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Key points: 14 

 Simulated MCS precipitation and occurrences are substantially underestimated in 15 

E3SMv2 over both tropical and CONUS regions. 16 

 MCS defined by both cloud shield and surface precipitation provides a more stringent 17 

assessment on the model capability in simulating MCSs.  18 

 Simulated MCS properties in E3SMv2 are not significantly improved with the new cloud 19 

and convection parameterizations developed for E3SMv3. 20 

  21 
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Abstract 22 

Mesoscale convective systems (MCSs) play an important role in modulating the global 23 

hydrological cycle, general circulation, and radiative energy budget. In this study, we evaluate 24 

MCS simulations in the second version of U.S. Department of Energy (DOE) Energy Exascale 25 

Earth System Model (E3SMv2). E3SMv2 atmosphere model (EAMv2) is run at the uniform 26 

0.25 horizontal resolution. We track MCSs consistently in the model and observations using the 27 

PyFLEXTRKR algorithm, which defines MCS based on both cloud-top brightness temperature 28 

(Tb) and surface precipitation. Results from using Tb only to define MCS, commonly used in 29 

previous studies, are also discussed. Furthermore, sensitivity experiments are performed to 30 

examine the impact of new cloud and convection parameterizations developed for EAMv3 on 31 

simulated MCSs.  32 

Our results show that EAMv2 simulated MCS precipitation is largely underestimated in 33 

the tropics and contiguous United States. This is mainly attributed to the underestimated 34 

precipitation intensity in EAMv2. In contrast, the simulated MCS frequency becomes more 35 

comparable to observations if MCSs are defined only based on cloud-top Tb. The Tb-based MCS 36 

tracking method, however, includes many cloud systems with very weak precipitation which 37 

conflicts with the MCS definition. This result illustrates the importance of accounting for 38 

precipitation in evaluating simulated MCSs. We also find that the new physics parameterizations 39 

help increase the relative contribution of convective precipitation to total precipitation in the 40 

tropics, but the simulated MCS properties are overall not significantly improved. This suggests 41 

that simulating MCSs will remain a challenge for the next version of E3SM.   42 

 43 

 44 
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Plain Language Summary 45 

Mesoscale convective systems (MCSs) are one of the largest forms of deep convective 46 

storms, which play an important role in the earth system. It is imperative for global climate 47 

models to reasonably simulate the MCS properties. This study aims to evaluate the simulated 48 

MCS properties in the second version of U.S. Department of Energy (DOE) Energy Exascale 49 

Earth System Model (E3SMv2). We utilized two different approaches to define and track MCSs 50 

in the model and observations for consistent comparisons. Our results show that the E3SMv2 51 

model underestimates MCS precipitation in the tropics and contiguous United States regions. 52 

The too weak precipitation intensity is the primary reason for this MCS precipitation bias. The 53 

simulated MCS number becomes more comparable to the observations when precipitation 54 

features are not included in the MCS definition. However, many cloud systems with precipitation 55 

characteristics not associated with MCSs are falsely included. Therefore, this comparison 56 

illustrates the importance of accounting for precipitation features in evaluating simulated MCSs. 57 

In addition, by examining the impact of new physics parameterizations that are developed for the 58 

next generation of E3SM model on the MCS simulation, we find simulating MCSs will remain a 59 

challenge for the next version of E3SM model.  60 

  61 
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1. Introduction 62 

Mesoscale convective systems (MCSs) are the largest form of cumulonimbus cloud 63 

aggregates that cover a horizontal scale of hundreds of kilometers with lifetimes that can last 64 

more than 24 hours (Houze et al., 2004, 2018). Observations show that MCSs are ubiquitous 65 

over the tropics (Nesbitt et al., 2006; Yuan & Houze, 2010) and contribute to more than 50% of 66 

total precipitation in the tropical region (Nesbitt et al., 2006; Feng et al., 2021a), as well as over 67 

the Great Plains east of the Rocky Mountains in the contiguous United States (CONUS) region 68 

(Feng et al., 2016; Haberlie & Ashley, 2019). MCSs contain both active convective towers and 69 

extensive stratiform clouds, which differentiates them from ordinary convective storms (Houze 70 

et al., 2018). The presence of robust stratiform anvil clouds and precipitation in MCSs produce 71 

top-heavy heating profiles that impact global circulations (Schumacher et al., 2004) and feedback 72 

on the evolution of MCS lifecycle (Yang et al., 2017, 2023). Using long-term observations over 73 

the past decades, the frequency and intensity of springtime MCSs are found to increase in the 74 

central U.S., which is associated with a strengthening of the southerly low-level jet and 75 

associated moisture transport in the Central and Northern Great Plains (Feng et al., 2016; You & 76 

Deng, 2023). Such an increase in MCS frequency and intensity also suggests a potential future 77 

increase in extreme rainfall occurrence in the warming climate (Prein et al., 2017). Therefore, 78 

MCS plays an important role in the global hydrological cycle, large-scale state environments, 79 

and global energy budget. 80 

To better understand the changes of MCSs in the future climate, it is imperative to 81 

accurately represent their key characteristics in regional and global climate models. However, 82 

there are large uncertainties in current numerical models with respect to the representation of 83 

essential cloud processes associated with MCS formation and development (e.g., Fan et al., 84 
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2017; Moncrieff, 2019). This is particularly true for conventional general circulation models 85 

(GCMs) with a coarser horizontal resolution and convective parameterizations to simulate the 86 

multiscale interactions in MCSs (Feng et al., 2021b; Hsu et al., 2023). For GCMs that participate 87 

in the Coupled Model Intercomparison Project Phase 5 (CMIP5), most models simulate a severe 88 

underestimation of summertime precipitation over the central U.S. (Lin et al., 2017; Mueller & 89 

Seneviratne, 2014), which is a longstanding issue that is believed to be associated with the 90 

failure to capture strong precipitation events produced by MCSs (Klein et al., 2006; Van 91 

Weverberg et al., 2018; Xie et al., 2019; Zheng et al., 2019). However, low-resolution GCMs are 92 

computationally efficient tools currently used in century-long climate projections and to 93 

understand changes in global convection and cloud properties under future climate scenarios. 94 

Therefore, it remains important to understand and improve the representation of convection and 95 

MCS processes in GCMs with coarser horizontal resolutions.  96 

Previous studies show that GCMs can simulate MCSs that are comparable to 97 

observations at ~50 km horizontal resolution on the global scale. Dong et al. (2021) compared 98 

the characteristics of tropical MCSs using high resolution (~50 km) Geophysical Fluid Dynamics 99 

Laboratory (GFDL) AM4 model (C192AM4, Zhao, 2020) with a comprehensive long-term 100 

observational dataset. They showed that the spatial distribution of MCSs as well as the 101 

seasonality and interannual variability of MCS frequency over different land and oceanic regions 102 

are reasonably simulated. Dong et al. (2023) additionally suggested that the spatial distribution 103 

and seasonality of genesis frequency of MCSs during spring to early summer are also broadly in 104 

agreement with observations over the central U.S. However, the identified MCSs in these two 105 

studies are purely based on the cloud-top brightness temperature (Tb) data (Huang et al., 2018). 106 

More recently, a new MCS tracking algorithm has been developed that uses both Tb and surface 107 
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precipitation characteristics (Feng et al., 2023). By comparing the difference in tracked MCSs 108 

using the two approaches on the global scale, Feng et al. (2023) found that the Tb-only tracking 109 

method produces more MCS occurrences in the midlatitudes compared with the Tb and 110 

precipitation method. The false MCS identification by the Tb-only method is related to cloud 111 

systems that have long lifetime and cover a large area but generate very low surface precipitation 112 

intensity. These cloud systems are more likely to mainly contain stratiform-type precipitation 113 

associated with synoptic systems which is inconsistent with the typical MCS precipitation 114 

characteristics. Therefore, combining both Tb and precipitation features to track MCS should be 115 

more accurate in terms of capturing the essential MCS characteristics. 116 

This more advanced MCS tracking algorithm has been used in Wang et al. (2021) to 117 

evaluate the simulation of MCS in the Department of Energy’s Energy Exascale Earth System 118 

