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Key Points: 15 

● Marine biogeochemical feedback leads to the decline of the SST during the phytoplankton 16 

bloom and significant cooling of subsurface layers occurs 17 

● The feedback leads to a drying over most of the area during the monsoon season 18 

● The feedback's impact has cascading effects upon the model ocean physics which further 19 

translates into altered atmosphere dynamics 20 

Abstract 21 

A regional Earth System Model has been implemented for the South Asia region. We investigate the 22 

effect of the marine biogeochemical feedback which affects the attenuation of the short-wave 23 

radiation upon the regional climate. In the experiment where the feedback is activated the average 24 

SST is lower over most of the domain. The greatest deviations (more than 1°C) in SST between the 25 

two runs observed in the summer period during the phytoplankton bloom. A significant cooling of 26 

subsurface layers occurs and the thermocline shifts upward compared to the Jerlov type absorption. 27 

The phytoplankton primary production and its deviation in the feedback-based simulation turned out 28 

to be higher, especially during periods of winter and summer phytoplankton blooms. The marine 29 

biogeochemistry feedback also affects the amount of precipitation in the model in particular during 30 

the monsoon season. The associated SST cooling leads to a reduction of the precipitation but affects 31 

it in different ways. In the Arabian Sea, the reduction of the transport of humidity across the equator 32 

leads to a reduction of the large scale precipitation in the eastern part of the basin, reinforcing 33 

reduction of the convective precipitation. In the Bay of Bengal, the feedback increases the large scale 34 

precipitation, contouring the decrease of convective precipitation. Thus, the main impacts of 35 

including the biogeochemical coupling in the Indian Ocean include the enhanced phytoplankton 36 

primary production, a shallower thermocline and decreased SST, with cascading effects upon the 37 

model ocean physics which further translates into altered atmosphere dynamics. 38 

 39 

Plain Language Summary 40 

 41 

The effect of the marine biogeochemical feedback on the South Asian regional climate has been 42 

investigated. In the experiment where the feedback is activated the average surface temperature is 43 

lower over most of the ocean. The greatest deviation is in the summer period during the phytoplankton 44 

about:blank


bloom. A cooling of subsurface layers occurs and the thermocline shifts upward compared to the 45 

Jerlov type absorption. The phytoplankton primary production and its deviation in the feedback-based 46 

simulation turned out to be higher, especially during periods of winter and summer phytoplankton 47 

blooms. The marine biogeochemistry feedback also affects the amount of precipitation in 48 

particular during the monsoon season. In the Arabian Sea, the reduction of the transport of humidity 49 

across the equator leads to a reduction of the large scale precipitation in the eastern part of the basin, 50 

reinforcing reduction of the convective precipitation. In the Bay of Bengal, the feedback increases 51 

the large scale precipitation, contouring the decrease of convective precipitation. Thus, the main 52 

impacts of including the biogeochemical coupling in the Indian Ocean include the enhanced 53 

phytoplankton primary production, a shallower thermocline and decreased sea surface temperature. 54 

 55 

1. Introduction 56 

The vulnerability and the ability of society and natural systems to adapt to the impact of 57 

climate change vary greatly according to geographic regions and populations. The Indian 58 

subcontinent and adjacent area, where a fifth of humanity lives, is one of the regions where the 59 

impacts are strong both in the present time and future climate projections (Turco et al, 2015; Szabo 60 

et al., 2016).  The strongest impacts are related to changes in the intensity and frequency of extreme 61 

events (such as floods, droughts, tropical cyclones, storm surges, phytoplankton blooms, ocean heat 62 

waves, avalanches, etc.) which can inflict significant damage on ecosystems, human populations, 63 

infrastructure and property. In particular, the intensity of extreme events over India is increasing 64 

continuously, a fact which can be observed every year when one or other region gets affected by 65 

floods causing enormous socio-economic losses (IPCC AR5, 2014). 66 

Atmospheric extreme events contribute to the emergence of extreme situations in the ocean 67 

and vice versa. For example, the strengthening of the southwestern monsoon in the Arabian Sea leads 68 

to abnormal coastal upwelling and increased mixing of the upper ocean layer, the subsequent supply 69 

of nutrients into the upper layer from the deep ocean and anomalous blooms of phytoplankton 70 

(Ryabchenko et al., 1998). In turn, the changes in sea surface temperature (SST) and surface fluxes 71 

of heat and momentum caused by monsoons can feedback to atmospheric circulation. It is known that 72 

the Bay of Bengal is one of the main tropical cyclogenesis areas in the world (Dube et al., 1997). 73 

Strong cyclones forming here lead to catastrophic storm surges during which hundreds of thousands 74 

of people lose their lives (Tasnim et al., 2015). Another example of the relationship between 75 

atmospheric and oceanic processes is associated with river runoff and nutrient loading which is 76 

projected to be maximum in southern and eastern Asia due to the growth of population and increased 77 

industrialization (Seitzinger et al., 2002). The Ganges–Brahmaputra estuary is strongly vulnerable to 78 

high nutrient load from river discharges (Seitzinger et al., 2005; Mukhopadhyay et al., 2006). Global 79 

warming can enhance the freshwater river runoff and the nutrient flux thus enhancing the primary 80 

production in coastal areas. It was stated that the estuarine ecosystem experiences a complete change 81 

in terms of phytoplankton during monsoon (De et al., 2011) and that the eastern Indian coast is 82 

affected by localized eutrophication which directly influences the nutrient level of coastal water and 83 

phytoplankton abundance (Choudhury & Pal, 2010). Recent assessments (Sattar et al., 2014) of the 84 

impact of food production upon the river flux of nutrients into the Bay of Bengal coastal waters in 85 

the past and the future show that the coastal eutrophication potential is high in the Bay of Bengal thus 86 

elevating the risk for oxygen deficiencies (d’Asaro et al., 2019). The above examples of interactions 87 

between atmospheric and oceanic processes underscore the need to create a unified high-resolution 88 

modeling system for the region to be able to study these interactions in detail. 89 

