model—which are hyporheic residence time
and exchange flux—are only available for the USA-CRB region. The CRB is
one of large river basins in the Continental United States (CONUS), and the
total basin size is about 620,000 km2, and US-CRB size is about 570,413km2.
Elevation ranges from 0 to 5230 m, and the CRB has nine sub-river basins:
(1) Lower Columbia, (2) Middle Columbia, (3) Upper Columbia, (4) Lower
Snake, (5) Middle Snake, (6) Upper Snake, (7) Kootenai-Pend Oreille-Spokane,
(8) Willamette, and (9) Yakima River (Figure 1b). The climate over the USA-

4



CRB varies widely. For example, western Washington and Oregon have humid
continental climate, and eastern Oregon and Washington and Idaho have a
semi-arid steep climate, and the Cascade Range in Washington, Oregon and
the Rocky Mountains in Idaho, Montana, and Wyoming have an alpine climate.
With various climate conditions, the annual precipitation ranges from 158 mm
to 5230 mm (based on 30 years of normalized PRISM data), and annual mean
temperature ranges from -3 to 12 ℃. The seasonal pattern of precipitation
is very consistent; winter precipitation is dominant. At the mountain regions
located in high elevations, the dominant precipitation phase is snow, but at the
lower elevation regions, precipitation falls as rain. Major land use/cover (Figure
1c) is composed of 33.7% forest land (33% evergreen forest and about 0.3 and
0.4% deciduous forest and mixed forest), 33% of shrub lands, 12% agriculture
lands (10% croplands and 2% hay and pasture), and 2.3 % urban lands.

1. Basin-scale HZ river corridor model

This study used a simplified, spatially fine resolution, basin-scale, coupled car-
bon and nitrogen, river corridor model (RCM), based on SWAT-MRMT-R
(Fang, et al., 2020) to quantify spatial variations of HZ denitrification in the
CRB. The SWAT-MRMT-R model coupled a watershed quality model (SWAT)
with a PFLOTRAN-based, multi-rate hyporheic zone reaction model (X. Song et
al., 2018). The exchange rate and residence time between stream and hyporheic
zone were estimated using the NEXSS model (Gomez-Velez and Harvey 2014).
The NEXSS model coupled empirical geomorphologic models with a suite of ex-
isting physical hyporheic exchange flux models; for example, NEXSS estimates
the values of bankfull channel with discharge, median grain size (D50), chan-
nel slope, sinuosity, and regional head gradients along the NHDPLUS stream
networks. In addition, physical hyporheic exchange modeling is used to pre-
dict the average hyporheic exchange flux, residence time distribution, median
residence time in vertical direction, and lateral direction. Vertical hyporheic
flux represents exchange between channel water and beneath bedforms, while
lateral exchange flux represents exchange between channel water and river bars
and meander banks. In the RCM, three microbially driven reactions including
two-step denitrification and aerobic respiration are considered within the hy-
porheic zone (Table A1). In this study, we focus on denitrification processes
(Figure A1). The detailed equations and descriptions are found in the appendix
and the papers of Fang et al. (2020) and Gomez-Velez and Harvey (2014).

Our RCM replaced the in-stream module and nutrient loading of the
SWAT model by the regression-based estimates. For example, we de-
veloped regression-based models or used other modeling results to esti-
mate stream DOC, DO and NO−

3 concentrations (Figure 3). For the
stream NO−

3 concentration, we used the results of 2012 SPARROW model(
https://www.sciencebase.gov/catalog/item/5d407318e4b01d82ce8d9b3c). The
SPARROW model is a statistical regression model and has been used to identify
key pollutant sources and determine the role of in-stream process in removing
nutrient process at the regional scale (Alexander et al., 2007). The SPARROW
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model outputs include annual mean streamflow, total nitrogen (TN) loading,
total phosphorous (TP) loading, and suspended solid (SS) loading at the NHD-
PLUS stream reaches. Since our RCM requires stream nitrate concentration,
we calculated the annual mean TN concentration by dividing the total TN
annual mean loading by the annual mean streamflow estimate. We assume
that nitrate is a major component of the total nitrogen in the stream waters of
the CRB. To test this assumption, the ratio of stream nitrate concentration to
the total stream nitrogen concentration was calculated for the USGS stream
gauging stations within the CRB; about 83% of stream nitrate accounts for the
total nitrogen in the stream waters, which supports our assumption. Detailed
analysis is included in the supplement materials. For stream DOC and DO
concentrations, we developed multi-linear regression models based on the NHD
stream database(Schwarz et al., 2018) and the measured stream DOC/DO
concentrations at the USGS gauging stations in the CRB. The developed
regression model for stream DOC concentration is a function of percent of
forest area and baseflow index (BFI) (Wolock, 2003). The two variables were
all negatively correlated with the modeled stream DOC concentration (stream
DOC=-0.0239(percent of forest)-0.033(BFI)+5.71). The developed regression
model for the stream DO concentration is a function of the percent of forest
area, topographic wetness index (TWI), and catchment dam storage (stream
DO=0.00899(percent of forest)-0.457(TWI)+0.209(storage)+15.539). The
modeled stream DO concentration was positively correlated with the percent
of forest area and NHD catchment dam storage and is negatively correlated
with the TWI. The detailed procedure of building multiple regression models
for spatial DOC/DO mean concentrations is included in the supplementary
materials.