Model version 1 (E3SMv1) (Golaz et al., 2019). Wang et al. (2021) found that the E3SM 119 

atmosphere model (EAMv1) (Rasch et al., 2019; Xie et al., 2018) can reasonably capture the 120 

observed spatial pattern of spring season total precipitation in the CONUS region with a regional 121 

refined model (RRM) setup featuring 0.25 model resolution over the CONUS (Tang et al., 122 

2019). However, the model greatly underestimates heavy precipitation over the southern states in 123 

the CONUS, and thus underestimates the MCS precipitation and MCS occurrences compared to 124 

the observations. Similar underestimation in MCS precipitation was found in the central U.S. and 125 

Indo-Pacific region when evaluating the global 0.25 E3SMv1 results (Xie et al., 2020). In 126 

addition, the underestimation of MCS precipitation still exists over the CONUS in summertime, 127 

even though a cloud resolving model is coupled in E3SMv1 using the super-parameterization 128 

approach (Lin et al., 2022), which suggests the deficiencies in model capability to simulate MCS 129 

events in E3SMv1.  130 
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The second version of E3SM along with its North American RRM version has recently 131 

been released (Golaz et al., 2022; Tang et al., 2023). E3SMv2 includes minor improvements in 132 

its physics parameterizations but with significantly retuned cloud and convection related 133 

parameters. For its updated physical parameterizations, a new convective trigger described in Xie 134 

et al. (2019) is implemented in E3SMv2 to improve its simulation of precipitation and its diurnal 135 

cycle (Golaz et al., 2022; Tang et al., 2022; Tao et al., 2022, 2023). The new trigger and the re-136 

adjusted model parameters have also led to considerable improvements in the cloud simulation 137 

compared to E3SMv1 (M. Zhang et al., 2022, 2023; Y. Zhang et al., 2023; Qin et al., 2023). In 138 

this study, we perform a comprehensive evaluation of E3SMv2’s capability to simulate MCS by 139 

using the MCS tracking algorithm developed in Feng et al. (2023). To make the model resolution 140 

more relevant to the horizontal scales of MCS, the global 0.25 horizontal resolution is used in 141 

this study for a global MCS evaluation. In addition, a new set of cloud and convection 142 

parameterizations that are developed for the third version of E3SM (E3SMv3) is also tested in 143 

this study to examine their impacts on the simulated MCS. To demonstrate the impact of 144 

different MCS tracking methods on the model evaluation, we apply both the Tb-only tracking 145 

and combined Tb and surface precipitation tracking in our evaluations.   146 

The paper is organized as below. Section 2 introduces the default model physics 147 

parameterizations in E3SMv2 and the new convection and cloud microphysics parameterizations 148 

that are developed for E3SMv3. Observational dataset used for the model evaluation and the 149 

MCS tracking method are also described in this section. Section 3 discusses the E3SMv2 model 150 

evaluation results, the impact of different MCS tracking methods on the global scale and over the 151 

CONUS region, and the impact of new physics parameterizations on the MCS simulation. The 152 

summary and discussion are provided in section 4. 153 
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 154 

2. EAMv2, numerical experiments, observations, and MCS tracking 155 

2.1. EAMv2 model 156 

EAMv2 features a few notable changes in the atmospheric physics and significantly 157 

recalibrated tuning parameters compared to EAMv1 (Golaz et al., 2022). Specifically, the 158 

dCAPE_ULL convective trigger described in Xie et al. (2019) was implemented in the deep 159 

convection scheme (Zhang & McFarlane, 1995, ZM hereafter) in EAMv2 to improve the 160 

simulated precipitation and its diurnal cycle. The new convective trigger combines the dynamical 161 

Convective Available Potential Energy (CAPE) (dCAPE) trigger developed in Xie and Zhang 162 

(2000) to prevent CAPE from being released simultaneously after its generation and the 163 

Unrestricted air parcel Launch Level (ULL) method described in Wang et al. (2015) to allow 164 

convective instability to be detected above the boundary layer for elevated nocturnal 165 

convections. In addition, a new linearized ozone scheme is used for stratospheric ozone (Tang et 166 

al., 2021). The treatments of other physical processes are the same as in EAMv1, which include 167 

the Cloud Layers Unified by Binormals (CLUBB, Golaz et al., 2002; Larson, 2017) 168 

parameterization for shallow convection, cloud macrophysics, and boundary layer turbulence; 169 

the second version of Morrison and Gettelman (MG2, Gettelman & Morrison, 2015; Gettelman 170 

et al., 2015) cloud microphysics; the four-mode Modal Aerosol Model (MAM4, Liu et al., 2016; 171 

Wang et al., 2020), and the gravity wave parameterization following Richter et al. (2010) with 172 

updated treatments (Beres et al., 2004; Richter et al., 2019). In addition, significant re-173 

adjustments were made to a number of parameters used in cloud microphysics, CLUBB, and 174 

deep convection schemes to improve the cloud and precipitation simulation and cloud radiative 175 

forcing (Ma et al., 2022). In this study, we run EAMv2 at 0.25 horizontal resolution globally 176 
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with a 900 second time step. Note that this 0.25 horizontal resolution model configuration is not 177 

officially supported. However, the cloud and precipitation climatology remains reasonable in our 178 

model validation compared with the standard low resolution version of E3SMv2. Thus, it is 179 

suitable for this study.  180 

 181 

2.2. Numerical experiments 182 

2.2.1. Simulation setup 183 

In this study, EAMv2 is run at a global uniform 0.25 horizontal resolution from 2004 to 184 

2009. The sea surface temperature and sea ice are prescribed by weekly observational data from 185 

the National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation Sea 186 

Surface Temperature version 2 (OISST v2) product (Huang et al., 2021). The model simulation 187 

results between 2005 and 2009 are used for the MCS evaluation with the first-year results 188 

discarded for model spin-up. Hourly outputs of global surface precipitation flux and outgoing 189 

longwave radiation are saved and used for the MCS tracking. The MCS tracking approach is 190 

introduced in Section 2.4. 191 

 192 

2.2.2. Sensitivity tests with cloud and convection physical parameterizations 193 

To examine the impact of model physics on the simulation of MCS, we perform a set of 194 

sensitivity experiments with different cloud and convection parameterizations developed for the 195 

next version of E3SM atmosphere model (i.e., EAMv3). One of the major developments is the 196 

use of predicted particle properties (P3) cloud microphysics scheme (Milbrandt & Morrison, 197 

2016; Milbrandt et al., 2021; Wang et al., 2021) to replace the MG2 stratiform cloud 198 

microphysics that was used in EAMv1 and EAMv2. Convective cloud parameterizations 199 
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received several significant updates during the model development. First, the two-moment 200 

convective cloud microphysics parameterization (Song & Zhang, 2011; Song et al., 2012) is 201 

implemented to more physically represent the evolution of convective cloud hydrometeors and 202 

their interactions with large-scale stratiform clouds and aerosols. Second, the multiscale coherent 203 

structure parameterization (MCSP, Chen et al., 2021; Moncrieff et al., 2017; Moncrieff, 2019) is 204 

introduced to simulate the physical and dynamical effects of organized convection that are 205 

currently missed in EAMv2. Third, a cloud base mass flux adjustment described in Song et al. 206 

(2023) is incorporated into the ZM scheme to improve the coupling of deep convection and its 207 

associated large-scale environment. In this study, we perform four sensitivity experiments to 208 

examine their individual impacts from all four new features. The control run with the default 209 

EAMv2 and the sensitivity tests are summarized in Table 1. Below, we provide more details on 210 

the tested new parameterizations. 211 

 212 

1) P3 microphysics 213 

P3 is a new bulk cloud microphysics scheme that represents the evolution of physical 214 

properties of various hydrometeors in space and time (Milbrandt & Morrison, 2016; Milbrandt et 215 

al., 2021). Unlike the MG2 cloud microphysics scheme used in the default EAMv2 model which 216 

artificially defines separate hydrometeor categories for different ice species, P3 represents the 217 

evolution of ice particle properties from ice crystals to snow and rimed particles (e.g., graupel) 218 

by prognosing rimed mass and volume. This method avoids the impact of artificial separation of 219 

ice species on the simulation of ice particle microphysical processes, thus improving the 220 

representation of physical evolution of ice particles in the model. Considering rimed particles, 221 

which is important for MCS precipitation, is another advantage of P3 compared with MG2, in 222 
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which only cloud ice and snow are considered. The current P3 implemented in E3SM is two-223 

moment, which prognoses the total ice mass mixing ratio and ice number concentration with the 224 

predicted ice mass from riming growth and the rimed volume to track the particle growth 225 

processes (Wang et al., 2021). Note that the single ice category is used in E3SM, meaning that 226 

there is only one single type of ice particle predicted at a given time in one model grid. For liquid 227 

phase hydrometeors, a two-moment bulk scheme is used to prognose the mass mixing ratio and 228 

number concentration of cloud droplet and rain drop in their evolution. By comparing P3 with 229 

the default MG2 cloud microphysics EAMv1 RRM simulation, Wang et al. (2021) showed that 230 

