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Abstract 25 

We discuss data of three laboratory stick-slip experiments on Westerly Granite samples performed 26 

at elevated confining pressure and constant displacement rate on rough fracture surfaces. The 27 

experiments produced complex slip patterns including fast and slow ruptures with large and small 28 

fault slips, as well as failure events on the fault surface producing acoustic emission bursts without 29 

externally-detectable stress drop. Preparatory processes leading to large slips were tracked with an 30 

ensemble of ten seismo-mechanical and statistical parameters characterizing local and global 31 

damage and stress evolution, localization and clustering processes, as well as event interactions. We 32 

decompose complex spatio-temporal trends in the lab-quake characteristics and identify persistent 33 

effects of evolving fault roughness and damage at different length scales, and local stress evolution 34 

approaching large events. The observed trends highlight labquake localization processes on different 35 

spatial and temporal scales. The preparatory process of large slip events includes smaller events 36 

marked by confined bursts of AE activity that collectively prepare the fault surface for a system-wide 37 

failure by conditioning the large-scale stress field. Our results are consistent overall with an evolving 38 

process of intermittent criticality leading to large failure events, and may contribute to improved 39 

forecasting of large natural earthquakes. 40 

Plain language summary 41 

We discuss failure events in laboratory experiments on a rough fault performed at pressures existing 42 

in the Earth’s crust. The laboratory faults were subjected to constant displacement resulting in short-43 

lasting slips of their fault surface. We observe complex slip patterns including fast/slow ruptures 44 

with large/small fault slips. Very small slips on the fault surface were observed only with acoustic 45 

emission (AE) activity, representing tiny earthquakes of sub-mm size that produce elastic waveforms 46 

that can be recorded with piezo sensors. Using parameters derived from AE data, we analyzed 47 

physical processes leading to large slip events of the lab fault surface, an equivalent of a large 48 

earthquake in nature. Our parameters characterize local and global damage, stress, as well as 49 

interactions of small fractures before the labquake. We identify evolving fault roughness at different 50 

length scales, and find that the preparatory processes preceding lab quakes are facilitated by small 51 

earthquakes marked with bursts of AE activity. These bursts indicate ruptures of individual fault 52 

patches, which then interact and collectively prepare the fault surface for the labquake. Our results 53 

provide a set of physics-based parameters describing complex processes leading to lab slip events 54 

that may allow to improve earthquake forecasting along natural faults. 55 
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1 Introduction 56 

Fault processes leading to large earthquakes have occasionally been observed to produce foreshock 57 

activity and aseismic transients, sometimes lasting months or even years prior to the main shock 58 

(Kato et al., 2012; Bouchon et al., 2013; Schurr et al., 2014; Durand et al., 2020; Meng and Fan, 2021; 59 

Kwiatek et al., 2023). Seismic and aseismic precursors signifying fault damage evolution and 60 

progressive localization towards large dynamic ruptures are not well understood due to limited 61 

availability and resolution of seismic data and widely varying structures and properties of fault zones 62 

(e.g., Ben-Zion, 2008, and references therein). The role of precursory observables during the 63 

preparatory process before earthquakes and their potential use for forecasting remain controversial 64 

(Geller et al., 1997; Bakun et al., 2005; Ogata and Katsura, 2012; Wu et al., 2013; Mignan, 2014). 65 

Existing physical models describing the preparation and nucleation process on large pre-existing 66 

faults motivated by field and laboratory studies (Dieterich, 1978; Ohnaka, 1992; Ellsworth and 67 

Beroza, 1995; McLaskey, 2019; Kato and Ben-Zion, 2021) converge towards a combination of 68 

processes including accelerating preslip and, in some cases, cascading foreshocks. However, fault 69 

heterogeneity and structural variability of fault zones result in rich and varying observational 70 

phenomena, that often defy clear interpretation. Thus, seismic hazard assessment and earthquake 71 

forecasting still largely rely on probabilistic approaches (Ogata, 1999; Lippiello et al., 2019; Hirose et 72 

al., 2021; Mizrahi et al., 2023). The observation of a plethora of physical preparatory processes 73 

requires high-resolution monitoring of both seismic and aseismic failures using frequency bands that 74 

are hardly achievable in nature.    75 

Laboratory experiments performed on intact and faulted rock samples with varying loading 76 

conditions have provided a wealth of observations characterizing the effects of roughness, gouge 77 

material, loading rate, effective normal stress, and stiffness ratio of  the fault and loading system on 78 

long-term deformation leading to failure (Latour et al., 2013; Mclaskey and Yamashita, 2017; 79 

Leeman et al., 2018; Guérin-Marthe et al., 2019; Scuderi et al., 2020; Gounon et al., 2022; Morad et 80 

al., 2022). Motivated by experimental results, various studies (Ohnaka, 1992; Dieterich and Kilgore, 81 

1996; Ben-Zion and Rice, 1997; Ohnaka and Shen, 1999; Latour et al., 2013) have suggested to 82 

separate the preparatory phase into a quasi-static phase and an accelerating phase producing 83 

dynamic slip (e.g. Okubo and Dietrich, 1984). This transition is often only loosely defined by the 84 

onset of a local or system-wide decrease in shear stress leading to an abrupt stress drop or transition 85 

in rupture velocity, and an overall change of energy flux into the rupture front tip. In a complex and 86 

heterogeneous fault zone, the preparation phase may be long-lasting. The transition towards 87 

nucleation of a large rupture involves a localization process, distributed creep transients and 88 
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collective failure of a range of asperities (de Geus et al., 2019; Lebihain et al., 2021; Yamashita et al., 89 

2021; McBeck et al., 2022). These processes lead to redistribution of stresses along the fault zone at 90 

different length scales, reflecting the multi-scale evolution of roughness at the level of granular 91 

material forming the fault zone, cm-scale asperities and large-scale structural inhomogeneities.   92 

These multi-scale preparatory processes before large laboratory slip events are typically 93 

accompanied by Acoustic Emission (AE) activity that allows monitoring key seismo-mechanical 94 

processes and local stress evolution during the deformation cycle. Parameters derived from AE data 95 

showed changes in clustering and localization of AE hypocenters, AE magnitude-frequency 96 

distributions, ultrasonic velocities, inter-event triggering and other statistical attributes approaching 97 

failure (Bolton et al., 2023; Main, 1991, 1992; Lockner, 1993; Zang et al., 1998; Goebel et al., 2012, 98 

2013, 2014; Kwiatek et al., 2014b; Davidsen et al., 2017, 2017, 2021; Scuderi et al., 2017). Typically, 99 

AE-derived parameters from stick-slip cycles exhibit general trends, which are punctuated and 100 

partially reversed by large failure events. Although the observed trends for some parameters during 101 

the preparatory slip indicate progressive damage and localization, estimating time-to-failure is still 102 

challenging.   103 

Forecasting the origin time of future large earthquakes remains a challenge if not an impossible task. 104 

In recent years, earthquake forecasting made a leap using new opportunities provided by Artificial 105 

Intelligence (AI) techniques. These techniques demonstrated an ability to predict time-to-failure in 106 

direct shear laboratory tests on smooth faults (Johnson et al., 2021), as well as on analog models, 107 

natural and induced seismicity, and synthetic modeling (e.g. Corbi et al., 2019; Johnson et al., 2021; 108 

McBeck et al., 2021). Such studies use a number of potential precursory parameters derived from 109 

seismic waveforms or earthquake catalogs (see e.g. Rouet-Leduc et al., 2017; Lubbers et al., 2018; 110 

Hulbert et al., 2019; Picozzi and Iaccarino, 2021). Johnson et al. (2021) noted that successful cross-111 

scale earthquake forecasting requires generalization of predictive models and a better physical 112 

understanding of input and output parameters. The former involves extension of the predictive AI-113 

aided modeling to studies of rough faults, whereas the latter requires a clear linking of AE-derived 114 

precursory parameters with observable damage and stress evolution on different spatio-temporal 115 

scales.   116 

In this study we employ large AE datasets from laboratory stick-slip experiments involving a series of 117 

tests performed on rough pre-fractured faults (e.g. Goebel et al., 2012;2013; 2014). The experiments 118 

produced complex slip patterns including large and small slips of the fault surface (characterized by 119 

large and small stress drops), and confined slips (with stress drops not measurable with the internal 120 

load cell) accompanied by AE data bursts. The multi-scale preparatory processes preceding system-121 
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wide slip events are analyzed with a set of physics-motivated AE-based features characterizing the 122 

seismo-mechanical spatio-temporal processes occurring on the fault. These include parameters 123 

describing damage and stress evolution, localization and clustering, event interactions, and local 124 

micromechanics and stress heterogeneity. We decompose the observed trends and discuss them in 125 

the context of roughness evolution at different spatial scales, a crossplay of local and global damage, 126 

and multi-scale stress evolution when approaching a system-size event. 127 

2 Data and methods 128 

2.1 Experimental setup and acoustic emission monitoring 129 

Three triaxial stick-slip tests WgN04, WgN05 and WgN07 were conducted on cylindrical samples of 130 