The RCM was simulated at the hourly time step and computed the cumula-
tive annual NO−

3 removal amount (kgN) at the scale of the NHDPLUS stream
reaches and scaled it by stream surface area (m2). We calculated the stream
surface area using two parameters (width and length). The stream length was
from the NHDPLUS database (Schwarz et al., 2018), and the stream width was
derived by the power relationship between measurement of instantaneous flow
and bankfull width and NHD cumulative drainage area (Gomez-Velez et al.,
2015). The model separately calculated the NO−

3 removal amounts via vertical
hyporheic exchange and lateral hyporheic exchange. To test the variation of an-
nual cumulative NO−

3 removal amounts between years, we ran the model over 10
years and found that after the 2nd year simulation, the annual removal amounts
reached a steady state (Figure S1). For our modeling analysis, the second-year
simulation results were used.

1. Key factors controlling spatial variability of cumulative NO−
3 removal

amounts in the hyporheic zone at the basin scale.

To determine the key factors controlling the spatial variability of cumulative
(annual) NO−

3 removal amount at the NHD stream reaches in the CRB, we
explored the relationship between model key inputs and modeled cumulative
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NO−
3 removal amounts. Key hydrologic variables include hyporheic exchange

flux and residence time, and substrate variables are the estimated stream DOC,
DO, and nitrate concentrations. We also tested how these variables changed
with different-sized (order) streams and land use. This study classified the
stream sizes in the three groups based on the Strahler’s stream ordering system:
(1) small-sized streams (1–3th), and (2) medium-sized streams (4–6th), and (3)
large-sized streams/rivers (7th–12th). While the largest stream order in the CRB
is 9th stream, the large-sized streams/rivers include the 7th to 9th order streams
in our analysis. To determine the dominant land use for each stream reach, we
calculated the percentage of each land use (forest, urban and agriculture) within
the total upstream routed accumulated area. If the percentage of the drainage
area for each land use type is larger than 80%, we assigned the land use type
as a dominant land use type. National Land Cover Database (NLCD) 2001
land cover (https://www.mrlc.gov/) was used to calculate the percentage of
each landcover. To simplify the landcover classification, forest land use includes
mixed/deciduous/evergreen forest types, and urban land use includes developed
open spaces and developed low/medium/high density area. Agriculture land use
includes pasture/hay and cultivated crop areas. We quantified the difference
in the cumulative HZ NO−

3 removal amounts in the streams with different
sizes (small, medium, and large streams) and different land uses (forest, urban,
and agriculture). The significance of the effect of land use/stream size on the
cumulative NO−

3 removal amount was tested using Kruskal-Wallis test.

To evaluate the relative importance between hydrologic and substrate variables
and modeled NO−

3 removal in the CRB, we used variable importance analysis
implemented in a random forest model to identify what factors control the spa-
tial variation of NO−

3 removal amounts (Figure 1). A random forest model was
built with the R “randomforest” package using the key model input variables
and modeled NO−

3 removal amounts (kgN/m2). 80% of samples were used to
train the random forest model, and 20% of samples were used to test the model
prediction. We used the R2 and mean squared error (MSE) to quantify the
model prediction accuracy. The random forest model we developed was used to
compute the partial dependence of each variable on the modeled NO−

3 removal
amount and to measure importance ranks of key input variables we used. We
tested whether the ranks of variable importance vary with stream sizes/land
uses. To measure the importance of the key variables in the random forest
model, we used Gini impurity measures. Gini impurity measures how well each
tree is classified and measures the variance within each tree. Lower variance
represents better classification of each variable. Also, to generalize which wa-
tershed and stream properties can better represent the spatial variation of HZ
NO−

3 removal amount in the CRB, we developed a random forest model with
public available watershed/stream variables (Figure 1 and Table 1). The de-
tailed information for each variable used in the random forest model is found
in the supplement materials (Table S4). The watershed properties information
is based on the NHDPLUS database (Schwarz et al., 2018), and some stream
properties, including median grain size of streambed sediment (D50) and stream
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width, are based on the NEXSS input data (Gomez-Velez and Harvey 2014).

1. Results

(a) Variation of hydrologic variability and substrate availability
in the streams across different sizes and land uses

We computed the distribution of key model inputs of hydrologic/substrate vari-
ables in the stream across orders and dominant land uses (Figure 4). Hydrologic
variables vary with stream orders (Figure 4a,4b, 4c, 4d and 4e). We note that
we excluded the data for the 9th order stream since the total number of stream
reaches with 9th order is only 5. For example, for hyporheic exchange flux, the
median exchange flux increased from 1st to 5th order streams and decreased
from 6th to 8th order stream. Median residence time increased from the 1st

to the 8th. However, median stream NO−
3 concentrations did not change with

stream orders. For stream DOC concentration, the median values of stream
DOC concentration were very similar between the different order streams ex-
cept for the 8th order streams, while lower-order streams had larger variation of
DOC concentration. For stream DO concentration, lower-order streams tended
to have higher median DO concentration with larger variations. Among the
streams with different land uses, forest streams had the highest hyporheic ex-
change fluxes, while agricultural streams had the lowest values (Figure 5). For
residence time, agricultural streams had the longest residence time, while for-
est streams had the shortest residence time. For substrate availability, forest
streams had the lowest stream DOC and nitrate concentrations but had the
highest stream DO concentrations. Agriculture and urban streams had similar
level of stream DOC/DO concentration, but agricultural streams had higher
stream nitrate than urban streams.