P3 microphysics greatly improves the simulation of precipitation statistics over the CONUS 231 

region. The higher hourly rain rate simulated by P3 results in 20% more MCS occurrence and 232 

stronger total MCS precipitation than MG2, which agrees better with the observations. 233 

 234 

2) Convective cloud microphysics 235 

The convective cloud microphysics developed by Song and Zhang (2011) prognoses the 236 

mass mixing ratio and number concentration of cloud droplet, cloud ice, rain, and snow in the 237 

ZM parameterization. Cloud microphysical processes including autoconversion, collection 238 

between hydrometeor species, self-collection, freezing, ice nucleation, droplet activation, and 239 

sedimentation are represented to simulate the evolution and interaction between different 240 

hydrometeor species. Previous studies showed that this convective cloud microphysics scheme 241 

enables a more accurate convection and precipitation simulation (Song et al., 2012). The 242 

interactions between convective clouds and aerosols and large-scale clouds are also better 243 

represented in the model, in particular, the aerosol impacts on convective clouds can be 244 

examined in GCMs with this new convective cloud microphysics.  245 
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 246 

3) MCSP 247 

To account for the important mesoscale heating associated with convective organization, 248 

Chen et al. (2021) implemented the MCSP parameterization (Moncrieff et al., 2017; Moncrieff, 249 

2019) in E3SM. The MCSP simulates the heating effects of the slantwise overturning structure 250 

typically organized by MCSs. The heating component of MCSP contains a temperature tendency 251 

of multiscale convective systems that is added to the temperature tendency simulated by the 252 

existing ZM parameterization. The heating profile is represented as a top-heavy second 253 

baroclinic normal mode and its amplitude is a function of the vertically averaged convective 254 

heating induced by the convective parameterization. Chen et al. (2021) showed that the MCSP 255 

improves the representation of the Madden-Julian Oscillation (MJO) and reduces the 256 

precipitation biases over the tropical Pacific region in E3SMv1. 257 

 258 

4) Cloud base mass flux adjustment 259 

To represent the dynamical effects of large-scale vertical motion on the convection 260 

development, model simulated cloud base mass flux adjustment is introduced in EAMv2 (Song 261 

et al., 2023). The cloud base mass flux is adjusted by subtracting the grid-scale pressure vertical 262 

velocity at the PBL top from the cloud base mass flux determined in the CAPE closure in the ZM 263 

scheme. In this case, the moisture transported through the PBL top by large-scale vertical motion 264 

becomes fully available for the convective cloud development. As simulated convection is 265 

directly modulated by the large-scale dynamical circulation, such a cloud base mass flux 266 

adjustment enables the ZM scheme to better represent convection generation in the low-CAPE 267 

environment. Song et al. (2023) indicated that the cloud base mass flux adjustment substantially 268 
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improves the climate variability across multiple scales, from the precipitation diurnal cycle to the 269 

MJO. 270 

 271 

2.3. Observations 272 

The observational dataset used to evaluate global MCS properties are the NASA Global 273 

Merged IR V1 infrared Tb product (Janowiak et al., 2017) and the Global Precipitation 274 

Measurement (GPM) Integrated Multi-satelliteE Retrievals (IMERG) V06B precipitation data 275 

(Huffman et al., 2019a, 2019b, 2019c). The global Tb data are derived from geostationary 276 

satellites that cover the region between 60S-60N latitudes at 4 km pixel resolution. The 277 

IMERG precipitation is estimated from various precipitation-relevant satellite passive 278 

microwave sensors at 10 km horizontal resolution. The hourly global Tb and precipitation 279 

satellite observational datasets are regridded to 0.25 (~25 km) horizontal resolution to match the 280 

model grid spacing.  281 

Over the CONUS region, in addition to the coverage of satellite Tb and precipitation 282 

observations, radar reflectivity from the National Weather Service Next-Generation Radar 283 

(NEXRAD) and the Stage IV multi-sensor precipitation datasets are also available. Following 284 

Feng et al. (2019), the NEXRAD radar reflectivity data, the Stage IV precipitation estimates, and 285 

the Merged IR V1 infrared Tb product are combined to derive the MCS tracking product (Feng, 286 

2019). Note that the original horizontal resolution of this MCS product over the CONUS is 4 km. 287 

Same as the global satellite MCS data, this radar and rain gauge observation dataset is also 288 

regridded to 25 km, consistent with the model simulations. The MCS products from 2005 to 289 

2009 are used to evaluate EAMv2 model simulations. Table 2 summarizes the observational 290 

datasets used for the MCS tracking in this study. 291 



Manuscript submitted to Journal of Geophysical Research: Atmospheres 

 14 

 292 

2.4. MCS tracking method 293 

This study uses the PyFLEXTRKR (Python FLEXible object TRacKeR) software 294 

package (Feng et al., 2022) to identify and track the time evolution and spatial distribution of 295 

MCS and calculate the statistics of MCS properties in the observation and EAMv2 model 296 

simulations. PyFLEXTRKR (Feng et al., 2023) is a flexible atmospheric feature tracking 297 

software package with specific capabilities to track MCS features based on Tb and precipitation 298 

characteristics. Note that the EAMv2 model outputs the outgoing longwave radiation (OLR) 299 

instead of Tb. To consistently define simulated MCS as the observations, OLR is converted to Tb 300 

in PyFLEXTRKR following the empirical method by Yang and Slingo (2001).  301 

The detailed workflow for tracking MCSs is described in Feng et al. (2023). The first step 302 

of MCS tracking is to identify the cold cloud system (CCS) associated with deep convective 303 

events in the observation and model simulations. The CCS is detected by iteratively growing a 304 

cold cloud core with Tb < 225 K outwards to 241 K. After each CCS segments are defined, if the 305 

CCS from two consecutive time steps (1 hour apart) overlaps for more than 50% of their area, 306 

the CCS pairs are linked to track their temporal evolution. Along the CCS temporal evolution, if 307 

the CCS area exceeds 4 x 10
4
 km

2
 and the duration of CCS is longer than 6 hours, the track is 308 

then considered as MCS. This Tb based MCS definition is similar to that used in Dong et al. 309 

(2021, 2023) for the GFDL C192AM4 model evaluation, although their MCS tracking method 310 

(Huang et al., 2018) was based on the thresholds of Tb and a minimum area coverage. In 311 

additional to the Tb defined MCS, PyFLEXTRKR has an option to further consider surface 312 

precipitation characteristics as an additional criterion for defining MCSs. For the MCS tracking 313 

with precipitation, precipitation feature (PF) statistics are calculated over the regions where 314 
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precipitation rate is greater than 0.5 mm hr
-1

 underneath the CCS. Calculated PF statistics include 315 

PF centroids, area, major axis length, mean and maximum rain rate, rain rate skewness, and total 316 

and heavy rain volume. Three PF parameters are used to identify and track robust MCSs, which 317 

are the PF area, PF mean rain rate, and PF rain rate skewness. If these three PF parameters of a 318 

CCS track exceed their corresponding thresholds, that track is defined as a robust MCS. The 319 

corresponding tunable threshold values follow a linear function of duration when the largest PF 320 

major axis length is greater than 100 km. In the following discussion, if not explicitly mentioned, 321 

we refer “MCS” as the MCSs detected by the combined method using both Tb and surface 322 

precipitation. Table A1 lists all the parameters used in the MCS tracking and sampling. Note that 323 

these tunable parameters are sensitive to the data resolution, particularly for the thresholds 324 

related to precipitation. We adjusted these thresholds based on the previous work that matched 325 

MCS tracking statistics between coarse resolution (0.25-0.5) and high resolution (0.04) 326 

datasets over the CONUS region (Feng et al., 2021b). More details of the tracking method can be 327 

found in Feng et al. (2023).  328 

In this study, our evaluation primarily focuses on the robust MCSs defined with both Tb 329 

and precipitation. MCSs defined by the Tb-only method are also examined to demonstrate the 330 

impact of different MCS tracking approaches on evaluating the model capability in capturing 331 

