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Abstract15

Turbulent mixing at centimetre scales is an essential component of the ocean’s merid-16

ional overturning circulation and its associated global redistribution of heat, carbon, nu-17

trients, pollutants and other tracers. Whereas direct turbulence observations in the ocean18

interior are limited to a modest collection of field programs, basic information such as19

temperature, salinity and depth (T, S, Z) is available globally. Here, we show that su-20

pervised (deep) machine learning algorithms, informed by physical understanding, can21

be trained on the existing turbulence data to develop skillful predictions of the key prop-22

erties of turbulence from T, S, Z and topographic data. This constitutes a promising first23

step toward a hybrid physics - artificial intelligence approach to parameterize turbulent24

mixing in climate-scale ocean models.25

Plain Language Summary26

Ocean turbulence plays an important role in sustaining the general ocean circula-27

tion and in the mixing of heat, carbon, nutrients, and other processes within the ocean28

interior. Turbulent mixing is technically challenging to measure and is often inferred from29

measurable quantities using parameterizations that are based on numerous simplifying30

assumptions about the physics of turbulence. In this work, we show that Artificial In-31

telligence (in form of Machine Learning) can be successfully employed to infer turbulent32

mixing from quantities measured routinely by global observational programs.33

Introduction34

Turbulent mixing across density surfaces (i.e. diapycnal mixing) in the ocean in-35

terior is key to sustaining the meridional overturning circulation and its global regula-36

tion of heat, carbon and nutrient distributions, as well as other climatically and envi-37

ronmentally important tracers (Talley et al., 2016). Such turbulence is primarily excited38

at the ocean surface by winds, or at the bottom boundary via flow impingement on to-39

pography (Garabato & Meredith, 2022). To illustrate, Fig. 1c shows a global estimate40

of the power provided to ocean interior turbulence from some of the leading energy sources.41

Figure 1a shows a snapshot of the ensuing, spatio-temporally intermittent turbulent field42

in a highly dynamic ocean region (the Drake Passage, where all primary energy sources43

are in play). When and where the vertical gradients of horizontal velocity (known as shear)44

become sufficiently intense, strong patches of turbulence are generated that mix temper-45

ature, salinity and other tracer vertically (i.e. to leading order across density surfaces46

or diapycnally.47

The spatio-temporal variability of turbulence makes its measurement especially chal-48

lenging. However, turbulence can leave an imprint on vertical temperature (T ) and salin-49

ity (S) profiles obtained from hydrographic surveys. T, S and depth (Z) are regularly50

sampled through global international programs, such as ship-based efforts like WOCE (Gouretski51

& Koltermann, 2004), GO-SHIP (GO-SHIP, 2018), GEOTRACES(GEOTRACERS, 2019)52

or globally-distributed floats deployed by the Argo Program (Argo, 2000) (see Supple-53

mentary Materials for a visual summary, and Davis et al. (2019) for a review (Davis et54

al., 2019)). While turbulence characteristics may be inferred from these T, S, Z data(Polzin55

et al., 2014; Whalen et al., 2012), such estimates involve many assumptions and uncer-56

tainties.57

The gold standard in measuring turbulence in the ocean interior is represented by58

ship-deployed microstructure profiler observations, which are limited in number due to59

their technical complexity and cost(Shroyer et al., 2018). Figure 1b shows microstruc-60

ture measurements taken in the abyssal Samoan Passage, an important chokepoint in61

the flow of anthropogenic heat- and carbon-rich Antarctic Bottom Water into the North62

Pacific pool, the largest ‘storage room’ of the deep oceans(Alford et al., 2013). Measure-63
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ments such as these provide invaluable data of turbulent variables (primarily, the rate64

of dissipation of turbulent kinetic energy ε) concurrent to T , S and Z.65

In this work, we utilize artificial intelligence (AI) algorithms (specifically, super-66

vised deep learning) that are trained on a unique collection of observations from microstruc-67

ture field programs(MacKinnon et al., 2017; Waterhouse et al., 2014) to predict turbu-68

lence characteristics successfully across the global ocean. These predictions are based on69

widely-available T, S, Z and topographic data, rendering our approach applicable to ma-70

jor global surveys that do not measure turbulence. The training phase is informed by71

our current physical understanding of turbulence. Our results demonstrate a first step72

toward a physically-informed, AI-based parameterization of oceanic turbulence in cli-73

mate models.74

Microphysics of Turbulence75

A key property of density-stratified ocean turbulence is the significantly enhanced76

rate at which it fluxes density and tracers in the vertical. The flux is directly propor-77

tional to Γ×ε, where Γ is a coefficient that determines the fraction of the energy avail-78

able to turbulence (from breaking internal waves or, more generally, hydrodynamic in-79

stabilities) that contributes to the turbulent density flux, with the remainder of the en-80

ergy being dissipated via the viscosity of seawater (Osborn, 1980; Mashayek et al., 2013).81