1. Spatial variation of the modeled denitrification across the streams with
different sizes and land use/cover.

We computed the cumulative (annual) HZ NO−
3 removal amount (kgN/m2) via

vertical and lateral hyporheic exchange, respectively (Figure 6). The spatial
variations of the lateral and vertical HZ NO−

3 removal amount were similar;
the spatial correlation (as measured by the Spearman correlation coefficient)
between the two estimates was 0.79. The vertical HZ NO−

3 removal was about
one order of magnitude higher than the lateral HZ NO−

3 removal. The vertical
HZ NO−

3 removal ranged from 0 to 76.0 kg N/m2, and its mean value was 0.137
kg N/m2, while the cumulative lateral HZ NO−

3 removal ranged from 0 to 1.87
kg N/m2, and its mean value was 0.015 kg N/m2. The ratio of vertical HZ
NO−

3 removal to the total HZ NO−
3 removal ranged from 0.001 to 0.99, and the

mean of the ratio was about 0.78. The ratio increased with the stream orders.
For example, median ratios of the 1st order and 2nd order streams were about
0.6 and 0.83, respectively, and the median ratio of higher-order streams(>=5th)
was close to 1. This result suggests that the HZ NO−

3 removal tends to be
more dominated by the vertical exchange in higher-order streams. This result
is similar to the modeling results of Gomez-Velez et al. (2015). Gomez-Velez et
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al. (2015) showed that the potential denitrification (measured by the reaction
significant factor) was higher via vertical hyporheic exchange than via lateral
hyporheic exchange in the Mississippi Rivers.

We quantified the HZ NO−
3 removal amount (kgN/m2) across the streams with

stream orders and land uses (Figure 7, S2 and S3). Modeled NO−
3 removal

had an unimodal function of stream orders (or stream sizes); medium-sized
streams (4th–6th order streams) had the highest NO−

3 removal amounts (Figure
7a). Among the streams with different land uses, urban streams had the most
NO−

3 removal amounts (Figure 7b), and agricultural streams had the least NO−
3

removal amounts. Their differences were all statistically significant when using
Kruskal-Wallis test, and the p-value of the two tests are all less than 2.2e-16.

To identify what factor influences the spatial variation of the HZ NO−
3 removal,

we developed a random forest model with the model key inputs and modeled
NO−

3 removal amounts. The partial dependence plots (Figure S4) showed that
stream DOC, residence time, and exchange flux had strong nonlinear relation-
ships with the modeled NO−

3 removal across different-sized streams. Modeled
NO−

3 removal increased with stream DOC/exchange flux, but it decreased with
residence time. For streams with different dominant land uses, exchange flux
and residence time had strong positive or negative relationships with the mod-
eled NO−

3 removal, respectively. For forest and urban streams, stream DOC
had a high positive nonlinear relationship with the modeled denitrification, re-
spectively. The variable importance analysis using our random forest model
showed that hydrologic variables were more important in explaining HZ NO−

3
removal amount’s spatial variation than substrate variables (Figure 8). Among
the hydrological variables, hyporheic exchange flux was the first important vari-
able, and residence time was the second most important variable in all sizes of
streams. Similarly, the hyporheic exchange flux and residence time were the first
and second important variables for streams with different land uses, respectively.
While residence time was always the second most important variable across the
streams with different land uses, the level of importance in DOC concentration
was similar to that of residence time in forest streams. DOC concentration was
the most important variable among the substrate variables for forest streams.

We evaluated the impact of substrate availability on the HZ NO−
3 removal

amount in streams across the different sizes and land uses (Figure 9). On av-
erage, removing substrate concentration limits tended to increase NO−

3 removal
amounts. Among substrate availability, removing the DOC limitation most in-
creased the modeled NO−

3 removal for all sized streams, and with different land
uses. Among the streams with different land uses, forest stream showed most
increase in NO−

3 removal by removing DOC limits. Agricultural streams showed
the least increase in NO−

3 removal by removing the substrate limits. This result
suggests that stream DOC is the most limiting substrate to NO−

3 removal, espe-
cially for small-sized and forest streams. Also, this result supports the variance
importance analysis (Figure 8)

1. Relationship between watershed/stream characteristics and HZ NO−
3 re-
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moval amount

With the publicly available watershed and stream properties data, we devel-
oped another random forest model to predict the HZ NO−

3 removal amount in
the CRB to generalize what watershed/stream characteristics can better explain
the spatial variation of the HZ denitrification in the CRB. We built random for-
est models using modeled NO−