MCS properties, which helps explain the differences between the current study and previous 332 

literatures relevant to the MCS evaluation in GCMs (e.g., Dong et al., 2021, 2023; Hsu et al. 333 

2023). 334 

 335 

3. Results 336 

3.1. MCS simulated in EAMv2 337 



Manuscript submitted to Journal of Geophysical Research: Atmospheres 

 16 

3.1.1. Global MCS 338 

We evaluate the global MCS properties simulated with the default EAMv2 model physics 339 

against observations. Figure 1 compares the global spatial distribution of annual mean total and 340 

MCS precipitation amount between 60S and 60N. For total precipitation, the default EAMv2 341 

model reasonably simulates the large precipitation amount along the intertropical convergence 342 

zone (ITCZ) region. Precipitation in the South Pacific convergence zone (SPCZ) is also 343 

comparable to the IMERG observation. However, simulated total precipitation in the tropical 344 

Indian Ocean and the Maritime Continent region is underestimated by ~30% in EAMv2 (Figure 345 

2a). Over the Amazon region, the model also slightly underestimates total precipitation 346 

compared to the observation, but strong precipitation peaks are found in the coastal region of 347 

Colombia near the equatorial eastern Pacific Ocean. In terms of the MCS precipitation (Figures 348 

1c and 1d), observations show that MCSs greatly contribute to the total precipitation in the 349 

tropics. Observed MCS precipitation well co-locates with the spatial patterns of total 350 

precipitation occurrences, where the ITCZ, SPCZ, tropical Indian Ocean, and Maritime 351 

Continent regions have the largest MCS precipitation amount. In EAMv2, it is encouraging that 352 

the spatial distribution of simulated MCS precipitation is overall reasonably simulated. For 353 

example, simulated MCSs are dominant over the ITCZ, SPCZ, and tropical Indian Ocean. 354 

However, the simulated MCS precipitation amount is underestimated by more than 60% 355 

compared to the observation (Figure 2b). The underestimation is most substantial over the 356 

Maritime Continent and tropical Indian Ocean, while the underestimation is also noticeable over 357 

the tropical lands (e.g., Africa and Amazon) and midlatitude storm tracks.  358 

We note that earlier literatures stated that GCMs at 50 km horizontal resolution can 359 

reasonably capture observed MCSs in the tropics (Dong et al., 2021), which seems to be 360 
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inconsistent with our current analysis. One possible reason for this is a different MCS tracking 361 

method used in Dong et al. (2021), which only used Tb. To understand the impact of different 362 

MCS tracking methods on the GCM evaluation, we additionally show the MCS precipitation 363 

defined only using Tb in both observation and EAMv2 (Figures 1e and 1f) and the MCS 364 

precipitation amount difference between two definitions (Figures 2d and 2e). Compared with the 365 

MCS precipitation defined with Tb and precipitation, Figure 2c indicates that the low bias of 366 

MCS precipitation is slightly alleviated using the Tb-only tracking method. The larger MCS 367 

precipitation from MCSs defined with Tb are more noticeable over the tropical land areas (e.g., 368 

Africa, Amazon, and Maritime Continent) and to a lesser degree over midlatitude storm tracks 369 

(Figure 2e). On the other hand, the precipitation difference between two MCS tracking methods 370 

is substantially smaller for the IMERG observation, particularly in the tropics. The small impact 371 

from MCS tracking method on the observed MCS precipitation suggests that the mesoscale 372 

cloud structures associated with observed MCSs nearly always contain heavy precipitation 373 

features. However, this is not the case for the model. This comparison suggests that using the Tb-374 

only method could possibly overestimate the model’s capability in simulating MCSs. 375 

The contribution of MCS precipitation to total precipitation is evaluated in Figure 3 by 376 

examining the MCS precipitation fraction between EAMv2 and the IMERG data. In the tropics, 377 

the observed annual mean MCS precipitation is found to contribute to up to 90% of total 378 

precipitation, and the largest MCS precipitation contribution is found in the Indo-Pacific region. 379 

This is consistent with previous studies (Nesbitt et al. 2006; Feng et al., 2021a). In contrast, the 380 

default EAMv2 simulated MCS precipitation fraction is significantly lower than observed 381 

(Figure 3e). The simulated MCS precipitation fraction rarely reaches 80%. Using the Tb-only 382 

tracking method, the MCS precipitation fraction increases largely in the tropical land (Africa and 383 
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Amazon) and midlatitude storm tracks compared to MCSs defined with combined Tb and 384 

precipitation in EAMv2 (Figure 3f). However, the simulated MCS precipitation fraction remains 385 

underestimated compared to observations using the Tb-only method. 386 

Figure 4 compares the MCS precipitation frequency between EAMv2 and the 387 

observations. The MCS precipitation frequency is calculated as the number of hours MCS 388 

precipitation occurred (rain rate > 0.5 mm h
-1

) divided by total number of hours in the five years 389 

period. In the observation, the large MCS precipitation frequency appears in the same regions 390 

where observed MCS precipitation is large. There are also relatively high MCS precipitation 391 

occurrences in the midlatitude storm track region in the northern hemisphere. Compared to the 392 

observations, the EAMv2 simulated MCS frequency is largely underestimated over the tropical 393 

Indo-Pacific warm pools and midlatitude regions (Figure 4e). This is consistent with the 394 

underestimated MCS precipitation in Figure 2b. However, over the central Pacific Ocean, the 395 

simulated MCS occurrence becomes comparable to the observations, while over the tropical 396 

eastern Pacific Ocean, EAMv2 shows higher MCS frequency even though its MCS precipitation 397 

is slightly underestimated. The overestimated frequency of occurrence could imply either the 398 

simulated MCSs occur too frequently, or they are overly long-lived. In addition, simulated MCS 399 

precipitation frequency and precipitation amount are both overestimated over the tropical Andes 400 

and east African highlands. 401 

To provide more insights on the MCS occurrence, Figure 5 shows the annual mean MCS 402 

number in both the model and observation. The MCS number is counted as the number of unique 403 

latitude/longitude pairs of each MCS track within a 5° × 10° latitude/longitude grid. The 404 

difference between MCS number and MCS frequency (Figure 4) is that the impact of MCS 405 

lifetime and area footprint is excluded from the MCS counts in Figure 5. For example, if an MCS 406 
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takes a few hours to slowly pass one grid, the MCS number in this grid is counted once but the 407 

occurrence of frequency of MCS is the total number of hours this MCS takes to move over the 408 

grid. In Figure 5, the location of large observed MCS number is overall consistent with those 409 

regions having large MCS frequency and MCS precipitation amount. However, the number of 410 

MCSs defined using both Tb and precipitation in EAMv2 is largely underestimated globally 411 

except over the central Pacific Ocean and SPCZ region (Figure 5e). Such an underestimation of 412 

MCS number suggests that the overestimated MCS precipitation frequency in the tropical eastern 413 

Pacific Ocean (Figure 4e) may be caused by the overly long-lived and/or larger MCSs. Further 414 

analysis shows that the underestimated MCS number is the result of underestimated MCS 415 

genesis in the tropics (not shown).  416 

 Consistent with MCS precipitation amount, the Tb-only MCS tracking method results in 417 

a substantial increase in MCS precipitation frequency and MCS number compared to MCSs 418 

tracked using the combined method in EAMv2, particularly over Congo and Amazon (Figures 4f 419 

and 5f). Additional increase in the simulated MCS number in the Maritime Continent, tropical 420 

Indian Ocean, and midlatitude continents are also found, leading to a more comparable MCS 421 

number spatial distribution to the observations. Note that such an increase in MCS frequency and 422 

number is less noticeable for the observations (not shown). Dong et al. (2021) also found that 423 

MCS defined using only Tb well produces the resemblance of observed tropical MCS number in 424 

the GFDL C192AM4 model, where they concluded that GCM is capable of simulating MCS 425 

characteristics at 50 km horizontal resolution. However, our current analysis shows that if 426 

surface precipitation is included in the MCS tracking to sample more robust MCSs, it is still 427 

challenging for EAMv2 to simulate MCSs at 25 km horizontal grid spacing.  428 
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To further evaluate the MCS characteristics in EAMv2, Figure 6 compares the 429 

probability density function (PDF) of simulated and observed MCS properties over the Indo-430 