Earth System Models (ESMs) include coupled representations of the ocean, atmosphere, land 90 

use, vegetation, biogeochemistry, atmospheric chemistry, and the hydrological cycle. They are very 91 



effective tools for the study of the Earth's climate system and are used to investigate the complex 92 

systems and associated mechanisms in climate and environmental sciences in the past and future, 93 

driven by assumptions on the evolution of climate change (Taylor et al., 2012). However, they usually 94 

lack the resolutions that are necessary for regional studies. Dynamical downscaling with Regional 95 

Climate Models (RCMs) is used to translate the global climate information generated by ESMs down 96 

to regional scales at a higher resolution. RCMs take the initial conditions and time-dependent 97 

boundary conditions from the global models and provide dynamically downscaled climate 98 

information within the region of interest (Giorgi, 2006). 99 

We have implemented a new version of the high-resolution Regional Earth System Model 100 

(RESM) ROM (Sein et al., 2015) for South Asia and the northern Indian Ocean. The model includes 101 

ocean, atmosphere, hydrological cycle and marine biogeochemistry components. Such a modeling 102 

system is required for the study of extreme events in the atmosphere and the ocean in the India region 103 

for seasonal and decadal predictions, climate change projections and advanced monsoons modeling. 104 

It will help to better describe their interaction with the ocean and glaciers, calculate their statistical 105 

characteristics and fulfill projections for the future. 106 

In this study we will use the model to assess the impact of marine biogeochemical feedback 107 

upon the simulation of the present climate over the Indian subcontinent and the adjacent ocean using 108 

the South Asia CORDEX domain. To this end, we compare two simulations carried out with our 109 

RESM. In both simulations, the model is driven by data from CMIP5 20th century simulation  with 110 

the Max Planck Institute Earth System Model (MPI-ESM). These two simulations differ only in the 111 

influence of the ocean biochemistry module on the shortwave solar radiation penetration into the 112 

ocean. In the first simulation, we use a light attenuation parameterization based on the Jerlov water 113 

types, when the attenuation coefficient depends on the water type specified but does not vary in time. 114 

The use of Jerlov water types is the standard case in ocean modelling although it has several 115 

shortcomings. Firstly, the dynamics of phytoplankton blooms on the light climate is completely 116 

neglected, which is highly problematic in regions which are subject to a strong seasonal cycle and in 117 

regions with strongly varying nutrient supply. Secondly, coastal characteristics, especially in front of 118 

large rivers with high nutrient load and limited exchange with the open ocean, are not resolved which 119 

is however important in high resolution downscaling simulations. In the second simulation, we 120 

introduce the marine biogeochemical feedback by calculating the attenuation coefficient using the 121 

phytoplankton concentration simulated by the ocean biogeochemistry module and allow to feedback 122 

onto the absorption of shortwave radiation by the physical module (MPIOM). Hence, the presence of 123 

a strong local phytoplankton bloom in the surface layer will increase the heat absorption in the upper 124 

layers and decrease it in deeper layers, with cascading feedbacks on the thermohaline structure of the 125 

water column such as the e.g. thermocline intensity and depth. Due to these reasons in regional 126 

climate studies, the effect of seasonal and local varying phytoplankton concentration can be expected 127 

to be important. The reason why so many ocean models make use of the more simple Jerlov 128 

attenuation scheme is not a scientific one but is of economic nature. Including the biogeochemical 129 

feedback, as done here, requires online coupling to a biogeochemistry model which leads to a 130 

threefold consumption of CPU hours compared to an uncoupled model running with Jerlov water 131 

types. 132 

The objectives of this paper can be summed as follows: 133 

1. To evaluate the ability of our model to reproduce the present climate in the South Asia 134 

CORDEX region both in the ocean and the atmosphere.  135 

2. To evaluate the quality of corresponding simulated physical and biogeochemical 136 

characteristics in the northern part of the Indian Ocean. 137 



3. To assess the impact of the biochemistry feedback upon the simulated regional climate, 138 

both in the atmosphere and the ocean. 139 

The layout of the present paper is as follows. In section 2 a description of the coupled modeling 140 

system is presented. Section 3 is focused on the verification of the developed RESM and its results. 141 

Section 4 contains some discussion. Conclusions are presented in section 5. 142 

 143 

2. Methods 144 

The oceanic component of our RESM ROM is the Max Planck Institute Ocean Model 145 

(MPIOM: Marsland et al., 2002; Jungclaus et al., 2013). Via the OASIS coupler, the MPIOM is 146 

coupled with the REgional atmospheric MOdel (REMO: Jacob, 2001), the Hamburg Ocean Carbon 147 

Cycle model (HAMOCC: Ilyina et al., 2013), and the Hydrological Discharge model (HD: Hagemann 148 

and Dumenil, 1998). This coupled modeling system has the distinctive feature that its global ocean 149 

module provides the possibility to refine the grid resolution in the region of interest and to avoid the 150 

lateral boundary conditions in the ocean while performing calculations. Another feature of the ROM 151 

is that the dynamical link between the ocean and the atmosphere (coupling) is implemented only at 152 

the chosen subdomain, while outside this region in the uncoupled area the ocean module of the ROM 153 

system calculates heat, freshwater, and momentum fluxes from atmospheric fields taken from the 154 

same global model used for REMO boundary conditions. A detailed description of the coupled model 155 

ROM can be found in (Sein et al., 2015). 156 

For this study, we perform two present-time simulations using ROM. The setups used are 157 

almost identical and differ only in the activation of the ocean biogeochemistry component. For REMO 158 

we use the slightly extended  CORDEX (http://www.cordex.org) South Asia domain (Fig. 1). The 159 

mesh of the global oceanic component has a variable horizontal resolution which reaches up to 15 160 

km inside the coupled region. In both simulations, the model is driven by data from a historical 161 

simulation with the MPI-ESM LR setup. The model runs were performed for the period 1920–2005, 162 

the first 30 years being an adjustment period. Initial conditions for the biogeochemical module were 163 

taken from MPIOM/HAMOCC long term simulations (Gröger et al., 2013). For the ocean and 164 

atmosphere, the initial conditions were taken from previous spin-up simulations: 50 years MPIOM 165 

stand-alone run plus 2 times 40 years (80 years) coupled MPIOM/REMO simulations with ERA-166 