It has been shown that Γ can be accurately quantified using the ratio of two length scales,82

LT and LO (Mashayek, Caulfield, & Alford, 2021). The Thorpe scale LT is a geomet-83

rical scale characterising the vertical displacement of notional fluid parcels within an over-84

turning turbulent patch (crudely, a measure of the size of the overturn), and can be cal-85

culated from profiles of T, S with depth (Thorpe, 2005). The Ozmidov scale LO is the86

size of the largest turbulent structures forming within the breaking wave. Figure 1d shows87

the co-evolution of these two scales during the life cycle of a typical breaking wave. As88

the wave grows, initially LT rises, and upon sufficient growth, the wave transitions to89

turbulence (i.e. breaks) through a zoo of hydrodynamic instabilities(Mashayek & Peltier,90

2012a, 2012b) that feed on the energy stored in the parent wave. LO, the upper bound91

on the vertical size of such turbulent structures, increases as turbulence feeds on the en-92

ergy stored in the wave, draining LT . Both scales eventually vanish as turbulence de-93

cays. The ratio LO/LT has proven a good predictor of Γ at any stage of turbulence (Mashayek,94

Caulfield, & Alford, 2021). LO is defined as
√
(ε/N3), where the buoyancy frequency95

N =
√
−[g/ρ0]∂ρ/∂z can be directly inferred from T, S and Z through the construc-96

tion of the vertical density gradient, a characteristic density ρ0, and the gravitational97

acceleration g (whereas ε cannot).98

Given the appropriateness of LO/LT for quantification of the turbulent density flux99

and also that ε can be directly calculated from LO if density stratification (and hence100

N) is known, we choose LO = fθ(T, S, Z, LT ) as the parameter of interest, where f is101

a function relating the inputs to output. f is to be parameterized with a machine learn-102

ing algorithm with parameters θ. The key concept to appreciate is that the predictors103

are inferrable from all major global hydrographic surveys, whereas LO, an emergent tur-104

bulence measure, is not. Once LO is predicted, it can be used to calculate ε and Γ and,105

thereby, the turbulent density flux. We also add height above the bottom (Hab), to the106

list of predictors, as it determines the distance from the bottom boundary of the ocean107

in the same way as Z is the distance from the ocean’s top boundary, noting that both108

boundaries are crucial turbulence generation sites. Knowledge of Hab requires topographic109

data, which has become increasingly more accurate in recent decades thanks to advanced110

satellite-based gravity measurements and deep-ocean echo-sounding records (Sandwell111

et al., 2014) (see Supplementary Materials Fig S1).112
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The Training Dataset113

We employ a global dataset of microstructure profiles compiled by the Climate Pro-114

cess Team on internal wave–driven ocean mixing(MacKinnon et al., 2017). Figure 2 shows115

the location of the field measurements that spanned a wide range of geographic locations,116

depths, and turbulence-inducing physical processes. The figure also provides the list of117

the field experiments, and the fraction of the total data associated with each program.118

The data is available at https://microstructure.ucsd.edu/, and data description and119

relevant references may be found in Waterhouse et al. (2014)(Waterhouse et al., 2014).120