Pacific region to understand the reasons for the biased MCS precipitation in EAMv2 and the 431 

impact of different MCS definitions on MCS evaluation. The choice of Indo-Pacific region is 432 

because of (1) the largely underestimated MCS precipitation amount in simulated MCSs; (2) the 433 

substantial increase in MCS number between two tracking methods in EAMv2, while the 434 

IMERG observation presents negligible difference.  435 

Figure 6 shows that most of the simulated MCS properties differ substantially from the 436 

observation for MCSs tracked using combined Tb and precipitation, with the exceptions in the 437 

maximum CCS area and maximum PF area. Compared to the observation, EAMv2 simulated 438 

MCSs tend to have longer CCS lifetime, warmer minimum cloud-top Tb (i.e., lower convective 439 

cloud-top height), and weaker mean rain rate within the PF area. Although the model 440 

overestimates the probabilities of total rain volume and heavy rain volume between 10
6
 and 10

7
 441 

kg, the heavy rain ratio (i.e., heavy rain volume divided by total rain volume) in EAMv2 peaks at 442 

a lower value (~50%) than the observation (~75%). The lower heavy rain ratio is probably 443 

associated with the underestimated convection strength, which is indicated by the large 444 

occurrences of warm cloud-top Tb in the model (minimum Tb warmer than 205 K). These warm 445 

Tb occurrences suggest the simulated MCS in EAMv2 is less penetrative compared to the 446 

observed MCS, implying the issue in representing MCS development in the model physical 447 

parameterizations. Moreover, by comparing the PDFs of CCS area and PF area to the PDFs of 448 

PF features, it is likely that the weaker precipitation intensity, rather than the areas of convective 449 

clouds or surface precipitation, explain the underestimated MCS number (Figure 5) and their 450 

associated precipitation (Figures 1-2). This speculation is supported by the fact that in the eastern 451 
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Pacific Ocean, where the default EAMv2 better simulates MCS precipitation amount, the PDF of 452 

heavy rain ratio tends to peak at ~78% which matches the IMERG observation (~80%) more 453 

than any other examined locations (not shown). 454 

For MCSs defined with two different methods, it is shown that the PDFs of MCS 455 

properties are nearly identical in the observation over the Indo-Pacific region. The comparable 456 

PDFs between MCSs defined with Tb and combined Tb and precipitation are also found in other 457 

regions (i.e., eastern Pacific Ocean, Africa and Amazon tropical lands, not shown). In other 458 

words, the MCS precipitation features are nearly always generated in these mesoscale cloud 459 

structures, especially over the tropics. Such a feature indicates the robustness of observed MCS 460 

characteristics using the cloud-top Tb tracking. However, the differences in MCS properties 461 

between the two MCS definitions are substantially larger in EAMv2. The largest discrepancies 462 

are found in the lifetime minimum Tb and heavy rain volume ratio. For example, while the 463 

minimum Tb of MCSs defined using combined Tb and precipitation peaks at ~198 K, which is 464 

comparable to the observation, the largest occurrence of minimum Tb for MCSs defined with Tb 465 

locates at ~215 K, suggesting cloud clusters with much weaker convective strength are included. 466 

Meanwhile, the largest occurrence for heavy rain volume ratio locates below 5% for MCSs 467 

defined with Tb, whereas it is at ~50% for MCSs defined with both Tb and precipitation. The 468 

lower heavy rain ratio from the MCSs defined with Tb is caused by the more occurrences of 469 

weak precipitation under the CCS cloud shields (Figures 6e-6g). These weak precipitation events 470 

are more likely to be associated with stratiform-type precipitation rather than convective-type 471 

strong precipitation in EAMv2, which is not the characteristics of MCS precipitation as in the 472 

observations. The difference in simulated MCS precipitation also impacts the CCS lifetime 473 
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simulation. With the weaker simulated MCS strength, the CCS lifetime is also shorter for MCSs 474 

defined with Tb than those defined with both Tb and precipitation.  475 

We note that the simulated precipitation features (i.e., mean PF rain rate, total and heavy 476 

rain volume) of tracked MCSs are more comparable between the model and the observation in 477 

the Indo-Pacific region for MCSs defined with both Tb and precipitation than the Tb-only 478 

definition, even though the annual mean MCS number and precipitation rate are substantially 479 

underestimated. Although Figure 5 shows that the number of Tb-only defined MCSs is overall 480 

comparable to the observed MCS number, the use of Tb-only method in MCS tracking could 481 

include many weak convective events (i.e., suggested by the warm minimum Tb and low heavy 482 

rain ratio). The inclusion of these weak convective systems can ultimately result in an 483 

underestimation of the severity of MCS extreme precipitation by introducing a severe low bias in 484 

the precipitation counted as MCSs.  485 

 486 

3.1.2. MCS over CONUS 487 

MCS precipitation was found to contribute more than 50% of total precipitation over the 488 

CONUS region and can reach 70% in the central U.S. during the warm season (Feng et al., 2018, 489 

2019). It is therefore imperative for GCMs to accurately simulate MCS precipitation in order to 490 

understand and examine the impact of future climate change on MCS precipitation over the 491 

CONUS. In this section, both the IMERG satellite precipitation data and the ground-based Stage 492 

IV rain gauge measurements are analyzed to address the potential uncertainties in observational 493 

datasets. 494 

Figure 7 compares the mean total and MCS precipitation amount from March to August 495 

over the CONUS region. Both IMERG and ground-based Stage IV observations indicate that 496 
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total precipitation peaks in the central CONUS (i.e., Kansas, Missouri, Oklahoma, and 497 

Arkansas). Strong total precipitation is also found in southeast U.S. (i.e., Florida) in both 498 

observations. Note that the strong total precipitation in the central U.S. is observed in both boreal 499 

spring (MAM) and summer (JJA), while the southeast strong precipitation mainly occurs in the 500 

summertime. Due to the higher horizontal resolution (native resolution of 4 km), the ground-501 

based data shows more fine-scale precipitation variability than the satellite data, but the general 502 

precipitation patterns and magnitudes are similar in both datasets. For observed MCS 503 

precipitation, both datasets present the peak MCS precipitation around the same regions where 504 

strong total precipitation occurs in the central U.S. (i.e., the border of Kansas, Missouri, 505 

Oklahoma, and Arkansas). Note that the difference between two MCS tracking methods is 506 

negligible for observed MCS precipitation amount (Figures 7d-7e and Figures 7g-7h), same as 507 

the tropical MCSs. 508 

Compared to observations, the total precipitation peak simulated by the EAMv2 is mostly 509 

located in the southeast U.S. and Florida. The simulated total precipitation is overestimated along 510 

the southeast coasts, but the model significantly underestimates the strong precipitation in the 511 

central U.S. This dry bias in the central U.S. is consistent with earlier studies (Cheruy et al., 512 

2014; Klein et al. 2006; Morcrette et al., 2018; Zheng et al., 2019). With the biased total 513 

precipitation amount in EAMv2, simulated MCS precipitation defined with combined Tb and 514 

precipitation is substantially underestimated in the CONUS region. Not only the MCS 515 

precipitation magnitude is significantly weaker than the observed MCS precipitation, the spatial 516 

coverage of MCS precipitation is also much smaller. Similar to the results from tropical MCS, 517 

the MCS precipitation increases largely when using the Tb-only tracking method, in particular in 518 
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the southeast U.S. However, MCS remains significantly underestimated in the central CONUS 519 

regardless which tracking method is used.   520 

The biased MCS precipitation in EAMv2 is also reflected in the MCS precipitation 521 

frequency over the CONUS (Figure 8). The simulated MCS precipitation frequency defined by 522 

Tb and precipitation is substantially underestimated in the central U.S., while the frequency is 523 

comparable to the observations in the southeast U.S. Although the impact of different MCS 524 

tracking methods is small for observations, the MCS precipitation frequency is substantially 525 

larger for MCSs from the Tb-only tracking in EAMv2. It is also shown in Figure 8f that the 526 

frequency of occurrence of simulated MCSs defined with Tb becomes largely overestimated in 527 

the eastern U.S.  528 

Figure 9 compares the MCS number between EAMv2 and the observations in the 529 

CONUS region. It is unsurprising to find the significant underestimation of MCS number in 530 