3 removal via vertical, lateral, and total hyporheic
exchange, respectively. Each model showed high predictive accuracy, and the
R2 values were greater than 0.96, and the MSE values were less than 0.06 (Figure
10a and Table 2). The variable importance plots showed that for the modeled
lateral NO−

3 removal amount, D50, stream slope and annual precipitation were
the most important variables (Figure 10b), while for modeled total NO−

3 /verti-
cal NO−

3 removal amounts, D50, annual precipitation and the percent of forest
area were the most important variables (Figure 10c, and 10d). The D50/stream
slope variables were highly associated with the hyporheic exchange rate since
the variables were used to calculate streambed hydraulic conductivity in the
NEXSS model (Gomez-Velez et al., 2015). The percent of forest area was a
key predictor variable in estimating stream DOC concentration (Figure 4, and
S9). The results of variable importance supported that the HZ NO−

3 removal
amount increased with hyporheic exchange flux, which positively correlated with
streambed hydraulic conductivity (or D50), and the modeled NO−

3 removal was
also sensitive to the available DOC concentrations, which was negatively corre-
lated to the percent of forest area. To test how well our random forest model
can be applied to the sub-basin in the CRB, we also built the random forest
model with the same input data. Same as the CRB, the most important vari-
able for each sub-basin was all D50 (Figure S6), and the second most influential
variable was the percent of forest area or mean annual precipitation, depending
on sub-basins.

1. Discussion

(a) Key controls on spatial HZ denitrification variation in the streams
across different sizes and different land uses

This study used the basin-scale river corridor model and random forest mod-
els to identify key factors controlling spatial variation of HZ denitrification in
the CRB. Results showed that hydrologic variables were more important than
substrate variables in explaining the spatial variation of HZ denitrification in
streams across different sizes and land uses. Among the selected hydrologic
variables, hyporheic exchange flux was the most important variables for all
sizes of streams and different land use streams. Among the substrate vari-
ables, stream DOC was considered the most important variable, especially for
the forest streams. Among the different‑sized streams, medium-sized streams
(4th–6th orders) had the highest denitrification due to the largest exchange flux.
The literature shows mixed results in the effects of stream size on denitrification
(Alexander et al., 2007, 2009; Tank et al., 2008; Wollheim et al., 2006). In our
modeling, the highest exchange flux in the medium-sized streams was mainly
due to the coarser grain size (or higher hydraulic conductivity) of the streambed
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sediment. Also, since the substrate concentrations did not vary much with the
stream orders (or sizes) in the CRB (Figure 4), the spatial pattern of hyporheic
exchange flux controlled the relationship between denitrification amounts and
stream sizes. The potential difference of the effects of stream size on denitrifica-
tion between studies may be due to the spatial variation of sediment hydraulic
conductivity along the different stream size between the river basins if the sub-
strate availability is not limiting factors. Also, our modeling study showed that
hydrologic variables were more important in determining the spatial variation of
denitrification in the stream networks than substrate variability. Thus, the hy-
porheic exchange attributed to the streambed hydraulic properties determined
the effect of stream sizes.

Among the three dominant land use types’ streams, urban streams had the high-
est HZ denitrification due to relatively high substrate availability and hyporheic
exchange flux (Figure 5b). Agricultural streams’ denitrification was transport-
limited by having the lowest hyporheic exchange rate, while forest stream’s
one was source-limited by having the lowest substrate availability (e.g., DOC).
This limiting factor was similar to the result of Myers (2008). Myers (2008)
showed that among nine streams in Western Wyoming, agriculture and forest
streams had the lowest and highest exchange flux, respectively, while agricul-
tural streams had higher organic/nitrogen concentrations than forest streams.
However, the agricultural streams showed the highest denitrification due to
highest substrate availability (e.g., organic matters) in the hyporheic sediments,
even though the modeled exchange flux was lowest in the agricultural streams.
Our modeling study showed that agricultural streams had the lowest denitri-
fication due to the lowest hyporheic exchange. Interestingly, the two studies
showed opposite results, even though the two studies shared same limiting fac-
tor on denitrification in agricultural and forest streams. The difference may
be because our mode results may represent the long-term averaged conditions,
while the experimental study of Myers (2008) may represent the short-term
conditions. On the other hand, a study of Mulholland et al. (2008) using data
from nitrogen stable isotope tracer experiments across 72 streams and 8 regions
showed similar result to ours, i.e., urban streams had the highest denitrification
rate, while agricultural streams had the second largest denitrification rate, and
forest streams had the lowest denitrification rate.