Interim forcing. 167 

 168 



 169 
Figure 1. ROM configuration. The red frame shows the coupled ocean-atmosphere CORDEX domain. The 170 

black lines indicate the grid of the MPIOM/HAMOCC models (only every 12th line is shown). Color scale 171 

represents orography.  172 

 173 

The two ROM simulations (labeled as INDJ and INDB hereafter) differ by various 174 

parameterizations of the attenuation of short-wave radiation (SWR) penetrating into the ocean and its 175 

influence on water temperature. In the INDJ experiment, the model utilized a simple classical light 176 

attenuation parameterization based on the Jerlov water types (Jerlov, 1976). In this case, the 177 

attenuation coefficient depends on the water type specified in the model, but does not vary in time. 178 

This light attenuation parameterization was used both for the evolutionary equation for water 179 

temperature and in the HAMOCC marine biogeochemical module which is forced by the ocean but 180 

does not have the feedback to the ocean. In the INDB experiment, the biogeochemical feedback 181 

between the ocean and the atmosphere through the marine ecosystem was implemented by making 182 

the light attenuation coefficient a function not only of water attenuation itself but also phytoplankton 183 

concentration (Gröger et al., 2013). In the INDB run, this parameterization was implemented in both 184 

the physical and biogeochemical blocks of the ocean model. Therefore, in the INDB experiment, the 185 

presence of phytoplankton in the water reduces the amount of SWR penetrating into the deeper layers 186 

thus affecting the water column temperature and, through water temperature, the heat flux between 187 

the ocean and the atmosphere. 188 

 189 

3. Results 190 

3.1 Ocean 191 

To verify the model we use the temperature, salinity, dissolved nitrates and dissolved 192 

phosphates data from the World Ocean Atlas 2013 (WOA13), and chlorophyll concentration from 193 

the satellite data (SeaWiFS and MODIS-Aqua). 194 

According to the India Meteorological Department, we distinguish the following seasonal 195 

periods used for the verification procedure based on the monsoon activity in the northern part of the 196 

Indian Ocean: 197 



• DJF: December–February (winter season, NE winds); 198 

• MAM: March–May (pre-monsoon season); 199 

• JJAS: June–September (monsoon season, SW winds); 200 

• ON: October-November (post-monsoon season); 201 

In the following, we compare the model results and observations for winter (DJF) and summer 202 

(JJAS) seasons time-averaged over 1975–2004, since the phytoplankton impact is expected to be 203 

maximal during the bloom periods. 204 

 205 

3.1.1 Sea surface 206 

Sea surface temperature and salinity (SST and SSS). Figure 2 shows the spatial distribution of 207 

the difference between the modeled SST, SSS and corresponding WOA13 data for the winter (DJF) 208 

and summer (JJAS) climatic seasons time-averaged over 1975–2004. It can be seen that the model 209 

generally underestimates the SST relative to the observational climatic data, the exception being the 210 

region located off the coast of the Somali peninsula. The largest deviations in SSS from the WOA13 211 

are observed in the Bay of Bengal, salinity being overestimated by the model by 0.5–2‰ in the 212 

surface layer. The largest discrepancy in SSS occurs in winter (DJF), while in pre-monsoon and 213 

monsoon seasons the maximum difference is about 0.5‰ and 1.5‰, respectively. Off the western 214 

Indian coast, calculations show somewhat lower SSS than that in the WOA13 surface salinity field, 215 

the largest discrepancy here between ROM and WOA13 occurring in autumn and being up to 1‰ 216 

(not shown). 217 

 218 

 219 
Figure 2. Spatial distribution of the difference between experiment INDJ and WOA13 for SST (left column), 220 

SSS (middle column) and NO3 in the surface layer (right column). SST, SSS and NO3 are time-averaged for 221 

winter (DJF) and summer (JJAS) for the period 1975–2004. 222 

 223 

Sea surface concentration of dissolved nitrate. It was found that, compared to WOA13, the 224 

HAMOCC biogeochemical model somewhat overestimates the surface concentration of nitrates 225 

(NO3), especially during winter (Fig. 2). The strongest deviations are located along the coasts and 226 

are related to uncertainties in nutrient supply originating from rivers and point sources as we apply a 227 

rough climatological estimate for external nutrient supply (Gröger et al., 2013). With more distance 228 

from the coasts, the model bias reduces showing the model’s capability to correctly simulate the 229 



biogeochemical cycling of the open Indian ocean which is the main purpose of this study. In front of 230 

NE Africa and South Arabia, the modeled too high SSTs and too low nitrate concentrations during 231 

the summer monsoon season may indicate too weak upwelling in response to the predominant SW 232 

wind regime. At a depth of 50 m, the agreement between WOA13 and the model is somewhat better 233 

and the main features of the spatial distribution of nitrates are reproduced correctly. The only serious 234 

exception is the overestimated concentration of nitrates in autumn off the southwest coast of India. 235 

At a depth of about 100 m, the discrepancy between the WOA13 data and the model is more 236 

pronounced. At a depth of 500 m the WOA13 and modeled nitrates are very similar, which is 237 

obviously due to the small influence of the seasonal ecosystem dynamics upon the distribution of 238 

nitrates at such depths. The maximum deviations in surface nitrate field between the model and 239 

WOA13 data occur during the bloom periods (winter and summer) in both simulations (INDJ and 240 

INDB), while this deviation is minimal in spring. In general, the modeled annual surface 241 

concentration of dissolved nitrate is slightly higher than in WOA13. 242 

Sea surface chlorophyll-a concentration. Verification of the biogeochemical module 243 