The same dataset was employed by Cael & Mashayek (2021)(Cael & Mashayek, 2021)121

to show that the data ‘collapses’ on a seemingly universal log-skew-normal statistical dis-122

tribution. This result motivated the present study by suggesting that such universality123

might be detectable through data-driven methods. Importantly, they showed that a col-124

lapse occurs for a certain ratio of ε and N2, thus further guiding our approach to con-125

sider LO as the desirable output parameter. Together, the experiments in Fig. 2 con-126

tain over 700 full-depth microstructure profiles, binned into 10 m vertical bins (amount-127

ing to ∼2×105 data points). The concurrent measurements of ε, T, S, Z in this dataset128

allow for the construction of the aforementioned predictor list as well as LO. Jointly, these129

provide the ingredients for training the AI algorithms. Given that the logarithm of LO130

is much better constrained than LO, and that log10(LO/LT ) has a universal well-bounded131

distribution(Thorpe, 2005; Mashayek, Barry, et al., 2021), we will use log10(LT ), log10(LO)132

hereafter.133

Classification And Regression Trees (CART)134

We employ CART, one of the most common machine learning predictive models (Wu135

et al., 2008; Breiman et al., 1984). The method uses a decision tree to connect obser-136

vations of a parameter of interest (represented in the branches) to predictions about its137

value (represented in the leaves). When applied to target variables that take continu-138

ous values (such as LO in this study), such decision trees are referred to as regression139

trees. Additionally, we employ an ensemble method, bootstrap aggregating, to improve140

the stability and accuracy of the decision tree algorithm, reduce variance, and avoid over-141

fitting. Bootstrap aggregated decision trees (hereafter bagging trees) construct multi-142

ple trees by repeatedly re-sampling the training data with replacements, and voting the143

trees for a consensus prediction (Breiman, 1996).144

Figure 3a shows the application of the bagging tree to the training microstructure145

dataset (from which log10(LO), our prediction target, is calculated). The model was trained146

based on 50 cross-validation k-folds of all data across 13 field experiments. This method147

involves splitting the dataset into equally sized ‘k’ number of groups, or ‘folds’, and tak-148

ing it in turn to use each group as the test data while the rest of the data is used to train149

the model, with an average of the results being adopted. A k-fold validation approach150

is useful when input data is limited, and ensures that every data point is used within the151

training and test dataset, hence reducing bias when compared to other methods. The152

fit is satisfactory, with a coefficient of determination (R2) of 0.77. R2 is a statistical met-153

ric of how well the regression predictions approximate the real data, and so is a measure154

of the goodness of fit of a model. To analyse further the quality of the agreement between155

predictions and data shown in Fig. 3c we display the cumulative contribution of vari-156

ous predictors to R2. The first four parameters (T , S, Z, and Hab) contribute 0.65 to157

R2, with the rest (local overturn estimates based on density and temperature [i.e. log10(L
ρ
T ),158

log10(L
T
T )], density, and vertical gradients of temperature and density), adding another159

0.1. Figure 3d shows the associated error in prediction, which diminishes as more fea-160

tures are included. Importantly and consistently with the contributions to R2, T , S, Z,161

and Hab reduce the mean-square error to less than 10%.162
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The above agreement implies that knowledge of parameters most basic to turbu-163

lence, i.e. density stratification (T, S), distance from turbulence-generating boundaries164

(Z, Hab), and localized vertical gradients of T, S, which arguably are measures of local165

turbulent overturns or wave activity, suffice to obtain an estimate of the turbulence in-166

tensity accurate at least to within an order of magnitude. Given that indirect inferences167

of turbulent mixing do not always possess such accuracy, as –unlike our AI-driven approach–168

they rely on many assumptions related to the physical processes involved(Polzin et al.,169

2014), this is a significant finding and underscores the potential for a future role of AI170

in parameterizing oceanic turbulence. We emphasize, however, that the success of our171

approach is rooted in our physical understanding of turbulence, which led us to select172

log10(LO) as the most appropriate and robust prediction, as well as the choice of the straight-173

forwardly available associated predicting features (i.e. the ‘predictors’).174

It is worth noting that we also tried another standard choice, namely the Least Squares175

Boost (LSBoost) algorithm, as an alternative ensemble learning method. LSBoost is a176

gradient boosting method in which the mean squared error is chosen as the cost func-177

tion (Breiman et al., 1984). While we found LSBoost to outperform bagging tree for a178

smaller number of features (up to 3), bagging tree was superior for the number of fea-179

tures employed herein, and thus is our method of choice.180

Neural Networks181

As an entirely different approach, we also train neural networks with the same data182

(Fig. 2). Specifically, we use a fully-connected feed-forward neural network (FNN) with183

an input layer, an output layer and multiple hidden layers in between (Goodfellow et al.,184