Westerly Granite with dimensions of 40 mm diameter × 107 mm length (Goebel et al., 2012, 2013, 131 

2014, 2015). Samples were prepared with a 2.5 cm deep notch inclined at 30° to the cylinder axis to 132 

guide formation of a shear fracture. The samples were first oven-dried at 100°C and subsequently 133 

encapsulated in a rubber sleeve to prevent the intrusion of the confining medium (oil). The 134 

specimens were fractured at 75 MPa confining pressure creating naturally fractured rough fault 135 

surface. To perform a series of subsequent stick-slip experiments, the faults were locked by 136 

increasing the confining pressure to 150 MPa. For the initial fracture and subsequent stick slip tests, 137 

the samples were loaded axially using a constant displacement rate of 0.02 mm/min = 0.33μm/s. 138 

Subsequent axial loading cycles were applied by advancing the piston at constant displacement rate 139 

resulting in an axial strain rate 3×10-6 s-1. Displacement and axial force were recorded using a linear 140 

variable displacement transducer fixed to the piston and external/internal load cells, respectively.  141 

We performed a series of tests on the three different Westerly granite samples WgN04, WgN05 and 142 

WgN07 containing rough faults (Goebel et al., 2012, 2013, 2014, 2015) but here we present data 143 

from an illustrative stick-slip test (WgN05) that was further studied in greater detail in Dresen et al. 144 

(2020) and Blanke et al. (2021). The recorded AE data, mechanical data and output parametric data 145 

from all three experiments are available in the associated data publication (Kwiatek and Goebel, 146 

2023; see also Supplementary Information Figs. S5-S6 and Open Data section). The fault roughness 147 

in these experiments caused a complex stick-slip pattern with a variety of stress drops including five 148 

large slip events with large stress drops (LSD) of > 100 MPa preceded by a varying number of events 149 

with smaller slip and small stress drops (SSD), as determined from the axial stress data in Goebel et 150 

al. (2013 2015). They are shown in Figure 1 and Figs. S5-S6. Both LSDs and SSDs are accompanied by 151 

a large clipped signal on the AE data, representing relatively large laboratory events (see e.g. Fig. 3 in 152 

Goebel et al., 2012). 153 
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Loading and stick-slip events produced AEs, here indicating ~mm-scale fracturing and frictional 154 

processes occurring on the grain scale (cf. Blanke et al., 2021). AE activity was recorded by sixteen AE 155 

sensors with resonant frequency 2 MHz embedded in brass housings and glued directly to the 156 

specimen surface, securing an almost complete azimuthal coverage of AE events. The event 157 

waveforms were recorded in triggered mode at 10 MHz sampling rate with 16-bit amplitude 158 

resolution. Throughout the experiment, repetitive P-wave velocity measurements were performed 159 

using ultrasonic transmission providing a time-dependent velocity model composed of five equally-160 

spaced horizontal layers (with associated velocity) and single measurement of averaged vertical 161 

velocity (Stanchits et al., 2006). The velocity model was updated every 30 s during the course of the 162 

experiment. 163 

2.2 Mechanical behavior and AE response 164 

We now describe the evolution of mechanical parameters and associated AE response for an 165 

illustrative sample WgN05 following the conventions presented already and discussed in Goebel et 166 

al. (2012, 2013, 2014, 2015). Mechanical evolution for samples WgN04 and WgN07 is presented in 167 

the supplementary information (Figs. S5-S6), and the input catalog data are available in the 168 

associated data publication (Kwiatek and Goebel, 2023). Sample WgN05 displayed large axial stress 169 

drops measured in the S1 direction of 𝛥𝜎 > 100 MPa, slip duration of 0.2 − 0.4 s and slip velocity 170 

(corrected for machine stiffness) of at least 1.2 − 1.6 mm/s, which is at least 1000 times larger than 171 

the applied loading rates (cf. section 2.1, Fig. 1, Supplementary Table S1). Note that peak slip 172 

velocities for LSDs were not resolved due to the limited sampling rate of the geomechanical data (10 173 

Hz). All LSDs were followed by rapid initial reloading lasting ca. 50 s and a longer period of almost 174 

linear stress increase lasting typically no more than 1000 s. Further axial displacement beyond a 175 

yield point was accommodated by plastic deformation along the fault zone and in its surroundings 176 

(cf. Dresen et al., 2020). We attribute most of the deformation during this part of the loading to 177 

shear-enhanced compaction of the granular material forming the fault gouge (Kwiatek et al., 2014b; 178 

Goebel et al., 2017), as illuminated by the AE activity spreading over the whole fault surface (Fig. 1e, 179 

h). 180 

Cm-scale roughness of the fault surface (cf. Fig. S7) results in multiple small slip events with low 181 

stress drops (SSDs), as defined in e.g. Goebel et al. (2012), which typically occur at elevated axial 182 

stress with S1 > 400 MPa. The AE activity associated with these SSDs is distributed over significant 183 

parts or the entire fault surface (Fig. 1d, g). Stress drops of SSDs range 1<𝛥𝜎<20 MPa and slip 184 

velocities range <0.05-0.2 mm/s (Supplementary Table S1). The lower observable limit of SSDs’ stress 185 
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drops and slip velocity is due to the periodic noise of stress measurements caused by the servo-186 

controlled MTS loading system.  187 

The macroscopic displacement and stress drop recordings of LSDs and SSDs indicate detectable and 188 

relative movement of fault-bounding blocks across the entire fault surface (Supplementary Movie 189 

S1). The nucleation of both LSDs and SSDs is associated with extremely large AE events with clipped 190 

waveforms following the first P-wave arrival (e. g. Goebel et al., 2012, Fig. 3, Goebel et al., 2015, 191 

Fig. 5) and followed by a long coda wave indicating slip over the surface. This coda leads to a 192 

temporally higher AE event detection threshold due to low-frequency noise resulting from 193 

comminution and shearing of granular material and debris forming the fault surface while the fault is 194 

slipping (gray area in Fig. 1e). The duration of the AE system saturation time period lasts 20-120 ms 195 

and qualitatively scales with the duration of macroscopic slip and stress drop magnitude (cf. 196 

Supplementary Table S1). The enhanced low-frequency noise is expected to mask very early AE 197 

events directly following the LSDs.   198 

In addition to LSD and SSD events resulting in externally measurable axial stress drops, we visually 199 

identified short-lasting bursts in AE activity due to slips confined in the sample that were mostly not 200 

recorded in the mechanical data (i.e. the externally measured axial stress drop is below 𝛥𝜎 < 1 201 

MPa). These local confined slips with no externally measured stress drop (CSD) were attributed to 202 

local asperity failures providing a significant AE footprint with very localized AE activity that is most 203 

prominent in the early stick-slip cycles (cf. Fig. 1c, f; Supplementary Movie S1; see also Goebel et al., 204 

2012, 2015). Like LSD and SSD, each CSD is also associated with a large AE event followed by smaller 205 

AEs (AE aftershocks) and occasionally preceded by increasing AE activity (AE foreshocks, see results 206 

section for details).  207 

2.3 AE Catalog Development 208 

The development of an AE catalog from the experimental data is an upgraded procedure originally 209 

developed by Stanchits et al., (2006). Here, we summarize key and new processing steps relevant for 210 

evaluating the time-dependent AE characteristics.  211 

The first P-wave arrivals of AE events were picked automatically using the Akaike Information 212 

criterion followed by pick refinement using the modified Convolutional Neural Network picker (Ross 213 

et al., 2018) trained on past AE data sets. Based on a time-dependent quasi-anisotropic velocity 214 

model, the resolved picks were used to invert for hypocenter locations and origin time using a grid 215 

search algorithm paired with the Coyote optimization algorithm (Pierezan and Dos Santos Coelho, 216 

2018). The hypocenter location accuracy is estimated to be about ±2 mm, constrained, in part, by 217 
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the selected Root-Mean-Square Deviation (RMSD) of travel time residuals (for the following analysis 218 

we selected locations with RMSD < 0.5 μs). Then, the first P-wave amplitudes were corrected for 219 

hypocentral distance and incidence angle and for the coupling quality of AE sensors using an 220 

ultrasonic calibration technique (Kwiatek et al., 2014a). The average AE amplitude and AE magnitude 221 

were calculated from first P-wave amplitudes (Zang et al., 1998): 222 

𝐴𝐴𝐸 =
1

𝑛
(∑ (𝐴𝑖𝑅𝑖)2𝑛

𝑖=1 )0.5,          (1) 223 

𝑀𝐴𝐸 = 𝑙𝑜𝑔10(𝐴𝐴𝐸),           (2) 224 

where 𝐴𝑖 and 𝑅𝑖 are corrected first P-wave amplitude and source-receiver distance for sensor 𝑖, 225 

respectively (cf. Dresen et al., 2020). The here used AE magnitude estimate reveals relative size 226 

differences between AE events but it is not directly calibrated to the physical size of the events (cf. 227 