HAMOCC was also made based on the ocean surface chlorophyll-a concentration (Fig. 3). The 244 

calculated surface phytoplankton concentration (in carbon units) was converted into the chlorophyll-245 

a concentration (in mg/m3) using the constant C:Chl ratio equal to 60 gC / gChl used in HAMOCC 246 

(Ilyina et al., 2013). 247 

 248 

 249 
Figure 3. Comparison of the simulated (INDJ) and observed (SeaWiFS) surface chlorophyll-a concentration. 250 

The fields are time-averaged seasonally (DJF, JJAS) for the period 1997–2005. 251 

 252 

It is clear that the modeled chlorophyll-a concentration is overestimated in comparison with 253 

the SeaWiFS satellite data. Still, according to SeaWiFS, the model captures the main patterns in the 254 

spatial distribution of chlorophyll-a concentration in the surface layer during the periods of maximum 255 



phytoplankton development (bloom in JJAS, Fig. 3). To the north of 5°N, both the model and the 256 

satellite data show the seasonal dynamics of chlorophyll-a. The model produces lower chlorophyll-a 257 

concentrations in the Arabian Sea under the predominant NE wind regime during the winter monsoon, 258 

compared to SeaWiFS data. By contrast, SW winds during the summer monsoon induce upwelling 259 

of nutrients from deeper layers and stimulate primary production. In the model, the enhanced 260 

chlorophyll-a concentrations occur during winter along the eastern boundary of the Bay of Bengal 261 

while reduced production is indicated there during summer. While these changes are in accordance 262 

with the changing wind regime, the satellite data show higher concentrations also during summer. 263 

The most plausible explanation for this is a persistently high supply of riverine nutrients around the 264 

year. Another difference between the model and satellite data is the presence of increased chlorophyll-265 

a concentration zone stretching along the equator in the model results, especially during the winter 266 

period. It is not present in satellite data. We think that the cause is the overestimated upwelling in the 267 

equatorial region and, thus, the enhanced supply of nutrients to the surface. The overestimation or 268 

underestimation of ocean productivity along the equatorial divergence zone is a common problem of 269 

many ocean general circulation models (e.g., Steinacher et al., 2010). 270 

A comparison of the time-series of the HAMOCC surface chlorophyll-a concentration with 271 

satellite data was also carried out (Fig. 4). 272 

 273 



 274 
Figure 4. Comparison of the simulated (INDJ and INDB) and observed (SeaWifs, MODIS Terra) time-series 275 

of surface chlorophyll-a concentration in the Arabian Sea (a), Somali upwelling area (b), and the Bay of Bengal 276 

(c). 277 

 278 

3.1.2 Vertical distributions 279 

Vertical distribution of water temperature, salinity and nutrients. We have also analyzed the 280 

spatially-averaged vertical profiles of water temperature, salinity and dissolved nitrate and 281 



phosphorus concentration for the northern part of the Indian Ocean (IO) and for the Arabian Sea 282 

(ASF) and the Bay of Bengal (BBF) regions (Fig. 5). 283 

 284 

 285 
Figure 5. Spatially-averaged areas in the model domain. 286 

 287 

As seen from Fig. 6, the simulated vertical distribution of temperature and salinity is in 288 

relatively good agreement with WOA13 data. The modeled values are generally within the standard 289 

deviation range of the corresponding WOA13 data. The results are close to the climatic in the Arabian 290 

Sea and in the Bay of Bengal but they are out of the standard deviation range there in most cases. 291 

Still, it should be noted that the standard deviation of WOA13 data is very small in these areas due to 292 

the scarcity of observations. The same is true for the vertical distribution of nutrients (Fig. 7). 293 

 294 

 295 
Figure 6. Vertical profiles of water temperature and salinity time-averaged seasonally (DJF, JJAS) for the 296 

period 1975–2004. INDJ and INDB designate the model runs; WOA13 designates the climatic data from the 297 

World Ocean Atlas 2013; SD designates the standard deviation of the WOA13 data. 298 

 299 



 300 
Figure 7. Vertical profiles of dissolved nitrate and phosphate time-averaged seasonally (DJF, JJAS) for the 301 

period 1975–2004. INDJ and INDB designate the model runs; WOA13 designates the climatic data from the 302 

World Ocean Atlas 2013; SD designates the standard deviation of the WOA13 data. 303 

 304 

3.1.3 Impact of the marine biogeochemistry feedback 305 

Impact of the feedback on the water temperature and salinity. We have also compared the 306 

results of two model runs (INDJ and INDB) between each other in order to investigate the impact of 307 

the chlorophyll-dependent light attenuation parameterization (Gröger et al., 2013) upon the main 308 

oceanic variables. The vertical distribution of temperature, salinity, dissolved nitrate and phosphate 309 

for different regions of the model domain was already presented in Fig. 6–7 for both experiments. 310 

Figure 8 shows the spatial distribution of the climatological (1975–2004) values of the SST difference 311 

between the two model runs (INDB-INDJ), as well as the difference in SST standard deviation for 312 

both experiments. In winter (DJF) the feedback between the ocean and the atmosphere through the 313 

marine ecosystem leads to the colder SST, with differences reaching up to 1° С in the northern part 314 

of the Arabian Sea. The exceptions are the areas near the southwestern coast of India, the northwestern 315 

coast of Indonesia and the eastern part of the Andaman Sea. But the SST increase in these areas is 316 

insignificant and does not exceed 0.1° C. In summer (JJAS) the difference in SST between the two 317 

runs is even more pronounced, especially in the northern part of the Arabian Sea and along the eastern 318 

coast of India. SST in the INDB experiment is also characterized by stronger variability, the standard 319 

deviation of temperature fluctuations being higher by approximately 0.3° C compared to INDJ. 320 

 321 



 322 
Figure 8. Spatial distribution of the difference between model runs (INDB-INDJ) for SST (left column) and 323 

SST standard deviation (std., right column). SST and its std. deviation are time-averaged seasonally (DJF, 324 