2016). Each hidden layer combines the (learned) features of the previous layer to build185

up a non-linear transformation of the input predictors to predict turbulence properties186

(LO) in the output layer. Adding additional layers to make the network deeper incor-187

porates more parameters to be learned, which allows for a more flexible mapping between188

the easily measurable predictors and the less widely available turbulence properties, but189

requires more data to learn an effective generalisable mapping without overfitting (see190

Supplementary Materials for the model architecture).191

We also tried an initial implementation of a Convolutional Neural Network (CNN),192

which is another class of artificial neural networks, commonly applied to image analy-193

ses (LeCun et al., 1995). CNNs were originally inspired by their resemblance to the con-194

nectivity pattern between neurons and the organization of the visual cortex in humans195

and animals (Fukushima & Miyake, 1982), and consequently are typically employed where196

there is relative information between nearby pixels in an image. Our motivation for in-197

cluding convolutional layers was the existence of such relative information, from a phys-198

ical perspective, between neighbouring profiles of various research cruises. However, since199

initial performance was comparable with the FNN, we save a full investigation of the ef-200

fectiveness of convolutional architectures for future work. Details of the networks are pro-201

vided in the Supplementary Materials (see figures S2,S6,S7 and their description).202

Fig. 3b shows outcome of applying the deep neural networks to the data shown in203

Fig. 2. In this case, validation is performed by making the prediction for 10% of the data204

randomly selected from across the 13 experiments and then set aside, with the network205

trained on the other 90% of the data (to avoid overfitting). The agreement is reasonable,206

but as shown in Figure 3, the error is larger than for the bagging tree algorithm. As dis-207

cussed above, deep learning algorithms require less human intervention compared to more208

traditional machine learning algorithms (e.g. the bagging tree), and so generally have209

larger data requirements and their performance increases more strongly with the size of210

data. This makes the agreement in Fig. 3b particularly promising, given the limited na-211

ture of the training data compared to data sizes typically employed in deep learning. Thus,212
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investment in extending the training data through a community effort appears worth-213

while.214

Discussion & Outlook215

The primary message of this paper is encapsulated in Fig. 3. AI can successfully216

be employed to use measured quantities widely sampled by global observational programs217

to predict turbulence characteristics that are not observed by such programs yet are of218

great importance to ocean circulation. However, to our knowledge, this is a first such219

attempt, and there is clear scope for improvement. Figure 4 breaks down the analysis220

to different field programs and compares the predictions of two distinctly different ma-221

chine learning algorithms with the observational data. Both methods can successfully222

predict the patterns and, in most cases, the order of magnitude adequately, bearing in223

mind that the observational data itself has uncertainties that can add up to an order of224

magnitude(Thorpe, 2005). The agreement is notable given that, for each of the panels225

in Fig. 4, the models were trained excluding the data from that particular experiment226

to demonstrate successful generalisation. To further illustrate this agreement, Figures227

S3 and S4 in Supplementary Materials show analogues of Fig. 3a,b for each of the 13 field228

experiments.229

There are numerous factors that can contribute to the misfits. Three important230

ones are: (I) the percentage of the training and validation data can vary significantly be-231

tween the experiments (Fig. 2); (II) the relevance of the underlying physics in each ex-232

periment to the rest of the data used for training might be limited; (III) ocean mixing233

is not entirely ‘local’ in nature, e.g., waves generated thousands of kilometres away can234

contribute to mixing, and no such information was included in our training by construct(de235

Lavergne et al., 2019). Factor (I) can only be addressed through application of AI to larger236

datasets. In particular, the success of deep learning directly scales with the data size,237

and what was achieved in this work lies at the lower bound of the data volume required.238

Our analyses show that while the bagging tree method converges to the optimal perfor-239

mance once a few hundreds of profiles are considered, the FNN approach does not show240

such convergence and retains a large standard deviation even when all profiles are in-241

cluded (see Supplementary Materials Fig. S5). Thus, further community efforts are re-242

quired to pull turbulence datasets together and subject them to the same levels of qual-243

ity control and grid interpolations. Furthermore, adding microstructure sensors to global244

observational endeavors (such as the Argo float program), while ambitious, is within reach245

and conceivable in the coming decades (Roemmich et al., 2019). Factor (II) will natu-246

rally advance as our physical understanding of ocean turbulence keeps progressing. A247

conscious effort towards connecting such physical understanding to data-driven param-248

eterizations is required. Addressing factor (III) is more readily achievable in the near fu-249

ture, as it will require inclusion of theoretical estimates of local and non-local energy in-250

jected to internal waves from various sources (winds, tides, etc.) in training algorithms.251

