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S1. Global Observational Surveys Figs S1a-d show the coverage of the global observa-
tional surveys that provide T, S, Z data (in addition to other fields) that can be used to infer
estimates of turbulent mixing either through finescale parameterizations (Polzin et al., 2014)
or through data-driven methods as in this study. These field programs do not contain direct
turbulent measurements. Of relevance to this work is the hydrographic surveying compo-
nent of these experiments, which provide high-quality conductivity-temperature-pressure
profiles to construct a climatological temperature-salinity-depth database. Figs S1e,f show
the high-resolution topography data that are key to turbulence prediction, due to the impor-
tance of the bottom boundary in generating propagating waves as well as non-propagating
boundary turbulence. Gravity data provide coarser topographic information than the direct
echo-sounding surveys, which cover only 30% of the seafloor, but are extending their cov-
erage at an accelerating rate. High-resolution seafloor mapping is also commonly provided
by deep-ocean surveying research cruises, and is integrated in global topographic data (e.g.
https://www.gebco.net/https://www.gebco.net/).

S2. Neural Network Architecture and Training Standard FNNs consist of a series
of ‘layers’ of neurons that are hierarchically modified by matrix multiplication and vector
addition of learned parameters and acted upon by a simple nonlinear function. Thus if
(h0, h1, h2...hL) represent the NN layers, with h0 = x being the input and hL = y the
output, then the NN can be written by the recurrence relation for the ℓth layer as

hℓ = f(Wℓ−1 hℓ−1 + bℓ−1), (1)

where Wℓ−1 and bℓ−1 are the learnable weight matrix and the bias vector acting on the
(ℓ − 1)th hidden layer and f(·) is a simple nonlinear function here chosen to be the Swish
activation function (Ramachandran et al., 2017) [f(x) = xσ(x) where σ(x) is the Sigmoid
function] that is chosen over the standard ReLU activation function owing to its smoothness
and in our case, improved predictive accuracy.

Residual networks have a simple architectural modification in that the layer-wise re-
currence relation now takes the form

hℓ = hℓ−1 + f(Wℓ−1 hℓ−1 + bℓ−1), (2)

so that each neural layer is an add-on onto the previous hidden layer. Resnets have been
shown to have smoother gradient flow during backpropagation allowing for deeper layers.
More importantly, however, Resnets have been demonstrated to be implicitly composed of
ensembles of shallower neural networks (Veit et al., 2016) which can result in substantially
improved expressivity and accuracy compared to standard NNs. The specific choice of the
Resnet used for the results in this manuscript has 7 layers with 120 neurons in each layer for
a total of around 100,000 parameters in the NN. Each hidden layer is also subject to dropout
regularization to prevent overfitting (with a layerwise dropout probability of 0.2) though
the primary regularization in our approach is implicit and due to learning-rate annealing
(see below).

Training is done through the AdamW optimizer (Adam with weight decay) with a
weight decay parameter of 10−4. A cyclical cosine learning rate annealing (Loshchilov &
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Hutter, 2016) is employed with annealing cycle, Tcycle = 5 epochs. In other words the
learning rate changes every 5 epochs starting from its largest value of 0.0035, decreasing
towards 0 as a cosine function, and jumping back suddenly to 0.0035 every sixth epoch.
Training for each run is performed for about 3000 epochs. This rapid decrease of the learning
rate followed by sudden increase (also called a ‘warm restart’) leads to faster learning and
provides a strong regularization. We use a mean-square error loss function but record
the best value of R2 metric on the test data and the corresponding model parameters
during training (because lowest MSE loss does not always correspond to the best R2 value).
The regularization offered by the cyclical rate learning rate annealing with short Tcycle is
sufficiently strong so that overfitting is not observed even as we train for larger epochs (up
to 10,000) with larger NNs (up to 12 layers). This training approach is extremely robust
even in small data regimes and needs minimal hyperparameter search.
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Figure 1. International surveys have provided invaluable hydrographic and bathy-

metric information required to quantify oceanic turbulent processes. (a) WOCE Hydro-

graphic Program survey stations [1985–97](Gouretski & Koltermann, 2004; Davis et al., 2019). (b)

GO-SHIP hydrographic sections [GO-SHIP 2018](GO-SHIP, 2018; Davis et al., 2019). (c) GEO-

TRACES sections [from 2018](GEOTRACERS, 2019; Davis et al., 2019). (d) Global Argo array

coverage [as of 2018](Davis et al., 2019).(e) Satellite-measured marine gravity, revealing the ocean

bathymetric features.(Sandwell et al., 2014) (f) Black regions represent the areas yet to be mea-

sured with echo-sounders, whereas lines represent already sampled regions (∼ 20% as of 2020) [from

NIPPON FOUNDATION-GEBCO SEABED 2030 PROJECT].
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Figure 2. Same as Fig. 4 in the main text, but here the models are trained to predict ϵ and

then κ is inferred from that prediction using Eq. (1) with Γ = 0.2.
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