JJAS) for the period 1975–2004. 325 

 326 

When averaging over the annual period (not shown), SST in the INDB run is also slightly 327 

lower and its deviation is higher than in INDJ. Summing up, we can say that the INDB run 328 

demonstrated the largest changes in SST occurred in summer during the active phytoplankton bloom. 329 

Figure 9 shows the spatial distribution of the SSS difference (INDB-INDJ) and the SSS 330 

standard deviation difference for the same period (1975–2004). Our results show that in all seasonal 331 

climatic averages the SSS difference between INDB and INDJ experiments is not strongly 332 

pronounced and does not generally exceed 0.2‰. The most significant changes in SSS occurs in the 333 

Bay of Bengal. Figure 9 also shows that standard deviation in the two simulations remained virtually 334 

unchanged, with the exception of the northern part of the Bay of Bengal where the INDB run showed 335 

larger seasonal deviations relative to the INDJ experiment. 336 

 337 



 338 
Figure 9. Spatial distribution of the difference between model runs (INDB-INDJ) for SSS (left column) and 339 

SSS standard deviation (std., right column). SSS and its std. deviation are time-averaged seasonally (DJF, 340 

JJAS) for the period 1975–2004. 341 

 342 

Impact of the feedback on the primary production and dissolved nitrate is shown in Fig. 10 343 

where the differences in depth-integrated modeled phytoplankton primary production (PP) and 344 

surface concentration of dissolved nitrate (NO3) are presented. It can be seen that the PP is higher in 345 

the INDB experiment during phytoplankton bloom periods (DJF and JJAS). The surface 346 

concentration of dissolved nitrates is lower in the INDB than in the INDJ experiment throughout the 347 

year and agrees well with the increased PP since nutrients are consumed more intensively in the 348 

surface layer. 349 

 350 



 351 
Figure 10. Spatial distribution of the difference between model runs (INDB-INDJ) for PP (left column) and 352 

NO3 (right column). PP and NO3 are time-averaged seasonally (DJF,  JJAS) for the period 1975–2004. 353 

 354 

Impact of the feedback on water temperature in ocean upper layers. In order to compare the 355 

simulated water temperature in the ocean upper layers (up to 100 m depth), we chose two regions 356 

with the largest SST difference between the two model experiments (designated in Fig. 3 as AS: 60-357 

65° E, 20-25° N and BB: 85-90°E, 15-20° N). Figure 11 shows the vertical profiles of water 358 

temperature (T), short-wave radiation (SW) and phytoplankton concentration (Phyt.) for the two 359 

model experiments considered. These vertical profiles of corresponding variables are spatially-360 

averaged over the regions AS, BB and IO and temporally-averaged over DJF and JJAS for the period 361 

1975-2004. We note significant cooling of subsurface layers in the INDB results. For all the 362 

considered regions and the averaging periods, the amount of short-wave radiation penetrating into 363 

subsurface layers in the feedback-based experiment (INDB) is less than that in the experiment with 364 

classical light attenuation parameterization (INDJ). This is especially noticeable during the 365 

phytoplankton bloom period in the Arabian Sea in summer (JJAS). 366 

 367 



 368 
Figure 11. Vertical profiles of short-wave radiation (SW), water temperature (T) and phytoplankton 369 

concentration (Phyt.) in INDJ (without ocean-atmosphere feedback through the marine ecosystem) and INDB 370 

(with the feedback) experiments. 371 

   372 

During summer (JJAS) the difference in short-wave radiation between the two runs reaches 373 

7-10 W/m2 in the Arabian Sea at the depth of 20 m. It is reasonable to assume that this difference 374 

would be much larger at the moments of peak phytoplankton bloom when no time-averaging is made. 375 

Thermocline dynamics. The thermocline dynamics are among the most important factors 376 

mediating the temporal and spatial shape of phytoplankton blooms and its feedback on climate. On 377 

the one hand, it acts as a barrier for the vertical exchange between nutrient-depleted surface waters 378 

and nutrient-enriched waters from deeper layers and can limit biological productivity. On the other 379 

hand, a strong thermocline can effectively reduce the local mixed layer depth and allow 380 

phytoplankton to persist longer within the euphotic layer thereby increasing the growth rate of marine 381 

algae. Moreover, the thermocline has a temperature mediating effect, with a shallower thermocline 382 

allowing the surface layer to faster adapt to atmospheric temperatures (e.g., Gröger et al., 2015). The 383 

inclusion of phytoplankton into the radiative heat transfer equation alters the vertical distribution of 384 

heat absorption and thus influences the thermocline dynamics. In the following, we test the effect of 385 

the biogeochemical feedback upon the model physics by comparing thermocline dynamics between 386 

the two runs with and without coupling (Fig. 12). Where feasible a comparison 387 

 388 



 389 
Figure 12. a) Comparison of simulated summer (JJAS) thermocline depth with thermocline depth derived 390 

from WOA data sets. b) same as (a) but for winter thermocline (DJF). c) The difference in thermocline depth 391 

between the two runs  (INDB-INDJ) for JJAS (left) and DJF (right). 392 

 393 

with WOA 2001 and WOA 2013 data is discussed. Data generally tend to be sparse in open ocean 394 

regions with less dense measuring campaigns like the Indian Ocean. Therefore, caution should be 395 

applied when interpreting thermocline dynamics derived from sparse gridded data sets like WOA. 396 

This is indicated by the irregular isolines displayed in the WOA data sets. We, therefore, do not 397 

provide a quantitative validation here but rather discuss the processes underlying the spatial pattern. 398 

Both model simulations and WOA data show distinct gradients in thermocline depth. During 399 

the summer monsoon (Fig. 12a) the thermocline shoals to values below 25 m along the northern coast 400 

of the Arabian Sea and along the Indian coast where moisture carrying SW monsoon winds cause a 401 

positive P-E flux and maintain a vigorous runoff (Ramesh and Krishnan, 2005). Off the Somalian 402 



coast and further offshore, the strong SW monsoonal winds lead to a deepening of the thermocline in 403 

wide areas of the open ocean. In the model runs the extension of this area is larger than in WOA data 404 

sets. In the Bay of Bengal, the model simulates a clear east-west gradient with a deeper thermocline 405 

in the east compared to the west. Such a pattern is also observed to some extent, at least in the WOA 406 