In summary, AI provides a valuable tool to harness our observational, theoretical and252

statistical knowledge of ocean turbulence to direct the development of a next-generation253

‘smart’ turbulence parameterization for climate models.254
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Figure 1. High spatio-temporal intermittency of ocean turbulence makes it chal-

lenging to measure turbulence directly and to connect it with physical understand-

ing. (a) A snapshot of the internal wave field in the Southern Ocean’s Drake Passage, generated

by intense wind forcing and flow over rough topography, from an observationally-constrained and

verified high-resolution simulation (Mashayek et al., 2017). (b) Turbulence in the deep Samoan

Passage: northward velocity (color), potential temperature (black contours), and turbulent

dissipation rate measured with a microstructure profiler (grey horizontal bars plotted along ver-

tical profiles)– from Alford et al. (2013)(Alford et al., 2013). (c) Power available to small-scale

turbulence from the internal wave field, constructed based on estimates of waves generated by

winds(Alford, 2020) and interaction of tides(de Lavergne et al., 2020) and eddies(Nikurashin

& Ferrari, 2013) with rough topography. Power is plotted on the neutral density level 1028.1

kg/m3 with a mean global depth of 3170 m. (d) Time evolution of turbulence length scales: the

Thorpe scale LT , characterising the overturning scale; the Ozmidov scale LO, characterising

the largest turbulence structures within a breaking wave, and the Kolmogorov microscale LK ,

the scale below which viscosity dissipates the energy in the turbulent field – all for a canonical

breaking wave(Mashayek et al., 2013). The insets show the turbulence breakdown of the wave

by hydrodynamic instabilities, which form a turbulent cascade that transfers energy from the

energy-containing scale (LT ) to the smallest scales (LK)(Mashayek & Peltier, 2012a, 2012b).
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Figure 2. Limited direct turbulence observations exist to be used for train-

ing machine and deep learning algorithms. Left: location of the field programs that

include direct measurements of turbulence (specifically, turbulent kinetic energy dissipa-

tion rate ε using microstructure profilers) along with co-located temperature, salinity and

depth sampling; the experiments are listed in the legend, with more details available at

https://microstructure.ucsd.edu/(Waterhouse et al., 2014) and in the Supplementary Ma-

terials. The data contains a total of ∼700 profiles, with ε binned into 10 m vertical bins. Right:

the percentage of data from each experiment.
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Figure 3. Both machine learning and deep learning models can successfully fit the

global microstructure data based on few predicting features. Bivariate histograms (in

the form of a probability density function, PDF) of predicted turbulence overturn scale versus the

actual data from machine learning in (a), and from deep learning in (b). In panel a, the model

is validated using K-fold validation with 50 folds to avoid overfitting (see main text). In b, the

model is trained based on 90% of the entire dataset of Fig. 2 (i.e. for all 13 experiments) and

then applied to the remaining 10% (randomly selected from across all datasets) for validation–

hence no overfitting. (c) Contributions of various predicting features to the goodness of the fit

(R2) based on the validation data (i.e. the same data as in panels a, b); a similar trend follows

when applied to the training data or to the entire data. (d) The Mean Square Error (MSE) as-

sociated with panel c. Machine learning was used to identify the appropriate predictors (as per

panels c, d) that were then employed by the deep learning approach. For histogram analogues of

panels a and b, but for individual experiments, see Supplementary Materials, Figures S3,S4.
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Figure 4. Predictions for individual field programs also show promise. Comparison

of the prediction of the machine learning approach (bagging tree) and deep learning (convolu-

tional neural network) to each of the 13 field programs introduced in Fig. 2. For each case, the

profiles are the mean over all the profiles in that experiment. Specifically, the algorithms were

used to make individual predictions for each profile of each experiment, before the mean of the

individual predictions was taken per experiment. Note that for each experiment, the models

(both bagging tree and FNN) were trained based on the data from all other 12 experiments, ex-

cluding the data from the given experiment itself, to avoid overfitting.
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