Goodfellow and Young, 2014; McLaskey et al., 2014; Yoshimitsu et al., 2014; Blanke et al., 2021).  228 

For each AE event, a full moment tensor (FMT) inversion was performed using the hybridMT 229 

software and first P-wave amplitudes and durations of the first P-wave pulses (Kwiatek et al., 2016; 230 

Martínez-Garzón et al., 2017) corrected for coupling quality and incidence angle (Kwiatek et al., 231 

2014a). The resulting FMTs were decomposed into isotropic and deviatoric parts (e.g. Vavryčuk, 232 

2001; 2014). From the deviatoric part of the FMTs, we extracted the P-, T-, and B- axes directions 233 

(azimuths and plunges) and slip directions. A P- (T-, B-) axis plunge equal to 90° and 0° corresponds 234 

to the direction of maximum compression 𝑆1 and the direction perpendicular to it, respectively. The 235 

two sets of nodal plane parameters (strike, dip, rake) were extracted from the deviatoric part of the 236 

seismic FMT of each AE event. 237 

The analyzed catalog form WgN05 sample contains N=310,815 located AEs with 238 

N(MAE>MC,AE)=169,825 above the magnitude of completeness 𝑀𝐶,𝐴𝐸 = 1.5 estimated using the 239 

goodness-of-fit method (Wiemer and Wyss, 2000) assuming that 95% of the catalog is explained by 240 

the Gutenberg-Richter power law. The FMTs were strongly quality-constrained, first at the input 241 

data selection (we only accepted input data where amplitude could be measured at all sensors), and 242 

then using as an uncertainty measure the maximum value of the diagonal elements of the 243 

covariance matrix normalized by the average AE amplitude, 𝜀 (see details hybridMT documentation, 244 

Kwiatek et al., (2016). Assuming, 𝜖 < 0.1 and 𝑁stations = 14, this resulted in a strongly reduced 245 

number of N(FMT)=17,963 high-quality FMTs. The resulting catalog containing origin time, AE 246 

location in the local Cartesian coordinate system of the sample, AE magnitude, FMT parameters 247 

including strike, dip, rake, the MT decomposition and orientation of P-, T- and B- axes, as well as 248 
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associated location and MT inversion uncertainties is available in an associated data publication 249 

(Kwiatek and Goebel, 2023). 250 

2.4 Time series of AE parameters 251 

For all three samples we analyzed the temporal evolution of a total of 10 parameters (features) 252 

derived from the AE catalog and defined onsets of informative changes of these parameters with 253 

regard to global damage and stress evolution and potential cross-correlations between different 254 

proxies. The selected parameters were utilized to characterize the development of local damage and 255 

stress evolution on and around the fault during the preparatory phases of five LSDs. The predictive 256 

AE-modeling of the time-to-failure, aggregating the input data from all three experiments, as well as 257 

unsupervised classification of the preparatory phase are subjects of separate manuscripts 258 

(Karimpouli et al., 2023a, b). 259 

The temporal evolution of all AE parameters was calculated using sliding time windows of different 260 

lengths (ranging 1%-12% of the average length between consecutive LSDs, see Table 1) to better 261 

represent the development of short- and long-term processes. The calculated parameter values 262 

were assigned to the origin time of the last AE event included in each time window. We ignored time 263 

windows which overlap with the occurrence of LSDs to avoid mixing precursory AEs with those 264 

following LSD. In the following, we describe the 10 different AE parameters listed in Table 1 and 265 

subsequently used for tracking the preparatory processes.  266 

(1) AE event rate: The AE event rate 𝑁̇ (unit: [1/s]) has been calculated for the catalog of events with 267 

MAE>MAE,C as the number of AEs divided by the duration of the moving time window. It represents 268 

the intensity of seismic activity across the whole fault surface and characterizes the damage (cf. 269 

Goebel et al., 2014). 270 

(2) b-value: The slope from the magnitude-frequency Gutenberg-Richter (GR) relation indicates the 271 

proportion between the number of small and large AE events in a selected population. The b-value is 272 

calculated from AE events with magnitudes above the magnitude of completeness MAE>MAE,C using 273 

the maximum likelihood method while including a correction for the histogram bin size (e.g. Lasocki 274 

and Papadimitriou, 2006). Changes in b-values are thought to be governed by rock damage evolution 275 

(e.g. Main, 1991), changes in local stress (Scholz, 1968; Schorlemmer et al., 2005), and geometric 276 

complexity and roughness (Goebel et al., 2013; 2017).  277 

(3) d-value: The fractal dimension d from a population of AE hypocenters has been calculated using 278 

the boxcount algorithm (i.e. Minkowski–Bouligand dimension, see Moisy, 2022). We used 279 
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hypocentral locations [X, Y, Z] of AEs with location quality constrained by the RSMD<0.5 [μs]. The d-280 

value characterizes the geometry of the AE spatial distribution of AE with d=3, d=2, and d=1 281 

corresponding to volumetric, planar and linear Euclidean distribution of AE hypocenters, 282 

respectively.  Contrary to the d-value estimated using correlation integral, which is sensitive to 283 

point-clustering of the hypocentral locations, the box-counting method solely responds to the bulk 284 

geometry of AE hypocenter distribution. 285 

Clustering of AE events in space, time and magnitude domain:  We identified clusters of AE events 286 

according to their space-time-magnitude nearest-neighbor proximity (Zaliapin et al., 2008; Zaliapin 287 

and Ben-Zion, 2013a; 2013b). Specifically, we investigated the proximity of an event j to an earlier 288 

event i in a combined space-time-magnitude domain (Baiesi and Paczuski, 2004) defined as: 289 

𝜂𝑖𝑗 = {𝑡𝑖𝑗(𝑟𝑖𝑗)
𝑑

10−𝑏𝑚𝑖}, 𝑡𝑖𝑗 > 0, ∞, 𝑡𝑖𝑗 ≤ 0,         (3) 290 

where 𝑡𝑖𝑗 = 𝑡𝑗 − 𝑡𝑖 and 𝑟𝑖𝑗  are the temporal and spatial distances between the earthquakes 𝑖 and 𝑗, 291 

respectively, 𝑏 is the b-value from the GR distribution, 𝑑 is the fractal dimension, both estimated as 292 

described above, and 𝑚𝑖  is the magnitude of the earlier event in time. The scalar proximity 𝜂𝑖𝑗  293 

between events can be expressed as the product of its temporal and spatial components scaled by 294 

the magnitude of the earlier event 𝑖: 295 

𝜂𝑖𝑗 = 𝑇𝑖𝑗 ∙ 𝑅𝑖𝑗,            (4) 296 

with 𝑇𝑖𝑗 = 𝑡𝑖𝑗10−𝑞𝑏𝑚𝑖  and 𝑅𝑖𝑗 = (𝑟𝑖𝑗)𝑑10−(1−𝑞)𝑏𝑚𝑖 , 0 ≤ 𝑞 ≤ 1. We fixed 𝑞 = 0.5, providing equal 297 

magnitude weights to the scaled temporal and spatial distances. To estimate the spatial distance 298 

between events we used hypocentral locations. We denote 𝜂𝑗  the shortest of the proximities 299 

between event 𝑗 and all earlier events. The distributions of the nearest-neighbor proximities 𝜂𝑗  in 300 

earthquake catalogs tend to be bimodal (Zaliapin and Ben-Zion, 2013a, Zaliapin and Ben-Zion, 2016; 301 

Martínez-Garzón et al., 2019). The mode with larger event proximities 𝜂𝑗  corresponds to background 302 

Poissonian-like seismicity, while potentially appearing mode with smaller event proximities 𝜂𝑗  303 

indicates clustered events, i.e. foreshocks and aftershocks (Zaliapin et al., 2008). The separation 304 

threshold between these two modes is estimated by fitting a Gaussian mixture model 305 

(Supplementary Figure S2). 306 

Using the above method, we identify AE clusters that are connected by proximity links smaller than 307 

the estimated threshold. Each AE connected to the parent by a link longer than the threshold is 308 

considered a background event and starts a new cluster. A single is a cluster that consists of one 309 

background event with no associated foreshocks or aftershocks, while multiple-event clusters are 310 
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called families. The largest event in each cluster is called mainshock; all events within the cluster 311 

before or after the mainshock are called fore/after-shocks (see Fig. 6 of Zaliapin and Ben-Zion, 312 

2013a). Due to the short-term saturation of the AE recording system during large slip events LSD1-313 

LSD5 (see more details in the results section), the clustering analyses have been performed 314 

separately for each phase P1-P5 (Fig. 1a). This means that early aftershocks from previous slip for 315 

phases P2-P5 are not well resolved, biasing the separation between foreshocks, aftershocks, 316 

mainshocks and singles shortly after the LSDs.  317 

The temporal changes in AE clustering properties occurring on grain-scales have been analyzed using 318 

a sliding time window. We calculated temporal evolution of four parameters, including the (4) 319 

median proximity parameter 𝜂: 320 

𝜂̂ = 𝑚𝑒𝑑𝑖𝑎𝑛{𝜂𝑗  },           (5) 321 

defined as a median of the decimal logarithm scalar proximities (eq. 4) of AEs, and the fraction of AE 322 