2001. To the south of the equator the thermocline shoals in an extended zonal band to values well 407 

below 50 m. This is likewise seen in the two WOA data sets though this is less pronounced there. 408 

During the winter monsoon, the very shallow thermocline in the coastal Arabian Sea strongly deepens 409 

in response to changed monsoon (Fig. 12b). This seasonal change is more pronounced in the model 410 

simulations but is still significant in the WOA data sets. This indicates that the seasonal variability is 411 

well represented in the model near the coasts. 412 

The simulated thermocline depth is almost everywhere shallower when including the 413 

biogeochemical feedback (Fig. 12c) in both summer and winter. However, the spatial structure (Fig. 414 

12a and 12b) is very similar, indicating that physical processes play a dominant role whereas the 415 

vertical structure is controlled by biophysical processes in heat uptake. The explicit use of 416 

phytoplankton in the radiated heat transfer (INDB experiment) leads to more heat absorption in the 417 

upper layers and less heat absorption in lower layers. As a result, the thermocline shifts upward 418 

compared to the Jerlov type absorption (INDJ experiment) which follows a simple exponential curve 419 

with a constant exponent. 420 

 421 

3.2 Atmosphere 422 

Here we study the regional distribution of some key atmospheric fields over the South Asia 423 

CORDEX region and validate them for winter (DJF) and summer (JJAS) over the 1975-2004 period. 424 

In section 3.2.1 we focus on the regional distribution of 2-meter air temperature (T2M) biases relative 425 

to the ERA5 reanalysis. Also, temperature differences between the INDB and INDJ experiments are 426 

analysed. This allows us to gain insight into temperature changes that occur in response to the ocean 427 

biogeochemical feedback. In section 3.2.2 the same procedure is followed but taking into 428 

consideration the precipitation instead. 429 

 430 

 3.2.1 Air surface temperature 431 

In both seasons the mean surface temperature in ERA5 is clearly influenced by topography 432 

(Figs. 13a, 13d). The lowest values are reached on highly-elevated terrain - especially in winter. The 433 

lowest temperatures are attained in world highest mountain ranges: the Himalaya, Pamir, Hindu Kush 434 

and the Tibetan Plateau. The highest summer temperatures are reached along with the Indo river 435 

depression and the Arabian Peninsula. In experiment INDJ the winter daily mean temperatures are 436 

simulated quite well and biases are relatively small (Fig. 13b and 13e), T2M is underestimated over 437 

most of the model domain, except for its northern and northwestern areas where positive biases can 438 

reach up to 5 ºC.  The negative biases are mostly below 2 ºC, except for Tibet and Himalaya, where 439 

simulated T2M more than 4ºC colder than ERA5 can be found. The largest errors are found in 440 

depressed and/or highly-elevated regions and their values may be dependent on factors such as the 441 

limited amount of meteorological stations in topographic highs and lows used for the assimilation in 442 

the region and the different representation of the orography in both REMO and ERA5. JJAS T2M 443 

biases are generally lower than in winter, with a similar dependence on orography. They become 444 

positive over most of the Indian subcontinent with maximum values over the northern Indo river basin 445 

where mean temperatures are up to 4 ºC above ERA5. Over the ocean a positive bias develops in the 446 

region where the monsoon winds are stronger. In general, the largest T2M biases are located in 447 

regions where larger temperatures are obtained, pointing to a role of the simulated nocturnal boundary 448 



layer and/or radiative fluxes. Just like for the SST, the biogeochemical feedback leads to a colder 449 

surface air temperature over most of the ocean. In DJF the cooling is stronger over the Arabian Sea 450 

and the equatorial strip, reinforcing the weak negative biases already present in INDJ. Over the land 451 

the feedback slightly improves the cold bias in northwestern and southern India but leads to a cooling 452 

in the central part. The ocean cooling induced by the feedback is also present in JJAS, with stronger 453 

values near the western coast of the Arabian Sea and the Bay of Bengal, downstream of the Monsoon 454 

winds. 455 

 456 

3.2.2 Monsoon precipitation 457 

The monsoon season in Southern Asia is shaped by different processes which change the 458 

atmospheric circulation due to the summer strengthening of the ocean-land temperature contrast. The 459 

spatial structure of the observed monsoon precipitation is characterized by two regions of strong 460 

rainfall over land (Fig. 14a). The first is located windward, over the western coast of India, Myanmar 461 

and the southern side of the Himalayas. The second region which covers Bangladesh, central India 462 

and the eastern coast of the Indian peninsula is the area of maximum monsoon precipitation over the 463 

land. The precipitation is weaker over the northwest of India and Pakistan (Kumar et al., 2013). The 464 

complex orography and physical mechanisms involved make the simulation of the monsoon 465 

precipitation a difficult task both for global and regional models   (Lucas-Picher et al., 2011). 466 

However, stand-alone simulations with REMO have shown to be able to reproduce spatial monsoon 467 

precipitation patterns rather well, although a better quantitative agreement is desirable (Kumar et al., 468 

2014). For instance, the precipitation over south and central India is overestimated, while the 469 

precipitation over the Indo-Ganges plain is strongly underestimated. Over the ocean a wet bias is 470 

usually found over the Bay of Bengal and the southern Indian Ocean. 471 

As shown in previous versions of the model (Kumar et al., 2014), ROM is able to improve the 472 

performance of REMO, simulating a more realistic precipitation. The coupling reduces the magnitude 473 

of the biases, especially in the regions where REMO has the strongest biases, near the eastern coasts 474 

of the Arabian Sea and the Bay of Bengal (Fig. 14b). It should be noted that in both INDJ and INDB 475 

experiments ROM is forced by MPI-ESM and the results are influenced by the biases of the driving 476 