EAMv2 over the entire CONUS when MCSs are defined using the combined method. On the 531 

other hand, the impact of MCS definition on simulated and observed MCS number is again 532 

consistent with the global MCS number in Figure 5. For example, the MCS number over the 533 

CONUS region in both the IMERG and Stage-IV observations remains similar between two 534 

definitions (Figures 9a-9b and 9d-9e), but the simulated MCS number from Tb-only method 535 

becomes more comparable to the observation in EAMv2, although the location of MCS number 536 

peaks is misrepresented. However, we note that the good agreement is a result of less accurate 537 

tracking of MCSs. 538 

The PDFs of MCS properties over the central CONUS region are shown in Figure 10. In 539 

general, the statistics of MCS properties are comparable between the two observations. This is 540 

the case especially for cloud shield related properties such as CCS lifetime, maximum CCS area, 541 
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and minimum cloud-top Tb throughout the lifetime, which implies the small uncertainty in these 542 

observed CCS properties in different datasets. On the other hand, larger differences are found in 543 

the PDFs of precipitation related properties (i.e., maximum PF area, mean rain rate, rain volume, 544 

and heavy rain ratio). For instance, the IMERG data shows larger PF area and higher rain 545 

volume, but lower mean rain rate and heavy rain ratio compared to the ground-based 546 

measurements, consistent with previous studies (Cui et al., 2020; Zhang et al., 2021; Ayat et al., 547 

2021). Compared to the observations, it is similar to the tropical MCSs that the simulated CCS 548 

lifetime is longer than observed (Figure 10a) and the simulated cloud-top minimum Tb is warmer 549 

(Figure 10c) over the CONUS region. EAMv2 simulated MCSs contain substantially weaker rain 550 

rate (Figure 10e) and lower heavy rain ratio (Figure 10h) than observations. However, different 551 

from the tropical region, the simulated maximum CCS area and PF area are larger than both 552 

observations (Figures 10b and 10d), which leads to larger total and heavy rain volume within the 553 

MCS cloud shields (Figures 10f and 10g) over the CONUS. We note that the biases in rain rate 554 

and convective strength (i.e., implied by the minimum Tb) are the primary reasons for the 555 

underestimated MCS precipitation in the CONUS region. 556 

Figure 10 shows that the differences in observed MCS properties between two tracking 557 

methods are again insignificant, similar to the Indo-Pacific region (Figure 6). This indicates the 558 

robustness of the MCS tracking methods in identifying warm season MCSs in observations. On 559 

the other hand, the statistics of model simulated MCS properties are more sensitive to the MCS 560 

definition with precipitation. In contrast to the Indo-Pacific region, all the simulated MCS 561 

properties show large sensitivities to the MCS definition. The difference from the Indo-Pacific 562 

region exists in the maximum CCS area and PF area, which suggests the impact of MCS 563 

definition on CCS identification in the central U.S. But again, the simulated PF characteristics 564 
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such as the PF rain rate and heavy rain ratio are significantly weaker for MCSs defined with Tb 565 

than the combined method. Note that our analysis suggests that EAMv2 does not show an 566 

improvement in simulating MCSs compared to EAMv1, in which the MCS precipitation amount, 567 

frequency of occurrence, and number are all underestimated compared to observations from 568 

March to May (Wang et al., 2021).  569 

Similar MCS evaluation was made in Dong et al. (2023) to evaluate the GCM (uniform 570 

50 km horizontal resolution) simulated MCS properties in the CONUS region. Based on the 571 

MCS samples tracked using only Tb, they found that the model well reproduces the spatial 572 

distribution of occurrence frequency of MCS and the MCS duration, MCS strength, size, and 573 

movement speed. However, given the differences between two MCS tracking methods analyzed 574 

in the current study, without considering surface precipitation features in the MCS tracking 575 

might lead to different conclusions in the evaluation of model skills in simulating MCSs and 576 

associated precipitation characteristics. For example, large-scale predominantly stratiform 577 

precipitation associated with synoptical-scale cloud bands (e.g., low pressure or frontal systems) 578 

may be included in the sampled MCSs when surface precipitation is not accounted for. Together 579 

with the similar findings in the global analysis, our study suggests the importance of including 580 

precipitation characteristics in the MCS definition and tracking when evaluating MCS properties 581 

in GCMs.  582 

 583 

3.2. Impact of cloud and convection parameterizations 584 

The previous sections have shown that EAMv2 is not capable of reproducing the 585 

observed MCS properties in the tropics and the CONUS region. In this section, we examine four 586 

new cloud and convection parameterizations (described in Section 2.2) that are developed for 587 
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EAMv3 to see if these new developments will lead to an improvement in the E3SM simulated 588 

MCSs. The sensitivity tests on each of the four new features are examined to understand their 589 

individual impacts on the MCS simulation. Note that the sensitivity test with all new features 590 

combined was also examined. However, because the combined impact of all new features on 591 

MCS simulation is dominated by P3 and MAdj, we do not include this sensitivity experiment in 592 

this discussion. Based on the MCS evaluation in the earlier sections, we find that the MCS 593 

tracking method using only Tb overestimates the model’s capability in capturing MCSs for 594 

E3SMv2. Therefore, we focus our discussion on results using the more stringent MCS tracking 595 

method with both Tb and surface precipitation in this section.  596 

The spatial distribution of annual mean total precipitation and MCS precipitation 597 

differences between EAMv2 sensitivity experiments and the default EAMv2 physics (CTL 598 

hereafter) is shown in Figure 11. In general, the impact of these new cloud and convection 599 

schemes on the simulated total precipitation is minor over most regions for the MCSP and 600 

ZMmicro experiments, but noticeable impacts are found in the sensitivity experiments of P3 and 601 

MAdj. For example, using P3 cloud microphysics largely increases the total precipitation 602 

simulated over the subtropical western Pacific Ocean and SPCZ compared to CTL, but the total 603 

precipitation is decreased in the central and eastern Pacific Ocean and tropical Indian Ocean. 604 

Similar effects on total precipitation are also found with the cloud base mass flux adjustment test 605 

in the tropical ocean, but the changed precipitation amount is much smaller than P3. Meanwhile, 606 

the deep convective cloud microphysics in the ZM scheme only slightly increases tropical total 607 

precipitation, and the impact of MCSP is minimal.  608 

 Similar impact is seen in the simulated MCS precipitation. For example, P3 largely 609 

increases the MCS precipitation in the subtropical western Pacific Ocean while it leads to a 610 
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reduction in the Indian Ocean and equatorial central and eastern Pacific Ocean. It is interesting 611 

that MAdj leads to a reduction of MCSs over oceans globally, particularly over the ITCZ and 612 

SPCZ regions. The increased and decreased MCS precipitation due to P3 and MAdj both enlarge 613 

the existing MCS precipitation biases identified in CTL shown in Figure 2. We note that the 614 

reduced MCS precipitation in the ITCZ region is more significant for the MCSs defined using 615 

combined Tb and surface precipitation than the MCSs defined with Tb (not shown). By 616 

examining the PDF of hourly precipitation rate in the tropics where MCS precipitation 617 

substantially increased for P3 (Figures 12e), we indeed find that compared with CTL where 618 

MG2 is used, P3 tends to largely increase the occurrences of heavy precipitation rate (rain rate > 619 

5 mm hr
-1

) because of the accounted riming (Wang et al., 2021). The increased heavy 620 

precipitation rate becomes most comparable to observations among all sensitivity experiments. 621 

However, P3 presents less degree of improvement in simulated heavy rain rate compared to CTL 622 

over other regions (Figures 12d). This suggests that the change in simulated MCS precipitation is 623 

primarily driven by the variation in simulated heavy precipitation rate. On the other hand, the 624 

simulated frequency of heavy rain rate is significantly lower in MAdj than CTL. This explains 625 

why MCS precipitation becomes substantially weaker in the tropics in MAdj. The reduced heavy 626 

rain frequency in MAdj is possibly the result of more convection formation in the low CAPE 627 

environment using the new cloud base mass flux adjustment treatment. Both MCSP and 628 