(5) foreshocks (pFO), (6) aftershocks (pAF), and (7) background (mainshocks and singles altogether) 323 

(pMA) in each examined time window (with pAF+pFO+pMA=1).   324 

The (8) median fault plane variability 𝜓𝑓̂ characterizes the level of heterogeneity in the distribution 325 

of the focal mechanisms (Martínez-Garzón et al., 2016; Goebel et al., 2017; Dresen et al., 2020). This 326 

is a generalization of rotation angle between pairs of focal mechanisms (Kagan, 2007) applied to an 327 

ensemble of pairs of AEs with focal mechanism solutions located nearby. A small 3D rotation angle 328 

(<20°) between the P/T/B axes of two mechanisms indicates a high degree of similarity, and 0° 329 

means they are identical.  330 

We compute the spatial variability of focal mechanism similarity across the laboratory fault and rock 331 

sample.  Spatial variability is determined from 20 nearest AE neighbors located within R<10 mm of 332 

the specific AE event by calculating the respective median 3D rotation angle between all focal 333 

mechanism pairs (e.g. for 20 AE focal mechanisms there are 190 pairs). This procedure was repeated 334 

for each AE event to resolve the spatial heterogeneity/similarity of focal mechanism variability 335 

across the whole fault plane. The focal mechanism variability for a particular time window was then 336 

estimated as the median of locally calculated values.  337 

(9) Plunge of local maximum principal stress 𝛿𝜎1 and (10) local stress (orientation) variability 𝛹𝜎𝑖𝑗
̂ : 338 

Using calculated MTs we performed a linear stress tensor inversion using the STRESSINVERSE 339 

package (Vavryčuk, 2014). We follow the sign convention that compressive stress 𝜎 is positive with 340 

𝜎1 > 𝜎2 > 𝜎3. Similarly to median fault plane variability 𝛹𝑓̂, for each time window, we first 341 



12 
 

calculated the spatial distribution of local stress tensors for each location where at least 40 focal 342 

mechanisms were available within a 10 mm distance. The input focal mechanism data were 343 

resampled and then inverted 200 times by randomly selecting either of the two nodal planes for 344 

each focal mechanism, suppressing the problem of fault plane ambiguity (e.g. Martínez-Garzón et 345 

al., 2014) in the input focal mechanism data. From this we obtained the spatial distribution of local 346 

stress tensors for a particular time window.  347 

In the following, for each local stress tensor, we extracted the plunge of maximum principal stress 348 

𝛿𝜎1 which is given by the eigenvector corresponding to the largest eigenvalue of the input stress 349 

tensor. Finally, we averaged maximum principal stress plunges from the whole fault surface. For 350 

plunges of 𝛿𝜎1= 90° the local principal stresses averaged over the sample surface are aligned with 351 

the macroscopic vertical loading stress direction S1.  352 

The second parameter describing the local stress tensors is the tensor variability 𝛹𝜎𝑖𝑗
̂ , which was 353 

calculated with the same procedure as for the focal mechanism variability estimation. For each time 354 

window, we calculated the median out of an ensemble of rotation angles between all possible pairs 355 

of local stress tensors. Low values of  𝛹𝜎𝑖𝑗
̂  suggest that local stress tensor orientations over the fault 356 

surface are similar.  357 

3 Results  358 

Here we present and describe representative time series for each of the above parameters 359 

describing the evolution of the fault system in sample WgN05. The results for samples WgN04 and 360 

WgN07 are presented in the supplementary information (Figs. S5-S6). 361 

3.1 AE Rates 362 

The AE rates display a short-term (within each phase P1-P5 leading to the LSD) as well as a long-term 363 

(across whole experiment) evolution with progressive deformation of the sample (Figure 2b). The 364 

long-term evolution is characterized by an overall decrease of peak AE rates 𝑁̇ (Fig. 2b). The 365 

individual phases P1-P5 preceding LSD1-LSD5 display exponentially increasing 𝑁̇ when approaching 366 

failure (Fig. 2b). The LSD nucleation point is illuminated by a large AE event located using P-wave 367 

arrivals. Once the elevated noise from saturation of the AE system drops to background level, AE 368 

aftershocks become visible, displaying a 1/Tp (Omori-type) decrease of AE rates typically lasting no 369 

more than about 20 seconds following the actual stress drop (cf. Supplementary Figure S1). The 370 

aftershock rates then decrease with consecutive LSDs suggesting bulk smoothing of the fault surface. 371 
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The increase of AE rates 𝑁̇ during each phase P1-P5 is punctuated by multiple short-lasting bursts of 372 

AE activity following SSDs and CSDs characterized by AE rates decreasing as 1/Tp over a short period 373 

of time (typically < 10 s, Figure S1). All SSDs and all but one CSD show no acceleration of AE rates up 374 

to failure (cf. Supplementary Figure S1). Only the second CSD (T=3672.8 s) that occurred in phase P1 375 

show a visible acceleration of AE rates (Supplementary Figure S1b). The SSDs and CSDs tend to 376 

reduce the overall long-term AE rates in phases preceding LSDs (Figure 1b). AE rates are closely 377 

related to slip rate at any spatial scale (i.e. at long-scale representing the sample size and the short-378 

scale representative of asperity size). However, there is no clear relation of peak AE rates with stress 379 

drop magnitude.  380 

3.2 Gutenberg-Richter b-value 381 

The temporal evolution of the b-value (Fig. 2c) displays low b-values associated with CSD and SSD 382 

events (cf. Goebel et al., 2013) through all phases P1-P5, but especially during P1 and P2. This 383 

suggests that the change in b-value acts as a proxy generally indicating small- (cm-scale) local 384 

ruptures confined in the sample at high levels of stress. In general, a decrease in b-value indicates an 385 

approach to system-wide failure (LSD).  386 

From phase P3 onwards, CSDs and SSDs are less prominent and the temporal trends of the b-value 387 

become somewhat more uniform and gradual. This may reflect a global conditioning process of the 388 

whole fault surface, progressive localization and overall reduction of the fault roughness at the scale 389 

of the whole sample. In P3-P5, prior to the LSDs, the b-values visibly decrease, and then recover to 390 

b=1.4-1.6 during the initial part of the subsequent loading cycle. The amplitude of the b-value 391 

recovery following the LSD is likely affected by the saturation of the AE acquisition system which 392 

masks smaller aftershocks immediately following LSD, presumably reducing the jump in b-value in 393 

early post-slip phases. The decreasing b-value before some of the CSDs and SSDs typically becomes 394 

more evident if the AEs are additionally spatially constrained to those related to the activation of 395 

specific patches (see e.g. Goebel et al., 2012). Overall, the localized slips (CSDs and SSDe) tend to be 396 

preceded by a b-value decrease irrespective of the amplitude of macroscopic slip, thus the b-value is 397 

predominantly sensitive to the long-term temporal evolution (sample-wide) as well as cm-scale 398 

(asperity size) changes throughout the first phases P1-P2.  399 

3.3 Fractal dimension 400 

The d-values derived with the boxcounting method are primarily sensitive to the spatial distribution 401 

of AEs, and less sensitive to AE density, as for example d-value estimations based on the correlation 402 
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integral. A d-value of about 2.0 corresponds to an AE hypocenter distribution across the fault 403 

surface. In contrast, d-values < 2.0 indicate formation of distinct AE lineaments or clusters within the 404 

fault zone.  The evolution of the d-value during individual stick-slip cycles leads to a general increase 405 

of the d-value ahead of each major LSD, signifying the overall increase in the AE activity across the 406 

entire fault surface as a consequence of the increased contact area between the two faces of the 407 

fault. The AE activity immediately following the LSDs is characterized by higher d-values that quickly 408 

decrease within the first 50-100 seconds following the LSD. This may be due to fault dilation 409 

associated with large slip and a destruction of small-scale asperities in contact reducing AE activity to 410 

linear or isolated clusters indicating larger asperities. As loading and shear-enhanced compaction 411 

across the fault resumes, the d-value increases again.  412 

Interestingly, over stick-slip phases P1-P5 the d-values decrease. Local peak d-values are typically 413 

reached just prior to LSDs and they decrease from about 2.0 to 1.7 with consecutive LSDs. 414 

Concurrently, we observe development of a diagonal step-over (cf. Fig. S7) that in the later phases 415 

hosts the majority of AE activity forming a quasi-linear distribution of activity and depletion in AE 416 

activity elsewhere. Our observation suggests that d-value is primarily sensitive to changes over the 417 

length of the whole sample, collecting information from the geometrical distribution of AE events 418 

across the whole fault surface.  419 

3.4 Clustering properties 420 

The spatial distribution of AE hypocenters allows identifying transient AE clusters forming at small-421 

scale mm- to cm-scale asperities characterizing the rough topography of the fault surfaces (Figure 422 