ESM (e.g., Cabos et al., 2020). 477 

 478 

 479 
Figure 13. DJF (upper row) and JJAS (lower row) a) and d) 2 meter temperature ERA5 climatology  b) and 480 

e) bias for the experiment INDJ; c) and f) INDB-INDJ difference.  481 



 482 

Besides the total precipitation, in Fig. 14.d-e we show the convective (thereafter APRC) and 483 

in 14.g-h the large scale (thereafter APRL) component of the precipitation. We can see that in INDJ 484 

the main contribution to the biases over the ocean near the eastern coast of the Arabian Sea comes 485 

from APRC, while over the coastal land the main contributor is APRL. The opposite is true for the 486 

eastern coast of the Bay of Bengal, especially in Myanmar where the main contributor over the ocean 487 

and the coastal regions is APRL, with a lesser contribution from APRC. To the south of the equator, 488 

between 10o S and the equator, both components give a contribution of similar magnitude, albeit the 489 

large scale is stronger. Here, both components show a similar displacement of the region of maximum 490 

precipitation to the south, and while the magnitude of the convective precipitation is lower than in 491 

ERA5, the large scale component is stronger and more zonal than the ERA5 large scale precipitation. 492 

 493 

 494 
 495 

Figure 14. JJAS precipitation for ERA5 (left column), INDJ experiment (middle column), and the differences 496 

between INDB and INDJ (right column) for total precipitation (upper panels); convective precipitation (middle 497 

panels), and large scale precipitation (lower panels). 498 

 499 

In the INDB experiment the activation of the biogeochemical feedback leads to a drying over 500 

most of the ocean, especially over the Bay of Bengal, central and north-eastern Arabian Sea and the 501 

strip south of the equator. A clear reduction in precipitation can also be found inland, along the 502 

western Indian coast. As seen in Fig. 14.F and 14.I, the contribution of convective and large scale 503 

components to these differences varies along the regions. 504 

We can see that APRC gives the main contribution to the total effect (in terms of precipitation) 505 

of marine biochemistry feedback over the Bay of Bengal, the central part of the Arabian Sea and the 506 



coastal regions of western India. APRL gives the main contribution to the drying in the northern-507 

central India, while in the region of Myanmar it causes a wetting, thus offsetting the impact on APRC. 508 

To the south of the equator, between 10o S and 0o, the impact is similar on both components of the 509 

precipitation. 510 

 511 

4. Discussion 512 

The effect of the feedback on the water temperature decline in the upper layers can be 513 

explained as follows. In the INDB experiment, during the phytoplankton bloom period, there exists 514 

more phytoplankton in the upper ocean layers than that considered according to Jerlov’s climatic 515 

annual-mean estimates (INDJ experiment). An increase in the amount of phytoplankton in INDB in 516 

the upper layers leads to an increase of the light attenuation coefficient there, thus a smaller amount 517 

of short-wave radiation penetrates into the underlying layers (this can be seen from Fig. 11). As a 518 

result, the subsurface layers get colder. The thermocline shifts upward compared to the Jerlov type 519 

absorption (INDJ experiment) where a simple exponential curve of light attenuation is implemented. 520 

Despite the shallower thermocline in INDB, this run shows overall cooler SSTs than INDJ (Fig. 8). 521 

This is somewhat counter-intuitive as a lower mixed-layer depth should reduce the mixing with cooler 522 

waters from depth leading to overall higher SSTs in run INDB. However, the different solutions of 523 

the radiative equation used in INDB and INDJ will also affect the total absorbed radiation which 524 

makes it difficult to link the direct effect of changed thermocline depth to the difference in SSTs. 525 

Given the widespread cooling of SSTs in INDB (Fig. 8) however, it is likely that the parameterization 526 

of absorption in INDB leads to a general decrease in total absorption compared to the Jerlov solution. 527 

Also, it may be assumed that during the vertical mixing process the cold water may enter the upper 528 

ocean layers, thus the upper-mixed layer temperature declines, and so does SST, although for SST 529 

this effect is less pronounced because it can be more influenced by other ocean-atmosphere heat 530 

fluxes. Thus, during the period of active heating of the upper ocean layers the heat in the INDB 531 

experiment is redistributed differently than in the INDJ and, as a result, a significant cooling of the 532 

subsurface layers occurs. At the same time, the spatial pattern of SST cooling is not homogeneous 533 

(see Fig. 8) that can be explained by other heat fluxes, which, in contrast to short-wave radiation, are 534 

absorbed by the upper 1-meter layer of the ocean almost completely. In future studies we are planning 535 

to analyze this mechanism in detail and to evaluate the impact of advection. 536 

Thus, the main impact of including the biogeochemical coupling in the Indian Ocean is a 537 

shallower thermocline with cascading effects on model physics like altered SST which further 538 

translates into altered atmosphere dynamics. Likewise, due to the temporarily varying chlorophyll-a 539 

concentrations in the surface layer and subsequent variable heat absorption, SSTs are by far more 540 

variable in run INDB than in run INDJ. 541 

The higher phytoplankton primary production in INDB (Fig. 10) is most likely the effect of 542 

the lowered mixed-layer depth which allows phytoplankton to prevail longer in the euphotic layer. 543 

This effect is more pronounced to the north of 10° N where the thermocline is relatively deep (and a 544 

reduction of the mixed-layer depth is most effective). In regions where the thermocline is generally 545 

shallower (to the south of 10° N) this effect is of minor importance as light is less limiting there. 546 

During JJAS, the simulated wind in INDJ is slightly weaker than in ERA5 in the Arabian Sea 547 

but stronger in the Bay of Bengal (compare Fig. 15.a and 15.c). 548 

 549 



, 550 

Figure 15. JJAS wind (left column) and latent heat (right column) for ERA5 (upper panels); INDJ experiment 551 