ZMmicro show little impacts on MCS precipitation compared to CTL. 629 

To further diagnose the reasons of model behavior change in simulating tropical 630 

precipitation, Figure 13 shows the global annual mean relative contribution of convective 631 

precipitation to total precipitation in CTL and sensitivity experiments. It is shown in Figure 13a 632 

that the total precipitation is primarily generated by large-scale precipitation in the western 633 



Manuscript submitted to Journal of Geophysical Research: Atmospheres 

 29 

Pacific Ocean and tropical Indian Ocean, while the convective precipitation mainly contributes 634 

to the precipitation in the tropical eastern Pacific Ocean. The substantial contribution of large-635 

scale precipitation to total precipitation in CTL is somehow counterintuitive, particularly for the 636 

tropical convective systems. It also probably explains the underestimated heavy precipitation in 637 

simulated MCSs. In sensitivity experiments, it is interesting to note that both P3 and MAdj 638 

largely increase the convective precipitation fractions in the tropics compared to CTL. Although 639 

ZMmicro slightly decreases the convective precipitation fraction over the subtropical ocean in 640 

the southern hemisphere, the impacts of MCSP and ZMmicro on convective precipitation 641 

fraction is overall insignificant in the tropics. In addition, with larger convective precipitation 642 

fraction in P3 and MAdj, the occurrences of large convective precipitation rate are also increased 643 

compared to CTL (Figures 12c and 12f). However, the magnitude of convective precipitation 644 

rate remains lower than large-scale precipitation rate by more than a factor of 5. The increased 645 

convective precipitation fraction but the weak convective precipitation from P3 and MAdj 646 

suggest that the precipitation formation in convective scheme is likely not strong enough to 647 

produce sufficient heavy precipitation to be counted as MCSs, which therefore causes the 648 

underestimated MCS precipitation in the model. 649 

Figure 14 shows the individual impacts of new physics features on the total and MCS 650 

precipitation simulation over the CONUS region. In general, P3 microphysics tends to further 651 

worsen the underestimated total precipitation in the central U.S., except for Arkansas, Louisiana, 652 

and Mississippi, while all other three schemes generally show positive effects to increase 653 

simulated total precipitation compared to CTL. In terms of the simulated MCS precipitation, 654 

although P3, MCSP, and ZMmicro all tend to increase the MCS precipitation rate, the magnitude 655 

is too small to have a meaningful impact on the largely underestimated MCS in EAMv2.   656 
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In summary, the sensitivity experiments suggest that these newly implemented cloud and 657 

convection features are likely not to help improve the simulation of MCS in the next version of 658 

E3SM. A higher model resolution (i.e., km-scale) for the model to better resolve heavy 659 

precipitation processes for MCSs or the better representation of mesoscale dynamics and physics 660 

in cloud and convection parameterizations are needed.  661 

 662 

4. Summary and discussion 663 

This study evaluates the MCS simulation in EAMv2 model using uniform high resolution 664 

(~0.25) model configuration. We use the recently developed PyFLEXTRKR MCS tracking 665 

algorithm, which considers both cloud-top Tb and surface precipitation to track global MCS 666 

evolution and evaluate the statistics of MCS properties simulated in EAMv2 against 667 

observational datasets. The MCSs defined purely based on cloud-top Tb, which is commonly 668 

used in previous studies, are also examined to understand the impact of different MCS 669 

definitions on the MCS evaluation. 670 

In the tropical region, EAMv2 reasonably simulates the total precipitation in the 671 

equatorial central and eastern Pacific Ocean, but it underestimates the total precipitation over the 672 

tropical Indian Ocean and Maritime Continent region. For the simulated MCS precipitation, 673 

EAMv2 largely underestimates the tropical MCS precipitation compared to the observations. The 674 

underestimation is more substantial in the tropical Indian Ocean and Maritime Continent, 675 

indicating that the dry bias in the total precipitation over the region is primarily due to the lack of 676 

MCS precipitation. Simulated MCS precipitation fraction is thus also substantially 677 

underestimated. EAMv2 shows that the simulated frequency of occurrence is comparable to the 678 

observations in the central Pacific Ocean along the equator, while it substantially underestimates 679 
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MCS occurrences in the tropical Indian Ocean and Maritime Continent. The simulated MCS 680 

frequency of occurrence in the eastern equatorial Pacific Ocean, on the other hand, is found 681 

slightly higher than observations even though the MCS precipitation rate over the region is 682 

slightly underestimated. This is because the model CCS lifetime is longer than the observed 683 

MCSs. 684 

Over the CONUS region, EAMv2 also substantially underestimates the MCS 685 

precipitation rate and MCS precipitation occurrences in the central U.S. in both spring and 686 

summer seasons. Note that EAMv2 shows problems in simulating MCSs in both magnitude and 687 

location. We find that EAMv2 simulated MCS is dominant in the southeast U.S., but the model 688 

significantly misses the MCS occurrence in the central U.S.  689 

Our analysis also shows that the MCS number is substantially higher by using the Tb-only 690 

tracking, which includes cloud systems with weak surface precipitation that may not be 691 

associated with MCSs. As a result, the MCS precipitation amount and frequency are also largely 692 

increased by using the Tb tracking. The largest impact is found in the tropical Africa and 693 

Amazon lands and the southeast U.S., where simulated MCS number detected by Tb becomes 694 

comparable to the observations. This indicates using the Tb tracking method could overestimate 695 

the model’s capability in simulating MCSs. It is thus important to include precipitation 696 

characteristics in MCS definition when evaluating MCS properties in GCMs. It also points out 697 

that the biases in simulating MCSs in EAMv2 is mainly due to the underestimation of MCS 698 

precipitation intensity. Additionally, we also find that the simulated MCS number is slightly 699 

increased in the tropics when we reduce the lifetime-dependent tunable PF parameters (i.e., 700 

smaller slopes of coefs_pf_area, coefs_pf_rr, and coefs_pf_skew in Table A1) used in the 701 

tracking (not shown). This further suggests the sensitivity of simulated MCS number to the 702 
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precipitation associated tracking parameters. Compared to the MCS precipitation, the model can 703 

reasonably simulate the mesoscale cloud shield structures (CCS area) at 0.25 horizontal 704 

resolution.  705 

To examine the impact of model physics on the simulation of MCS, four sensitivity 706 

experiments are performed with the new cloud and convection parameterizations that are 707 

developed for EAMv3. These include the P3 microphysics, MCSP, convective cloud 708 

microphysics, and cloud base mass flux adjustment. Our analysis shows little impact on the 709 

simulation of MCSs using these new features at 0.25 horizontal resolution. Only the P3 cloud 710 

microphysics scheme presents a notable improvement in the simulated MCS precipitation in the 711 

subtropical western Pacific Ocean. This indicates that the MCS simulation will likely remain a 712 

challenge in the next version of EAM at the mesoscale resolution. However, it is interesting to 713 

note that both P3 and cloud base mass flux adjustment treatment largely increase the convective 714 

precipitation contribution to total precipitation in the tropics. This increased convective 715 

precipitation fraction is physically more reasonable, but the remaining issue in simulating heavy 716 

precipitation in MCSs is likely caused by the insufficient strong precipitation formation in the 717 

convective scheme.  718 

Over the CONUS region, P3, MCSP, and deep convective cloud microphysics all tend to 719 

enhance the simulated MCS precipitation in the central U.S., but the change is overall minimal. 720 

However, we note that Wang et al. (2021) suggested that the use of P3 scheme substantially 721 

improves the MCS number and precipitation over the CONUS region in the RRM version of 722 

E3SMv1. The minimal impact of P3 based on EAMv2 model configuration tested in this study 723 

suggests that the performance of parameterizations could also depend on model configurations 724 

and other physics parameterizations used in the model. Furthermore, our results are consistent 725 
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with Feng et al. (2021b) who also tracked MCS using both Tb and precipitation feature and found 726 

weak MCS precipitation intensity and underestimated MCS number over CONUS in simulations 727 

at 25 km and 50 km resolution. Tracking MCS using both Tb and precipitation in the NICAM 728 

(Nonhydrostatic ICosahedral Atmospheric Model) simulations at 14 km resolution, Na et al. 729 

(2022) also found underestimated MCS number over the CONUS during summer. Without the 730 

use of any cumulus parameterizations, the NICAM simulation produced stronger MCS 731 

precipitation, smaller precipitation area, and larger cold cloud system than those observed. Both 732 

Feng et al. (2021b) and Na et al. (2022) attributed the MCS biases over CONUS to the dry bias 733 

in the lower atmosphere. Recent studies suggested that the dry bias in the atmospheric boundary 734 

layer could result from biases in land surface models and land-atmosphere interactions (Barlage 735 

et al., 2021; Qin et al., 2023). Future direction of improving MCS simulation in E3SM involves 736 

both increasing model resolution to better resolve key dynamical processes and improving model 737 

physics to better represent MCSs. 738 
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Table 1. Model simulations used in evaluation. 1142 
 1143 

Model experiments Description 

CTL Default EAMv2 model simulation at 0.25 horizontal resolution. 