S7, see also Goebel et al., 2012, 2015). All phases P1-P5 show generally similar trends in the 423 

evolution of the median event proximity 𝜂̂ parameter (Figure 3b), which signifies the level of event 424 

clustering in the combined space, time and magnitude domain. During the initial part of each stick-425 

slip cycle at low axial stress, the median event proximity 𝜂̂ is relatively large. This indicates a 426 

dominance of diffuse background activity suggesting random distribution of events in time, space 427 

and magnitude domains over the surface. This agrees with the high proportion of mainshocks and 428 

singles in the AE catalog observed during the initial portion of each stick-slip cycle (Fig. 3c). 429 

With progressive loading and when approaching LSD failure, the AE rates increase and the median 430 

event proximity 𝜂̂ displays a transient decrease, indicating a progressive localization of AE activity 431 

(Fig. 3b). This observation is consistent with other laboratory studies (e.g. Bolton et al., 2023; Marty 432 

et al., 2023). Concurrently, we observe a decreasing proportion of mainshocks and singles that are 433 

superseded by aftershocks and occasionally by foreshocks (Fig. 3c). The progressive localization and 434 
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increasing size of AE clusters before LSD failures agree with observed patterns before several Mw > 7 435 

earthquakes in Baja and southern California (Ben-Zion and Zaliapin, 2020).  The proportion of 436 

foreshocks clearly does not increase ahead of the LSD, and are instead correlated with the SSD and 437 

CSD occurrence. Likewise, an increase in AEs classified as aftershocks with progressive loading ahead 438 

of the LSD appears to be linked to the more frequent occurrence of SSDs and CSDs at higher axial 439 

stresses, rather than directly with the run-up to LSD.  440 

Some SSDs and CSDs are preceded by a visible short-term drop in the median event proximity 𝜂̂ 441 

signifying increased clustering, and all CSDs and SSD display strong space-time localization within up 442 

to 20 seconds after the slip followed by a transient 𝜂̂ recovery (Figure 3c, Supplementary Figure S3). 443 

The amplitudes of temporal 𝜂̂ changes before the CSD or SSD do not seem to correlate with the 444 

macroscopic stress drop that follows (cf. Fig. S3 and Table SS1). Accordingly, the short-lasting 445 

clustering episodes framing SSDs and CSDs are sometimes preceded by an increased proportion of 446 

AE events that are classified as foreshocks, especially in later loading phases. The SSDs and CSDs are 447 

always followed by an increased proportion of AE events classified as aftershocks (Supplementary 448 

Figure S4). The proportions of foreshocks, mainshock and aftershocks do not substantially evolve 449 

across several stick-slip cycles, despite the fact that the number of visible SSDs and CSDs responsible 450 

for clustered seismicity seem to reduce with time (cf. Fig. 3a with Fig. 3c). 451 

Time periods directly following LSDs display strong clustering with complete lack of AE foreshocks 452 

replaced with AEs classified as mainshocks/singles and aftershocks. The proportion of clustered to 453 

background events (e.g. Martínez‐Garzón et al., 2018) seems lower on average in comparison to that 454 

in the time periods following SSD and CSD, which reflects problems with classification of events in 455 

these time periods due to the saturation of the AE system. Nevertheless, in the time period 456 

following a LSD, the initially localized AE activity progressively delocalizes within 50-100 s and the 457 

next cycle starts, initially dominated by background seismicity. In summary, the evolution of 458 

clustering properties is associated predominantly with the life cycle of cm-scale asperities (cf. Fig. 459 

S7).  460 

3.5 Fault plane variability 461 

The observed AEs result from fracturing and frictional processes occurring on the grain scale (<mm 462 

scale). Consequently, the observed temporal evolution of fault plane variability 𝜓𝑓̂  (Figure 4) 463 

reflects the complex grain-scale (mm) micromechanics. This is because the parameter compares 464 

faulting kinematics of individual AE events located close by. In general, high 𝜓𝑓̂ values are observed 465 

during the entire experiment, reflecting a broad orientation distribution of focal mechanisms that 466 
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comprise mostly normal (parallel to fault dip) to strike-slip faulting mechanisms across the whole 467 

fault surface. During loading, fault variability mostly increases or fluctuates around a high level but, 468 

in some cases, 𝜓𝑓̂  decreases before LSD.  The latter agrees with earlier observations of Dresen et al. 469 

(2020) and Goebel et al. (2017) indicating an increasing alignment of microslip planes ahead of LSD. 470 

However, in rough faults the process is far less prominent than observed for saw-cut faults (e.g. 471 

Goebel et al., 2017)   In addition, 𝜓𝑓̂ seems largely unaffected by the occurrence of CSD or SSD 472 

events and does not show fundamental long-term evolution across many stick-slip phases. This 473 

suggests that the grain-scale roughness is largely preserved during the experiment. 474 

3.6 Maximum principal stress orientation and stress variability 475 

Stress tensor inversion from AE-derived focal mechanisms allows inferring the local orientation of 476 

the deviatoric stress tensor and a relative measurement of its eigenvalues. Changes in principal 477 

stress orientation in response to loading, averaged over the whole fault plane, are recorded with the 478 

𝛿𝜎1(𝑡) (plunge) parameter, whereas heterogeneity of the local stress tensors is reflected in 𝛹𝜎𝑖𝑗(𝑡)  479 

parameter. 480 

During the initial phase P1 the plunge of the maximum principal stress orientation 𝛿𝜎1(𝑡) resolved 481 

locally stays close to vertical. Subsequently, 𝛿𝜎1(𝑡) progressively deviates from the vertical direction 482 

as loading increases. Ignoring some short-period outliers, local plunges of the maximum principal 483 

stress roughly vary between 90° and 40° with respect to the vertical sample axis during loading and 484 

unloading. Excluding the stick-slip cycle associated with LSD4, we find a progressive rotation of the 485 

maximum principal stress during loading while approaching remaining LSDs. This rotation is likely 486 

due to shear-enhanced compaction and build-up of shear stress during loading near the fault 487 

surface, causing a local rotation of the stress tensor. The increasing local shear stresses are released 488 

during slip events, leading to back rotation of the local stresses towards the initial stress state that is 489 

observed in early part of the phases P2-P4, following the LSD1 and LSD3, respectively. The rotation 490 

of the principal stress axes in each stick-slip cycle is associated with a slow reduction in spatial 491 

heterogeneity of the local stress, as indicated by the decreasing stress variability coefficient 𝛹𝜎𝑖𝑗
̂ .  492 

4 Discussion 493 

Various large earthquakes were observed to be preceded by precursory deformation and foreshock 494 

seismicity on varying scales in space and time, but the observed patterns are diverse and do not 495 

always occur (e.g. Kanamori, 1981; Wu et al., 2013; Kato and Ben-Zion, 2021; Sykes, 2021; Kwiatek et 496 

al., 2023). Recent studies of laboratory data showed that the use of AI techniques and features 497 
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derived from AEs can open up new avenues towards forecasting laboratory earthquakes on smooth 498 

faults. However, the range of observable physical processes involved in the run-up to dynamic 499 

rupture and how they interact remain not well-understood, regardless of the scale (Ben-Zion, 2008, 500 

and references therein). Likewise, there is a need for physical understanding of the extracted data 501 

features used by AI techniques and assessment of their effectiveness in describing the run-up to 502 

failure, especially for rough faults (see overview in Karimpouli et al., 2023a, Johnson et al., 2021; 503 

Bolton et al., 2019; Lubbers et al., 2018; Picozzi and Iaccarino, 2021). 504 

In this paper, we employ data from laboratory experiments and use AE-derived seismo-mechanical 505 

and statistical parameters to characterize the evolution of local damage, roughness, and stress in the 506 

immediate vicinity of a rough fault surface. In particular, we investigate whether our parameters 507 

contain information on the preparation process leading to large stress drops (LSD). The sizes of AEs 508 

recorded in laboratory experiments analyzed in this study range from MW -7 to MW -9 (Dresen et al., 509 

2020; Blanke et al., 2021), being at least 3 units lower than the estimated magnitude of the large 510 

stick-slips (Dresen et al., 2020). A meta-analysis by Mignan (2014) suggested that such AE activity 511 

may include key precursory information related to large laboratory earthquakes. Field observations 512 

of processes leading to large earthquakes have been categorized as pre-slip, cascade, or localization 513 

phenomena, but recent studies point towards a case-specific combination of processes (see Cattania 514 

and Segall, 2021, and reviews in McLaskey, 2019; Kato and Ben-Zion, 2021). The physically-515 

motivated parameters used in this study are shown to (I) collectively capture the deviation from 516 

long-lasting stable deformation towards a preparatory process of large unstable failure, and (II) 517 

enable high-resolution monitoring of local damage, roughness, and stress at different temporal and 518 

length scales. This allows us to identify the time in which the fault enters a critical stage during which 519 

a system-size dynamic rupture may seemingly occur at any time.  520 

The stick-slip experiments are performed on a naturally fractured rock sample (Goebel et al., 2014, 521 