1. Generalization of important watershed/stream variables in controlling the
basin-scale HZ denitrification.

This study used a machine learning (ML) approach (i.e., random forest model)
to improve our understanding of which watershed/stream variables can better
explain the spatial variation of HZ denitrification in the CRB. This ML approach
is a powerful tool to predict complex systems, but due to low interpretability,
ML is considered as a box model. However, our modeling study demonstrated
that our random forest models successfully captured the sub-basin/basin-scale
modeled denitrification, and the selected important variables all represented
the dominant processes that controlled denitrification across streams with dif-
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ferent sizes and land uses. Our random forest model showed very high pre-
diction accuracies; R2 values are greater than 0.96, and MSE values are less
than 0.06. This result suggests that the random forest model with the pub-
licly available watershed and stream properties data can capture key variables
controlling basin-scale spatial denitrification variation, even though there are
complex interactions between many processes/variables determining the spatial
variation of HZ denitrification. Also, the variable importance analysis showed
that the stream morphological parameters (D50 and stream slope), climate (an-
nual precipitation), and stream DOC (percent of forest area) can explain most
HZ denitrification variability. D50 and stream slope were highly correlated with
the modeled exchange flux used in this study. The percent of forest area was
one of two predictor variables in stream DOC concentration, which was a major
limiting substrate concentration in the modeled denitrification. Therefore, our
study demonstrates that our random forest model and the small numbers of key
watershed/stream variables (D5O, stream slope, precipitation, and land cover),
which are fairly easy to measure or characterize, can be used to determine the
spatial variation of HZ denitrification at the basin scale, without explicit and
complex numerical modeling. Therefore, the identified important variables and
the random forest model we developed can be used as a hypothesis testing tool
for spatial variation of HZ denitrification at the basin scale and as a sampling
design tool for large-scale hyporheic zone experimental studies.

1. Implication of the future climate and land use in river corridor
processes

In the CRB, future climate change expects to increase winter/spring
flow, decrease summer flow (Hamlet et al., 2013), and increase
stream water temperature(Ficklin et al., 2014). Also, the sensitivity
of hydrologic changes to future climate change varies between sub-
basins in the CRB. This change obviously alters the effectiveness of
the hyporheic zone. Based on our modeling results, denitrification
increased with the hyporheic exchange, which was a function of
grain sizes of streambed, annual precipitation, and stream slope,
while stream DOC availability may limit denitrification. Compared
with the other river basins in the USA, the streams of the CRB
had lower DOC concentrations (Yang et al., 2017), and watershed
DOC processes were characterized as transport-limited rather than
source-limited (Zarnetske et al., 2018). Therefore, we expect that
increasing runoff can generate higher DOC flux (or concentration)
in streams, which may promote denitrification in the hyporheic
zone. Also, more frequent and intense fires are expected due to
future climate conditions. Fire can alter the conditions of terrestrial
and aquatic systems. For example, fire removes vegetation and
delivers more nutrient/sediments via higher peak flow. Higher
exchange/more substrate availability in the hyporheic zone may
increase denitrification, while lower sediment hydraulic conductivity
values due to finer particle sediment transport by fire can reduce
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denitrification.

4.4 Current research limitation and future study

This study demonstrated that the combination of the reaction network model
and empirical methods can quantify the spatial variation of HZ denitrification at
the basin scale. However, due to the simplified model structure and assumptions
used, this model had several limitations. The first limitation of this study was
that hydrological/substrate variables were assumed to be constant over time,
and the variables are empirically estimated or dependent on the other model
outputs (e.g., SPARROW flow and TN fluxes). This assumption may create a
bias in a different way depending on the hydrologic and substrate conditions.
For example, in the streams where hydrologic conditions are unsynchronized or
synchronized with substrate variables, modeled cumulative denitrification may
be overestimated or underestimated with the current model assumption. Fu-
ture studies should implement the dynamic hydrologic/substrate concentration
in-stream and in the HZ; for example, the SWAT-MRMT-R model (Fang et
al., 2020) can be used, and to account for the dynamic hydrologic exchange
flux/residence time in the hyporheic zone, the SWAT-MODFLOW (Bailey et
al., 2016) or other integrated hydrologic–biogeochemistry models (Chen et al.,
2020) may be considered in future studies. As well, the current model was heav-
ily dependent on the NEXSS-based hyporheic exchange flux and residence time.
Even though the NEXSS used the physical hydraulic/groundwater models, the
exchange flux and residence time were highly correlated with the estimated hy-
draulic conductivity of the streambed. The NEXSS model used an empirical
relationship between D50 and sediment hydraulic conductivity to derive the hy-
draulic conductivity of the streambed at the NHDPLUS stream reach (Gomez-
Velez et al., 2015). High spatial heterogeneity of grain size distribution within
reach-scale stream sediment (Ren et al., 2020) and its change due to disturbance
make it challenging to estimate the representative hydraulic conductivity at the
reach-scale (Stewardson et al., 2016). Hydrologic condition also alters the ver-
tical distribution of hydraulic conductivity in streambeds; for example, gaining
streams have higher conductivity with depth, but losing streams have lower
conductivity with depth (X. Chen et al., 2013). Therefore, future study should
focus on introducing advanced methods (i.e., machine learning approaches) and
also should find better predictor variables for streambed hydraulic conductivity
(Abimbola et al., 2020) to reduce the uncertainty in the RCM.

The second limitation is that this model does not explicitly simulate nitrification
processes in the hyporheic zone. The current model only implements aerobic
respiration and denitrification in the hyporheic zone. When oxygen is abundant
and residence time is short, nitrification can be dominant (Zarnetske et al.,
2012). This model assumes that nitrification is not dominant. Based on the
Dakomber number, lower-order streams tend to have lower residence time so
that nitrification may be important process. Interestingly, most of streams with
a low residence time in the CRB tend to have the drainage area with forest lands.
Our modeling study suggest that denitrification in the forest streams was mainly
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limited by the available DOC, but not stream nitrate concentration. Even if
nitrate can be more abundant via nitrification because of shorter residence time
in the hyporheic zone, denitrification of forest streams may not increase because
nitrate is not a major limiting factor.