(middle panels), and (INDB-INDJ) difference (lower panels).  552 

 553 

In the latter, stronger winds lead to stronger latent heat fluxes, while the opposite is true for 554 

the Arabian Sea where the weaker wind is associated with a stronger latent heat (Fig 15.b and Fig 555 

15.d). This points to a different nature of the relationship between wind speed and latent heat in both 556 

regions that, nevertheless, lead to stronger heat flux in both regions. The monsoon winds bring drier 557 

air into the Arabian Sea because it flows over colder water all the way from the equatorial region. 558 

Although the cold bias here leads also to a decrease of surface humidity, as the SST bias is lower, the 559 

surface humidity bias is lower. The resulting increase of the sea‐air humidity difference overcomes 560 

the decrease of the wind, thus giving a stronger latent heat flux. This is not true for the western coast 561 

where most of the air comes from land (Wu et al., 2007). In the Bay of Bengal the increase in latent 562 

heat is mainly associated with the simulated winds which are stronger than in ERA5. In the INDB 563 

experiment the biogeochemical feedback causes a further cooling over the basin (Fig. 8) and this 564 

cooling causes a further drying over most of the domain, especially over the land in regions that are 565 

downstream of the monsoon winds. The drying is related to changes both in convection activity and 566 



moisture transport. Figure 16.a shows the horizontal transport of cloud water for the INDJ experiment. 567 

This figure shows the contribution of the large-scale circulation  to the monsoon rain. The Arabian 568 

Sea winds are charged with moisture in their path to the Indian subcontinent and Sri Lanka, 569 

contributing to the large scale precipitation in the eastern part of the basin and the coastal regions 570 

(Fig. 14.h). The wind, which loses moisture over the land, is again recharged in his way over the Bay 571 

of Bengal, contributing to the strong precipitation in the eastern part of the Bay of Bengal, Myanmar 572 

and southeastern Asia. It is noteworthy the recirculation of cloud water in northeastern India due to 573 

the presence of the Himalayan range which influences the amount of precipitation there. The marine 574 

biochemistry feedback affects the precipitation over the Arabian Sea and the Bay of Bengal in 575 

different ways. From one side, it reduces the transport of humidity across the equator towards the 576 

eastern part of the basin, reducing the large scale precipitation there and in the adjacent coastal 577 

regions, reinforcing the effect of the colder water on the convective precipitation. In the Bay of Bengal 578 

the feedback reinforces the transport of humidity, increasing the large scale precipitation, contouring 579 

the decrease of convective precipitation due to the SST cooling (Fig 16.b). 580 

 581 

 582 
Figure 16. JJAS horizontal transport of cloud water in INDJ (a) and INDB-INDJ difference (b) 583 



 584 

5. Conclusions 585 

A regional Earth System Model based on the ROM model (Sein et al., 2015) has been 586 

implemented for the CORDEX South Asia region. We use the model to investigate the effect of one 587 

of the marine biogeochemical feedbacks, which affects the attenuation of the short-wave radiation in 588 

the water, upon the regional climate. To this end we carry out two model runs for the period 1920–589 

2005 with CMIP5 historical forcing. The runs differ in various parameterizations of the attenuation 590 

of short-wave radiation into the ocean. 591 

Our simulations capture the main fundamental features of the intra-annual dynamics of the 592 

marine ecosystem in this region. This is a good result for a global biogeochemical model that works 593 

with only one type of phytoplankton. Some overestimation of the chlorophyll-a surface concentration 594 

compared to satellite data is acceptable due to the known uncertainties in the estimates of the C:Chla 595 

ratio which is set constant in the model. 596 

In the experiment where the feedback is activated the average SST is lower over most of the 597 

domain than in the simulation without the feedback. The greatest deviations (more than 1 °C) in SST 598 

between the two runs occur in the summer period during the phytoplankton bloom. During the period 599 

of active heating of the upper layers (spring and summer) the short-wave radiation calculated by the 600 

simulation with the feedback activated is more strongly absorbed in the upper ocean layers, a 601 

significant cooling of subsurface layers occurs (up to 1-1.5 °С) and the thermocline shifts upward 602 

compared to the Jerlov type absorption. In other words, the explicit taking into account the 603 

phytoplankton concentration while calculating the short-wave radiation attenuation leads to a cooling 604 

of the subsurface layers. At the same time, the spatial pattern of SST cooling is not homogeneous that 605 

can be explained by other heat fluxes, which, in contrast to short-wave radiation, are absorbed by the 606 

upper 1-meter layer of the ocean almost completely. The phytoplankton primary production and its 607 

deviation in the feedback-based simulation turned out to be higher, especially during periods of winter 608 

and summer phytoplankton blooms. The feedback-based simulation also showed the lower surface 609 

concentration of dissolved nitrates almost the whole year since the primary production was higher 610 

and more nutrients were consumed by phytoplankton. 611 

Both simulations reproduce adequately the precipitation climatology for all seasons. In 612 

particular, the spatial pattern of the monsoon precipitation is well simulated, albeit with some 613 

systematic wet biases which are stronger over the eastern parts of the Arabian Sea and the Bay of 614 

Bengal and the adjacent coastal regions. We found that the marine biogeochemistry feedback also 615 

affects the amount of precipitation in the model, leading to a drying over most of the basin in the 616 

monsoon season. The associated SST cooling leads in general to a reduction of the precipitation but 617 

affects in different ways the two components of the precipitation. In the Arabian Sea the reduction of 618 

the transport of humidity across the equator leads to a reduction of the large scale precipitation in the 619 

eastern part of the basin, reinforcing reduction of the convective precipitation. In the Bay of Bengal 620 

the feedback increases the large scale precipitation, contouring the decrease of convective 621 

precipitation due to the SST cooling. 622 

Thus, the main impacts of including the biogeochemical coupling in the Indian Ocean include 623 

the enhanced phytoplankton primary production, a shallower thermocline and decreased SST, with 624 

cascading effects upon the model ocean physics which further translates into altered atmosphere 625 

dynamics. 626 
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