2015). The fault surface (e.g. Fig. S7 for WgN05) displays high initial roughness representing a 522 

strongly segmented and juvenile fault in nature. This is in contrast to a smooth saw-cut surfaces 523 

which may be more representative of a fault with large displacement (cf. Goebel et al., 2017). As in 524 

many past experiments (see e.g. Harbord et al., 2017), slip events on a rough fault show a rich 525 

mechanical behavior. The large (LSD) and small (SSD) macroscopic slips of the whole or significant 526 

portions of the surface display varying durations and amplitudes reflecting fast and slow slip 527 

velocities as well as large and small stress drops (cf. Supplementary Table S1). Smaller slips confined 528 

within the fault surface (CSD) are highlighted solely by AE activity, but not with external readings. In 529 

consequence, the seismo-mechanical behavior generally shows much stronger or fractal-like 530 
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fluctuations compared to saw-cut faults in triaxial stick-slip experiments (cf. Goebel et al., 2015, 531 

2017), and double-direct shear experiments containing gouge (e.g. Scuderi et al., 2017; Bolton et al., 532 

2021). This highlights the need for a careful extraction of meaningful features/parameters from AE 533 

data describing the processes leading to system-size failure to enrich information on preparatory 534 

processes.    535 

4.1 Fault roughness, damage and stress evolution  536 

The complex evolution of fault damage, roughness and stress across multiple stick-slip cycles with 537 

progressive shearing is related to grain-scale comminution, gouge production and destruction of 538 

small-scale asperities that ultimately lead to generation of the persisting large-scale topography (cf. 539 

Goebel et al., 2012, 2015, 2017; Kwiatek et al., 2014b). Development of roughness at these different 540 

spatial scales has always some AE response (cf. Goebel et al., 2014). The length scale of the 541 

roughness/damage evolution processes may be captured with AE source parameters via their 542 

collective seismo-mechanical and statistical proxies (cf. Dresen et al., 2020; Blanke et al., 2021).  In 543 

this study, grain-scale roughness behavior is represented by the fault plane variability, which 544 

captures the difference between focal mechanisms of neighboring events. The small-scale roughness 545 

evolution of small cm-scale asperities is observed with collective properties of AE activity such as 546 

event rates, and predominantly with (spatio-)temporal features including clustering and local-stress 547 

field orientation and variability. Finally, the development of the large-scale (>cm) topography is 548 

captured by long-term trends in the temporal evolution of global properties including d-value, b-549 

value and event rates 𝜂̇. 550 

The complex long-term (across many stick-slip cycles) evolution of fault roughness is primarily 551 

documented in the spatio-temporal AE distribution (d-value) and localized damage indicators (b-552 

value, AE rate, cf. Fig. 2), as presented in past studies (Goebel et al., 2013, 2017; Kwiatek et al., 553 

2014b; Dresen et al., 2020). A decrease in local stress variability (Fig. 4c), the new parameter 554 

calculated using AE stress tensor inversion, confirms progressive smoothing of the large-scale fault 555 

surface. These parameters signify that fault roughness evolves substantially up to LSD2 but less in 556 

P3-P5. This is likely because after multiple slip events, small-scale  asperities are progressively 557 

destroyed but a large-scale fault topography remains, as revealed by the post-mortem inspection of 558 

deformed samples (Fig. S7). Consequently, the later P3-P5 AE activity is focused on these larger 559 

asperities at the expense of a more uniform distribution on the fault.  This results in a general d-560 

value decrease across many stick-slip cycles converging towards d=1.6 close to the peak stresses for 561 

the last cycles.  562 
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The AE rate and d-value evolution towards higher values in each phase preceding LSD imply 563 

spreading of AE events across the fault (Fig. 2d) imposed by enhanced contact area between the 564 

granular material forming the fault zone at elevated normal load (Dieterich and Kilgore, 1996) (cf. 565 

Supplementary Movie S1). This is associated with a general b-value decrease within the stick-slip 566 

cycle, interpreted as a signature of increased stress (Schorlemmer et al., 2005; Goebel et al., 2013) 567 

or damage accumulation (e.g. Main, 1991). Anti-correlations of b- and d-values, as observed in our 568 

study, have been reported in similar experiments (Main, 1991, 1992). However, the d-values and b-569 

values are also frequently linearly related through 𝐷 = 2𝑏 (Aki, 1981; King, 1983) as found in some 570 

studies of natural earthquakes (Wyss et al., 2004) and other laboratory experiments (e.g. Goebel et 571 

al., 2017). It is therefore conceivable that interpretation of b- and d-value correlations and trends 572 

should be considered case-dependent (see also Legrand, 2002) and sensitive to the methodology 573 

used. The evolution of the used parameters within one cycle towards the LSD is superposed with 574 

high-frequency variations. These originate from activation of short-scale asperities at high levels of 575 

axial load, visible as CSD and SSD events and associated transient clusters of AEs (cf. Supplementary 576 

Movie S1-S4).  577 

Post-mortem surface observations suggest that small-scale asperities causing clustered AE activity 578 

have been progressively erased (cf. Goebel et al., 2012, 2015) but grain-scale roughness remained 579 

unchanged. The former is supported by general decrease of the local stress variability (small-scale) 580 

over several slips (Fig. 4c), although we do not observe significant evolution of the fault plane 581 

variability that is governed by grain-scale fracturing. High values of fault plane variability observed 582 

during the whole experiment, especially if compared with saw-cut faults (cf. Dresen et al., 2020), 583 

reflect complex, inter-granular processes related to shear-enhanced compaction of the granular 584 

material forming the fault zone (Kwiatek et al., 2014b). This indicates persistence of grain-scale sub-585 

mm roughness of the stress field. The micromechanical grain-scale roughness evolution leads 586 

effectively to smoothing of the short-scale asperities, and the short-scale stress field, as indicated by 587 

the decreasing local stress variability. 588 

Beyond P2 we note that fewer and smaller SSDs occur prior to LSDs. Our observations suggest that 589 

with progressive slip and smoothing of small-scale fault heterogeneities, the stress field across the 590 

whole fault surface becomes more uniform, as the length scale of large heterogeneities becomes 591 

more prominent. Increased contact area, and smoothing of the small-scale asperities responsible for 592 

local stress concentrations result in large-scale homogenization of the stress field while approaching 593 

the LSD. This agrees with findings from numerical modeling (Ben-Zion et al., 2003) as discussed 594 

further in the next section. 595 
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To summarize, we find that grain-scale (<mm) and large-scale (>cm) roughness remain largely 596 

unchanged across many slip events in contrast to the small-scale (mm-to-cm) roughness involving 597 

asperities distributed initially across the surface that are progressively erased with repeating slips. 598 

4.2 Multi-scale preparatory process and intermittent criticality 599 

Within single stick-slip cycles, the evolving space-time-magnitude correlation 𝜂𝑗  of AEs indicates 600 

formation of distinct clusters (Fig. 3b). Together with progressive b-value decrease and increased 601 

event rates, the combined parameter evolution implies accelerating deformation and localization 602 

ahead of the LSDs, in agreement with observations from lab tests and field data across different 603 

scales (Das and Scholz, 1981; see e.g. Lei and Ma, 2014; Ben-Zion and Zaliapin, 2020; McBeck et al., 604 

2022). Moreover, the exponentially increasing AE rates indicates accelerated seismic release (ASR), 605 

which is a non-universal earthquake precursory behavior (e.g. Bufe et al., 1994; Ben-Zion and 606 

Lyakhovsky, 2002; Mignan, 2011). However, the discussed set of parameters does not unequivocally 607 

signify the proximity to system-size events (LSDs), as similar trends are observable at smaller spatio-608 

temporal scales before individual SSDs or even CSDs. 609 

At about 85-90% of the maximum axial stress (i.e. hundreds of seconds before LSD, corresponding to 610 

the yield stress of the fault), the examined parameters tend to mostly fluctuate around a saturation 611 

level with occurrence of SSDs and CSDs. Such saturation level is already observed in the first cycle P1 612 

starting with the first CSD (ca. 1500 seconds before the LSD1) at about 85% peak stress and 75% of 613 

failure time  tf
 . In addition, we observe that the length of the saturation period prior to failure 614 

shortens with each stick-slip cycle, suggesting that the duration over which stress and seismic 615 

parameters fluctuate depends on the temporal evolution of fault roughness and associated stress 616 

heterogeneity. At the saturation level, b-values and 𝜂̂ remain mostly low as both tend to drop 617 

significantly in the last part of the loading cycle. Likewise, the clustered AE activity including AE 618 

foreshock-mainshock-aftershock sequences increases, resulting in a reduced proportion of 619 

background events (Fig. 3c). Clustered AE activity clearly associated with SSDs and CSDs typically 620 

consists of aftershocks and few foreshocks framing the mainshock, suggesting active stress 621 

interaction between events as stress transfer occurs across mm- to cm- length scales of the stress 622 

field associated with asperities (see next section). 623 

The external axial stress S1 fluctuates around a critical state between ~85% and peak stress. This has 624 

been described previously as intermittent criticality and was observed in nature and numerical 625 

models in combination with accelerated seismic release and decreasing b-value (cf. Ben-Zion et al., 626 