The last limitation is that the current model estimates of HZ denitrification
are not validated with field measurements, even though the RCM computed
the HZ denitrification using the reaction network model with reasonable esti-
mates of hydrologic and substrate variables. This deficiency may reflect the
limitation of currently available denitrification measurements for the hyporheic
zone, especially for large river basins. Many experimental studies focus on to-
tal in-stream processes of nutrient uptake rather than exclusively denitrification
measurements in the hyporheic zone (Tank et al., 2008, Findlay et al., 2011).
As well, since our model estimates represent spatially varied denitrification and
temporally averaged conditions, the comparison of our model estimates with
short-term snap measurements that are usually available in the experimental
studies is a big challenge. Recent study in the HJ. Andrew watershed in the
Oregon state, USA has done the detailed mapping of stream geomorphology,
hydrology, biology, and chemistry along the 5th order streams of the forested
watershed (Ward et al., 2019). This data may be a good starting data set to
validate the model inputs (e.g., concentrations of

DOC/DO/nitrate in the HZ and streambed hydraulic conductivity) and the
modeled denitrification along with the stream orders in the future study.

1. Summary and conclusion

The important role of hyporheic zone denitrification is well recog-
nized in hydrologic and biogeochemistry communities (Groffman et
al., 2009; Harvey & Gooseff, 2015). However, modeling studies quan-
tifying basin-scale hyporheic zone denitrification are still limited in
current literature. To fill the knowledge gaps, this study used a
simplified, spatially fine resolution, basin-scale, coupled carbon and
nitrogen hyporheic zone model and random forest models to iden-
tify key controls on the spatial variation of HZ denitrification in the
CRB. The variable importance analysis demonstrated that hydro-
logic variables (hyporheic exchange flux and residence time) were
more important in explaining the spatial variation of HZ denitrifica-
tion than substrate variables (stream DOC, nitrate, and DO) across
streams with different sizes and land uses. Among the hydrologic
variables, hyporheic exchange flux can explain most spatial varia-
tion of the modeled denitrification amounts. Among the substrate
variables, the denitrification amount was limited most by the avail-
able DOC. Among the different-sized streams, medium-sized streams
(4th–6th orders) with highest exchange fluxes had the largest deni-
trification amounts. Among the streams affected by different land
use, urban streams exhibit the most denitrification due to relatively
high exchange flux and substrate concentrations. Denitrification in
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agricultural streams was transport-limited with the lowest hyporheic
exchange rate, while forest streams were source-limited with the low-
est DOC availability.

We expanded our efforts to develop a general random forest model
to identify key factors controlling the spatial variation of HZ den-
itrification in the CRB with publicly available watershed/stream
properties data. Our random forest model showed a high perfor-
mance (R2>0.96 and MSE<0.06), and stream morphology param-
eters (D50 and stream slope), climate (annual precipitation), and
land use (percent of forest) were the most important variables for ex-
plaining spatial variation of the modeled HZ denitrification. These
results support the relative importance analysis with the model’s
input variables; hyporheic exchange flux and available DOC concen-
tration were key limiting factors in HZ denitrification variation in
the CRB, based on our findings. In this study, hyporheic exchange
flux was estimated based on the NEXSS simulation (Gomez-Velez
et al., 2015), and its flux was highly dependent on the streambed
sediment grain size/hydraulic conductivity estimates. To reduce the
uncertainty of our RCM, future studies should focus on collecting
detailed measurements of hydraulic conductivities (Ren et al., 2020;
Stewardson et al., 2016) and developing advanced methods char-
acterizing the spatial variation of hydraulic conductivities (Abim-
bola et al., 2020). In addition, the current model only represented
the spatial averaged conditions of HZ denitrification in the CRB,
and key model input variables were temporally constant. Therefore,
temporal components should be incorporated by using the SWAT-
MRMT-R or other integrated hydrologic–biogeochemistry models to
accurately represent basin-scale denitrification in the CRB.

Overall, this study indicates that the combination of the reaction
network modeling and empirical substrate concentration models can
quantify the spatial variation of HZ denitrification at the basin scale.
This modeling framework can be easily applied to the regional and
continental scales and can help to understand the role of the hy-
porheic zone across stream networks in large river basins with dif-
ferent hydrologic/geochemical conditions.