2003; Bowman and Sammis, 2004). In particular, Ben-Zion et al. (2003) showed in simulations of 627 
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stress and seismicity on a large heterogeneous fault that towards the end of a seismic cycle, a critical 628 

(fractal-like) disorder of the stress field heterogeneity is reached over a broad range of scales. This is 629 

found in a representative model for the brittle crust (model F, see Ben-Zion et al., 2003), which is 630 

characterized by realistic dynamic weakening. In agreement with our results, any stress perturbation 631 

at a high stress level may trigger a small or system wide seismic event. The ultimate size of the event 632 

is conditioned on whether the stress level is sufficiently high over a large portion of the fault surface 633 

and smooth over this length scale, allowing the event to propagate. Other models of nucleation of 634 

large events on rough faults were proposed using, e.g., models of progressive depinning of local 635 

asperities collectively reaching the critical nucleation length (Lebihain et al., 2021) and partitioning 636 

of seismic and aseismic slip and their collective influence on asperities failure and ultimate 637 

nucleation (e.g. Cattania and Segall, 2021). 638 

Following Ben-Zion et al., (2003), large-scale correlation of elevated stresses enables the generation 639 

of large events over a smoothed portion of the stress field. However, the nucleation of such 640 

instability remains a statistical event, as it can be in principle triggered by a small small-scale or even 641 

a grain-scale stress perturbation at the right location. The statistical fluctuations before triggering of 642 

large lab earthquakes involve CSD and SSD events. These events lead to local stress relaxation across 643 

limited portions of the fault and stress transfer to the surrounding regions (Fig. 5). The concentrated 644 

stress transfer near previous failure events is evidenced by significant clustering of AE activity 645 

forming foreshocks and aftershock sequences at high axial stresses once CSDs and SSDs become 646 

more frequent. The redistribution of stress and the stress drops due to CSDs and SSDs may cause the 647 

fault to temporarily retreat from the critical stress level. As loading continues, stress recovers and 648 

long-range stress correlations are reestablished leading eventually to a system size (LSD) event.  649 

4.3 Earthquake interaction on different length scales 650 

At the beginning of a stick slip cycle, distributed background activity represents >90% of the total AE 651 

activity (Fig. 3c). As loading increases, activity rates increase, background activity and b-values 652 

decrease and there is a progressive spatio-temporal localization of AE events approaching LSDs (Fig. 653 

3b). This is accompanied by increasing slip along the fault. The observed evolution of event proximity 654 

and mainshock aftershock distribution may signal AEs triggering close to larger slip events.   655 

Compared to smooth saw-cut faults where shear strain is localized and off-fault damage is minor, 656 

increasing fault roughness results in significant off-fault damage and a relatively broad damage zone 657 

(Goebel et al., 2017).  As a result, shear strain is less localized compared to smooth faults and fault 658 

slip starts at lower shear stress. Therefore, precursory slip displays a larger fraction of aseismic 659 
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deformation compared to smooth faults that unlock only at significantly higher stresses (e.g. Dresen 660 

et al., 2020). For rough faults, the increase in shear stress, compaction and contact area of the fault 661 

surfaces results in activation of a growing number of asperities leading to CSDs and LSDs. High local 662 

stress concentrations ahead of CSDs and SSDs, as well as local stress redistribution following these 663 

events, produces observable event clustering/triggering (see e.g. Schoenball et al., 2012; Davidsen et 664 

al., 2017, 2021; Martínez-Garzón et al., 2018). In agreement with Davidsen et al., (2017, 2021), the 665 

local stress concentrations produce AE event interactions. This highlights the importance of local 666 

stress intensities that control the evolution of the investigated parameters and the role of inter-667 

event triggering (Meredith and Atkinson, 1983; Davidsen et al., 2017).  668 

AE aftershocks following LSDs are controlled by residual elastic strain energy, and also depend on 669 

differences in fault roughness and slip stability (Goebel et al., 2023). However, aftershocks are 670 

relatively scarce in the examined data with respect to those framing SSDs and CSDs. This is partially 671 

because very early AE aftershocks following LSD or SSD are masked by the saturation of the AE 672 

system with continuous noise consisting of abundant overlapping AEs lasting up to 100 ms (see 673 

Supplementary Table S1). However, in large slip events the entire fault blocks are displaced and 674 

strength across the interface is reduced to sliding friction. Since the LSD rupture reaches the sample 675 

size, no stress redistribution beyond the rupture periphery is possible, which is in contrast to the 676 

confined or some small-scale (SSD) ruptures where the stress is redistributed internally. This is visibly 677 

reducing the aftershock productivity after LSDs, as the stress associated with large rupture is 678 

effectively unloaded in the triaxial machine. This difference in behavior of LSD and SSD/CSD in terms 679 

of stress transfer poses some challenges for the analysis of aftershocks following LSD/SSD and CSD. 680 

This observation needs to be considered while training models forecasting the time-to-failure of 681 

laboratory tests. However, Karimpouli et al. (2023) showed that training machine learning models 682 

forecasting time-to-failure using carefully framed data is possible, and the effects of boundary 683 

conditions can be minimized.  684 

5 Potential applications to earthquake forecasting 685 

Many studies attempted to characterize precursory deformation preceding large earthquakes using 686 

changes in seismicity rate, accelerated release of seismic moment and energy, changes of b-values, 687 

and other parameters calculated from geodetic and seismic data along with other measurements 688 

(e.g. Varnes, 1989; Bolton et al., 2021; Bowman et al., 1998; Gulia et al., 2016; Acosta et al., 2018; 689 

Bentz et al., 2019; Picozzi and Iaccarino, 2021; Shreedharan et al., 2021). However, very few if any 690 

datasets on the field scale have enough resolution to allow tracking evolution of the parameters 691 

discussed in our study during the preparatory phase for large events. This gap may be reduced using 692 
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modern AI techniques that allow enhancing seismic catalogs (e.g. Mousavi and Beroza, 2022; 693 

Trugman and Ross, 2023). This will provide new information on processes preceding large 694 

earthquakes via, e.g., additional informative foreshocks (Mignan, 2014). Meanwhile, at the 695 

laboratory scale, parameters calculated from continuous waveform data or event catalogs have 696 

been used already to successfully forecast the evolution of shear stress, friction, or time-to-failure 697 

(see e.g. Lubbers et al., 2018; McBeck et al., 2020, Johnson et al., 2021, and references therein). It is 698 

important to note that the seismo-mechanical behavior of smooth laboratory faults differs from that 699 

observed for rough faults. The former tends to display a simpler and repetitive behavior, which is 700 

attributed to the homogeneity of the fault gouge layer (e.g. Lubbers et al., 2018; Johnson et al., 701 

2021) or structural simplicity of the fault surface (e.g. Kwiatek et al., 2014; Goebel et al., 2017). 702 

Smooth faults also display clearly identifiable transitions from quasi stable deformation towards 703 

rapid acceleration resulting in seismic slip. This is associated with a non-linear accelerating seismic 704 

response, and considerably simplifies the training of ML algorithms. Even for such repetitive stick-705 

slip experiments on saw-cuts, it was found that fault gouge layers evolve during the experiments 706 

reducing the time-to-failure forecasting quality (see discussion in Johnson et al., 2021).   707 

 Comparisons of past laboratory tests on saw-cut faults and rough faults including results 708 

from this study highlight the crucial impact of fault structural heterogeneity or fault roughness, 709 

related stress field heterogeneity, stress transfer, and their temporal, spatial and length-scale 710 

evolution on our capability of forecasting large failure events. Faults evolve with progressive loading 711 

over geological timescales, displaying a qualitatively comparable evolution of many parameters (e.g. 712 

localization, b-value) regardless of their structural and mechanical complexity (Tchalenko, 1970; Ben-713 

Zion and Sammis, 2003). However, it is feasible to observe very different precursory signatures, 714 

depending on fault structure (roughness, complexity) and other conditions (Ellsworth and Bulut, 715 

2018; Huang et al., 2020; Kato and Ben-Zion, 2021; Kwiatek et al., 2023). For rough faults, our study 716 

suggests that a combination of physics-based parameters, reinforced with ML techniques, can 717 

indicate when the system is entering a critical stage. However, identifying the final stage 718 

immediately preceding system-size earthquakes may not be possible in the intermittent criticality 719 

framework and ultimately conditioned by the finite spatio-temporal resolution of the monitoring 720 

capabilities. Additional parameters yet to be developed may allow a closer identification of the final 721 

triggering of large events. In any case, the ability to forecast large natural earthquakes will benefit 722 

from dense instrumentation around hazardous faults that provide higher resolution data (e.g., Ben-723 