Appendix

Descriptions of the basin-scale river corridor model

Our river corridor model (RCM) computes the aerobic respiration and two-
step denitrification in the hyporheic zone at the scale of the NHDPLUS stream
reaches in the Columbia River Basin. Figure A1 shows the conceptual diagram
of the RCM. Table A1 and A2 include the three reactions and their associated
model parameter values. The model computes at hourly time steps, but the
model key input data—including exchange flux, residence time, and stream so-
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lute (DOC, DO, and NO−
3 ) concentrations—are constant over time. In addition,

each reaction in the hyporheic zone and the exchange between hyporheic zone
and stream are vertically and laterally computed independently. This model
computes the solute exchange between stream and hyporheic zone (expressed in
the equation A1 and A2). In equation A2, the exchange volume (V) is computed
by multiplying exchange flux (q) by the residence time (𝜏) and stream surface
area (width (w)×length (l)). The three reactions are computed by solving the
R1, R2 and R3 with the approach proposed by Song et al., (2017), and the
associated parameters are obtained from the Table 2 in Song et al. (2018).

The following equation is used to calculate the concentration change in the
hyporheic zone due to the mass exchange between the stream and the hyporheic
zone as well as microbial reactions in the hyporheic zone:

𝑑[𝐶𝑖,𝑡]
dt = 1

𝜏 ([𝐶𝑠,𝑖 − [𝐶𝑖,𝑡]) + ∑3
𝑗=1 𝜇𝑗𝑅𝑗 (A1)

Where 𝜏 is the hyporheic zone residence time, Cs,i is the stream ‘i’
solute concentration (DOC, NO−

3 , and DO), Ci,t is the hyporheic ‘i’
solute concentration at the ‘t’ time step. 𝜇𝑖 is the stoichiometric
coefficient of solute i in reaction j. Rj is the reaction rate the j-th
reaction.
𝑑[𝐶𝑖,𝑡]

dt 𝑉 = 𝑉 × 1
𝜏 ([𝐶𝑠,𝑖 − [𝐶𝑖,𝑡]) + 𝑉 × ∑3

𝑖 𝜇𝑗𝑅𝑗 (A2)

Where V is the hyporheic exchange volume (𝑞 × 𝑤 × 𝑙 × 𝜏). Using
equation A2 can compute the mass exchange between stream and
hyporheic zone.

𝑅𝑖 = 𝑒𝑖𝑟kin
𝑖 , i=1,2,3. (A3)

𝑟kin
𝑖 = 𝑘𝑖

𝑎𝑖
𝐾𝑎𝑖 +𝑎𝑖

× 𝑑𝑖
𝐾𝑑𝑖+𝑑𝑖

(𝐵𝑀) (A4)

𝑒𝑖 = 𝑟kin
𝑖

∑3
𝑖 𝑟kin

𝑖
(A5)

Where 𝑘𝑖, 𝐾𝑎𝑖
and 𝐾𝑑 denote the maximum specific uptake rate of

organic carbon, half-saturation constants of the electron acceptors,
and half-saturation constants for the electron donors. 𝑎𝑖is the con-
centration of electron acceptor (mol/L), 𝑑𝑖is the concentration of
electron donor (mol/L), and biomass (BM )is the concentration of
biomass (mol/L). Reaction rate Ri is computed using unregulated
effect (a Monod-type kinetics coefficient (𝑟kin

𝑖 ) in Equation A4, and
regulated effects (𝑒𝑖) in Equation A5.
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Tables

Table 1. Lists of key watershed/stream characteristics and proper-
ties

Properties Variables
Climate Precipitation and air temperature
Topography Elevation, slope, wetness index, and drainage area
Hydrology Annual flow, baseflow index, potential evapotranspiration, and actual evapotranspiration
Land % of land use/cover types (forest, wetland, agriculture, urban and shrubland), vegetation index
Soil Hydraulic conductivity of soil and permeability of surface geology, % of soil texture and organic matter
Stream Sinuosity, D50, contact time, stream slope

Table 2. Summary of model performance in the developed random forest model

Model Train Test
R2 MSE R2 MSE

Lateral denitrification 0.96 0.06 0.96 0.05
Vertical denitrification 0.97 0.04 0.97 0.04
Total denitrification 0.97 0.03 0.97 0.03

Table A1. Aerobic respiration and two-steps of denitrification reactions

Reaction process Reaction equations

Aerobic respiration R1 CH2𝑂 + 𝑓1𝑂2 + 1
5 (1 − 𝑓1) NH+

4 → 𝑓1CO2 + 1
5 (1 − 𝑓1) 𝐶5𝐻7𝑂2𝑁 + 1

5 (3 + 2𝑓1) 𝐻2𝑂 + 1
5 (1 − 𝑓1) 𝐻+

Denitrification R2 CH2𝑂 + 2𝑓2NO−
3 + 1

5 (1 − 𝑓2) NH+
4 → 𝑓2NO−

2 + 𝑓2CO2 + 1
5 (1 − 𝑓2) 𝐶5𝐻7𝑂2𝑁 + 1

5 (3 + 2𝑓2) 𝐻2𝑂 + 1
5 (1 − 𝑓2) 𝐻+

R3 CH2𝑂 + 4
3 𝑓3NO−

2 + 1
5 (1 − 𝑓3) NH+

4 → 2
3 𝑓3𝑁2 + 𝑓3CO2 + 1

5 (1 − 𝑓3) 𝐶5𝐻7𝑂2𝑁 + 1
15 (9 + 16𝑓3) 𝐻2𝑂 + 1

15 (3 + 17𝐻+)
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Table A2. Reaction parameter values and initial substrate concentrations