Zion et al., 2022).   724 
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Based on our experimental observations, Karimpouli et al. (2023a) found that the derived 725 

parameter pool characterizing different aspects of AE event organization in space and time, damage, 726 

stress and roughness evolution, enabled developing and constraining multi-parameter models of 727 

time-to-failure forecasting for complex rough laboratory faults. This may be done even with a 728 

considerably lower amount of input data compared to the saw-cut faults. In addition, Karimpouli et 729 

al. (2023a) emphasize the importance of the new features characterizing local stress evolution 730 

derived from seismic moment tensors and stress tensor inversion of AEs in time-to-failure 731 

forecasting. Interestingly, their analysis highlights that the parameters are collectively important for 732 

the accuracy of time-to-failure prediction, but need not necessarily be correlated individually with 733 

time to failure. In other words, the developed neural networks benefit from utilization of seemingly 734 

unimportant, yet novel details supplied by some parameters to improve the ultimate prediction. 735 

Using unsupervised K-means clustering of the seismo-mechanical and statistical parameters 736 

developed here, Karimpouli et al. (2023b) showed that it is possible to automatically identify a 737 

transition from stable deformation to an intermittent criticality state, with the most significant 738 

parameters being clustering properties using the decomposition of Zaliapin and Ben-Zion (2013a, b) 739 

as well as seismicity rates. They observed that the developed unsupervised scheme is able to 740 

recognize even finer transient processes related to the activation of smaller asperities, and depicted 741 

with scaled-down versions of CSDs composed of even shorter and spatially more confined clusters of 742 

AEs. These machine-learning enhanced findings are important in the context of the intermittent 743 

criticality model of Ben-Zion et al. (2003) shown here to provide a framework that can help to 744 

explain our results. As the final large slip may be triggered by a very small stress perturbation at the 745 

right location, this would suggest that improving the forecasting of large events requires zooming-in 746 

further into the clustering processes of CSDs and searching for potential deviation from their 747 

behavior ahead of the main rupture.  748 

Conclusions 749 

We studied the preparatory processes preceding laboratory earthquakes on rough faults using an 750 

ensemble of 10 seismo-mechanical and statistical features. These physics-based parameters 751 

describe damage and stress evolution in the fault zone, localization processes, local micromechanics 752 

and earthquake interactions, as well as local stress field evolution and stress field heterogeneity. 753 

The selected features enable understanding a diversity of processes occurring at different spatial 754 

and temporal scales during the preparatory phase preceding system-size laboratory earthquakes, 755 

these features can help constraining the input for multi-parameter AI-aided models of earthquake 756 

forecasting.  757 
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The developed set of precursory parameters highlights localization processes preparing system-size 758 

earthquakes. However, the parameters are sensitive to length scales of fault surface roughness and 759 

associated roughness of the stress field, both rapidly evolving in the course of an experiment. The 760 

spatio-temporal evolution of fault surface and stress roughness poses limitations on our ability to 761 

monitor and forecast the run-up to large laboratory earthquakes. 762 

We identify a transition from stable deformation to an intermittent criticality state allowing the 763 

occurrence of large events. This stage is characterized by abundant AE activity highlighting persistent 764 

heterogeneity of the stress field at the sub-mm grain-scale. Spatio-temporal AE activity bursts 765 

indicate small confined slips in the sample marking a progressive breakdown of asperities. These 766 

confined slips superimpose and interact, collectively preparing the fault surface for a system-size slip 767 

by progressive smoothing the short- (mm-to-cm) scale stress field. Ultimately, the development of 768 

large-scale correlation of elevated stresses enables the propagation of a large slip event over the 769 

smoothed portion of the fault, triggered even by a minor stress perturbation. 770 

A system-size earthquake occurring at a state of intermittent criticality is a statistical event that 771 

cannot be predicted deterministically.  However, using a combination of the parameters described in 772 

this study allows identifying the onset time when a fault enters a critical stage. This may be 773 

improved with AI classification techniques using cross-scale, physics-based parameters to detect the 774 

critical state of a fault system.  775 
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Figure Captions 1119 

Figure 1. Overview of mechanical data, AE activity and stick-slip processes at different temporal 1120 

scales occurring during the experiment. (a,b): AE magnitudes (black dots, left axis) and axial load (red 1121 

solid curve, right axis). Onsets of large (LSD), small (SSD), and confined slips events (CSD, see section 1122 

2.2 for details), the latter not reflected in geomechanical data, are marked with vertical azure lines; 1123 

(b): zoom-in of the time period between 3400 s and 5000 s covering the preparatory processes 1124 

ahead of the LSD1; (c,d,e): zoom-in of the time window framing the representative confined slip 1125 

event CSD (c,f), small slip event SSD (d,g) and large slip event LSD (e,h) with AE magnitudes color-1126 

coded with time; (f,g,h): Corresponding top-view of the AE activity with red stars marking the 1127 

location of the AE event initiating the slip. Gray area in (e) denotes short-lasting saturation of the 1128 

recording system with low-frequency noise from the slip event limiting the detection of individual AE 1129 

events (see text for details) following the occurrence of LSDE. Remaining time windows framing slip 1130 

events are shown in Supplementary Figure S1. 1131 

Figure 2. Temporal evolution of (b) AE event rates, (c) GR b-value, and (d) fractal dimension (d-value) 1132 

from a boxcounting method calculated using different moving time windows W [s]. For reference, 1133 

the evolution of AE magnitudes and axial stress is shown in (a). 1134 

Figure 3. Temporal evolution of (a) stress and AE activity for reference, (b) Median event proximity 𝜂̂ 1135 

(lower 𝜂̂ indicates clustering of events) and (c) proportion between AE background events (i.e. 1136 

mainshocks and singles), foreshocks and aftershocks in the catalog (cf. Fig. 1) as derived from 1137 

clustering analysis. 1138 

Figure 4. Temporal evolution of the (b) local fault plane variability 𝜓𝑓̂(𝑡), (c) plunge of the local 1139 

maximum stress, 𝛿𝜎1(𝑡) (filled circles) and local stress tensor variability 𝜎𝑆𝑖𝑗(𝑡) (dots). For reference, 1140 

the evolution of AE magnitudes and axial stress is shown in (a) (cf. Fig. 1). The visible data gaps 1141 

during later phases originate from the limited amount of AE-derived MTs. 1142 

Figure 5. Surface distribution of AE activity following three slip events from the phase P1 of loading 1143 

(cf. Fig. 1a-b): (a): CSD T=3414 s (cf. Fig. 1c, f), (b):  CSD T=3673 s, (c): SSD T=3963 s (cf. Fig. 1f, h). In 1144 

(a, b, c) filled circles show AE activity within a 10-second window starting ~12 seconds following the 1145 

nucleation of a slip event (star). The contour plot marks the density of events between the start of 1146 

the slip event and the end of the selected time window, aggregating the damage accumulation 1147 

during slip. First, two confined slips (a, b) activate small distinct patches representing cm-length-1148 

scale asperities (magenta and green regions in all subfigures). The patches mostly do not overlap 1149 

suggesting a shift in activity with subsequent slips. This suggests that failing short-scale asperities 1150 
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become inactive and ‘smooth’ at the cm-scales. The smoothed-out region expands ultimately to > 2 1151 

cm diameter (c) giving rise to a first SSD that activates a significant part of the fault surface with AE 1152 

activity accumulating in a narrow diagonal region (blue region in c). The animations presenting the 1153 

damage evolution framing the occurrence of three slip events are shown in Supplementary Movies 1154 

S2-S4. 1155 

  1156 



40 
 

Table Captions 1157 

Table 1: Parameters characterizing the temporal evolution of damage and stress in the sample. 1158 

Column ‘dimension sensitivity’ generalizes whether the particular parameter is sensitive to senses 1159 

changes in time, space, magnitude, or their combination. 1160 

 1161 
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No. Parameter Symbol 
Time windows 

[s] 
Dimension 
sensitivity 

Source/method 

1 AE event rate 
𝑁̇ 
 

23.5, 45, 90, 
180 

time 

AE catalog 
2 b-value (maximum likelihood) b 10, 30, 90, 180 time-magnitude 

3 d-value (boxcounting) d 45, 90, 180 space-time 

4 Median proximity 𝜂̂ 

25, 50, 100 
space-time-
magnitude 

Clustering analysis 

5 Proportion of foreshocks pFO 

6 Proportion of aftershocks pAF 

7 
Proportion of mainshocks and 

singles 
pMA 

8 Median fault plane variability 𝛹𝑓̂ 100, 200 space-time Focal mechanisms 

9 
Plunge of local maximum principal 

stress 
𝛿𝜎1 

90, 180 space-time 
Stress tensor 

inversion 10 Local stress variability 𝛹𝜎𝑖𝑗̂  
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