Reaction rates Parameter R1 R2 R3

𝑓𝑖 1/3×0.65 0.65 0.99
𝑘𝑖 3×28.26 28.26 23.28
𝐾𝑑,𝑖 0.25 0.25 0.25
𝐾𝑎,𝑖 0.001 0.001 0.004

Hyporheic zone DOC NO−
3 DO

Initial concentrations (mole/l) 6.37e-5 7.92e-5 2.87e-4

Figures

Figure 1. The framework for studying the key factors controlling the spatial
variation of hyporheic zone denitrification in streams across different sizes and
land uses in the Columbia River Basin.
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Figure 2. Columbia River Basin maps: (a) Mean annual precip-
itation (mm); (b) Elevation and 9 major sub-river basins: (1)
Lower Columbia (LC), (2) Middle Columbia (MC), (3) Upper
Columbia (UC), (4) Lower Snake (LS), (5) Middle Snake (MS), (6)
Upper Snake (US), (7) Kootenai-Pend Oreille-Spokane (KO), (8)
Willamette(WM), and (9) Yakima (YK); and (c) Land use and
cover map (NLCD 2016 data).
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Figure 3. Key input data for the River Corridor Model: (a) Stream DOC (mg/l),
(b) stream NO−

3 (mg/l), (c) stream DO (mg/l), (d) total (lateral and vertical)
residence time (log10, second) and (e) total (lateral and vertical) hyporheic
exchange flux (log10, m/s).
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Figure 4. Distribution of key hydrologic and substrate variables in streams with
stream orders. In the violine plot, the white point represents the median value,
and the thick black line represents the interquartile range (Q1 and Q3), and the
thin black lines represent the 1.5×interquantile range.
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Figure 5. Distribution of key hydrologic and substrate variables in streams with
different land uses. In the violine plot, the white point represents the median
value, the thick black line represents the interquartile range (Q1 and Q3), and
the thin black lines represent the 1.5×interquantile range.
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Figure 6. Spatial variation of modeled cumulative NO−
3 removal amount

(log10(kgN/m2)): (a) cumulative NO−
3 removal amount via lateral hyporheic

exchange, (b) cumulative NO−
3 removal amount via vertical hyporheic exchange,

(c) cumulative NO−
3 removal amount via total hyporheic exchange, (d) ratio

of the vertical NO−
3 removal amount to the total (vertical and lateral) NO−

3
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removal amount with the stream orders.

Figure 7. Variation of modeled cumulative NO−
3 removal amount with different

stream orders and land uses: (a) effects of stream sizes and (b) effects of land
use.
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Figure 8. Relative importance of hydrologic variability and substrate availabil-
ity in controlling the spatial variation of the HZ NO−

3 removal amount along
different stream sizes and dominant land uses. The variable importance (mea-
sured by Ginni value) is normalized to calculate the relative importance value
(% contribution) that ranges from 0 to 100.
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Figure 9. The sensitivity of modeled NO−
3 removal amount (log10(kgN/m2) to

the available substrate concentrations across streams with different sizes and
land uses: (a) small-sized streams, (b) medium-sized streams, (c) large-sized
streams, (d) forest streams, (e) agricultural streams, and (f) urban streams.
The base scenarios used the modeled substrate concentration data (figure3abc).
The maxDOC scenarios applied a maximum concentration of modeled DOC (fig-
ure3a) to all streams, and the maxN scenario applied a maximum concentration
of modeled NO−

3 (figure 3b) to all streams, and the minO scenarios applied a
minimum concentration of modeled DO (figure 3c) to all streams.
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Figure 10. The predictions of the random forest model in the testing period
and variable importance analysis results: (a) test results for the total NO−

3
removal amount, (b) top-ten importance variables for lateral NO−

3 removal
amount (kgN/m2), (c) top-ten important variables for modeled vertical NO−

3
removal amount (kgN/m2), and (d) top-ten important variables for modeled
total NO−

3 removal amount (kgN/m2). The top-ten variables are D50_m (me-
dian grain size), TOT_PPT100_ANN (30-year mean annual precipitation at
the NHD cumulated drainage area), tforest (percent of forest area at the NHD
cumulated drainage area), CAT_PPT (30-year mean annual precipitation at
the NHD catchment drainage area), forest (percent of forest area at the NHD
catchment area, logd_m (log10(stream depth.,m)), logwbkf_m (log10(bankfull
depth, m)), sinuosity (stream sinuosity), TOT_BASIN_AREA (NHD cumu-
lated drainage area,) CAT_BASIN_AREA (NHD catchment drainage area),
and CAT_STREAM_SLOPE (NHD catchment stream slope).
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Figure A1. The simplified conceptual diagram of River Corridor model (RCM):
stream dissolved organic carbon (DOC), dissolved oxygen (DO) and NO−

3 con-
centrations were estimated by the two regression models, and the SPARROW
2012 model, and the vertical and lateral exchange fluxes (𝑞𝑣, 𝑞𝑙) and their median
residence times(𝜏𝑣, 𝜏𝑙) between the streams and hyporheic zone were estimated
from the NEXSS modeling(Gomez-Velez et al., 2015).
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