P3 Based on CTL, including P3 cloud microphysics scheme. 

ZMmicro Based on CTL, with two-moment cloud microphysics in ZM convection 

scheme. 

MCSP Based on CTL, with Multi-scale Coherent Structure Parameterization. 

MAdj Based on CTL, with cloud base mass flux adjustment treatment in ZM 

convection scheme. 
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 1148 

Table 2. Observations used in evaluation. 1149 
 1150 

Data name Horizontal 

resolution 

Coverage area Data period  Note for MCS 

tracking 

NASA Global 

Merged IR V1 

infrared Tb 

product 

4 km 60S-60N 2005-2009 Used as the Tb data 

source for both 

global and CONUS 

MCS tracking 

GPM Integrated 

Multi-satelliteE 

Retrievals 

(IMERG) V06B 

precipitation data 

10 km 60S-60N 2005-2009 Used as surface 

precipitation data 

source for global 

MCS tracking 

NEXRAD radar 

and Stage IV 

multisensor 

precipitation data 

4 km CONUS 2005-2009 Used as surface 

precipitation data 

source for CONUS 

MCS tracking 

Note: Tb and precipitation data are regridded to 0.25 (~25 km) horizontal resolution to match 1151 
the model grid spacing. 1152 
 1153 
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 1154 
Figure 1. Maps of annual mean total precipitation amount (a, b), MCS precipitation amount 1155 
defined with Tb and precipitation tracking method (c, d), MCS precipitation amount defined with 1156 
Tb only tracking method (e, f), The IMERG observation is shown on the left while EAMv2 1157 
simulation is on the right. Model and observations cover between 2005 and 2009. 1158 
 1159 

 1160 

 1161 
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 1162 
Figure 2. Maps of annual mean total precipitation bias (a), MCS precipitation bias defined using 1163 
Tb and surface precipitation (b), MCS precipitation bias defined using Tb only in EAMv2 1164 
compared to the IMERG observation. The MCS precipitation difference between two tracking 1165 
methods is shown in (d) for the IMERG observation and (e) for EAMv2. The MCS precipitation 1166 
differences in (d) and (e) are calculated by subtracting Tb and precipitation combined method 1167 
from Tb only method for tracked MCSs. 1168 
 1169 
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 1170 
Figure 3. Maps of annual mean MCS precipitation fraction defined using Tb and surface 1171 
precipitation (a, b) and MCS precipitation fraction defined using Tb only (c, d). The IMERG 1172 
observation is shown on the left and EAMv2 simulation is shown on the right. (e) shows the 1173 
MCS precipitation fraction bias defined using Tb and precipitation, which is (b) minus (a). (f) 1174 
shows the MCS precipitation fraction difference between two tracking methods in EAMv2, 1175 
which is (d) minus (b). The MCS precipitation fraction is calculated by dividing MCS 1176 
precipitation by total precipitation. 1177 
 1178 

 1179 

 1180 

 1181 
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 1182 
 1183 
Figure 4. Maps of annual mean MCS precipitation frequency defined using Tb and surface 1184 
precipitation (a, b) and MCS precipitation frequency defined using Tb only (c, d). The IMERG 1185 
observation is shown on the left and EAMv2 simulation is shown on the right. (e) shows the 1186 
MCS precipitation frequency bias defined using Tb and precipitation, which is (b) minus (a). (f) 1187 
shows the MCS precipitation frequency difference between two tracking methods in EAMv2, 1188 
which is (d) minus (b). MCS precipitation frequency is defined as the ratio of total hours of MCS 1189 
precipitation to total hours between 2005-2009. 1190 
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 1191 
Figure 5. Maps of annual mean MCS number defined using Tb and surface precipitation (a, b) 1192 
and MCS number defined using Tb only (c, d). The IMERG observation is shown on the left and 1193 
EAMv2 simulation is shown on the right. (e) shows the MCS number bias defined using Tb and 1194 
precipitation, which is (b) minus (a). (f) shows the MCS number difference between two tracking 1195 
methods in EAMv2, which is (d) minus (b). MCS number is counted as the number of unique 1196 
latitude/longitude pairs of each MCS track within the 5° × 10° latitude/longitude grids. 1197 
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 1198 
Figure 6. The PDFs of (a) cold cloud system lifetime, (b) maximum cold cloud system area 1199 
throughout the MCS lifetime, (c) minimum cloud top brightness temperature throughout the 1200 
MCS lifetime, (d) maximum precipitation feature area, (e) mean rain rate within the precipitation 1201 
feature domain, (f) total rain volume, (g) heavy rain (rain rate > 2 mm h

-1
) volume, and (h) heavy 1202 

rain volume ratio over the Indo-Pacific region. Black lines represent the IMERG observation, 1203 
and red lines represent the EAMv2 model simulation. Solid lines are for MCSs defined using 1204 
combined Tb and surface precipitation, and dashed lines are for MCSs defined using only Tb. The 1205 
PDFs are calculated in the Indo-Pacific domain indicated by the green box in panel (d). 1206 
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 1207 
Figure 7. Maps of mean total precipitation amount (a-c), MCS precipitation amount defined 1208 
using combined Tb and surface precipitation (d-f), and MCS precipitation amount defined using 1209 
only Tb (g-i) from March to August between 2005 and 2009 over the CONUS region. 1210 
Precipitation observations from the Stage IV precipitation gauge (left) and from the IMERG 1211 
satellite retrieval (middle) are compared with the EAMv2 simulations (right).  1212 
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 1213 
Figure 8. Maps of mean MCS precipitation frequency defined using combined Tb and surface 1214 
precipitation (a-c) and MCS defined using only Tb (d-f) from March to August between 2005 and 1215 
2009 over the CONUS region. Observations from the Stage IV precipitation gauge (left) and 1216 
from the IMERG satellite retrieval (middle) are compared with the EAMv2 simulations (right). 1217 
 1218 
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 1219 
Figure 9. Maps of mean MCS number of MCS defined using combined Tb and surface 1220 
precipitation (a-c) and MCS defined using only Tb (d-f) over the CONUS region. Observations 1221 
from the Stage IV precipitation gauge (left) and from the IMERG satellite retrieval (middle) are 1222 
compared with the EAMv2 simulations (right). The MCS number is calculated as the number of 1223 
unique latitude/longitude pairs of each MCS track within the 1° × 1° latitude/longitude grids 1224 
from March to August between 2005 and 2009. 1225 
 1226 

 1227 
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 1228 
Figure 10. Same as Figure 6, but the PDFs are calculated in the central U.S. domain shown in 1229 
panel (d). Black lines represent observations using ground-based measurements. Blue lines 1230 
represent the IMERG precipitation data. Black lines represent EAMv2 model simulations. 1231 
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 1232 
Figure 11. Maps of annual mean total precipitation rate difference (a-d) and MCS precipitation 1233 
rate difference defined using combined Tb and surface precipitation (e-h) between 2005 and 1234 
2009. (a)-(d) and (e)-(h) are the differences between individual new physics feature (i.e., P3 1235 
cloud microphysics, MCSP, convective microphysics scheme in ZM, and cloud base mass flux 1236 
adjustment) and CTL simulations, respectively. White and red boxes are the areas used to 1237 
calculate rain rate PDFs in Figure 13. 1238 
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 1239 
Figure 12. Probability density functions of hourly total, large-scale, and convective precipitation 1240 
rates between 2005 and 2009 sampled over the white box domain (a-c) and red box domain (d-f) 1241 
in Figure 11. The IMERG observation and EAMv2 model simulations with CTL and new 1242 
physics features are shown. 1243 
 1244 
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 1245 
Figure 13. Maps of annual mean convective precipitation fraction in the default EAMv2 model 1246 
(CTL) between 2005 and 2009, and the convective precipitation fraction difference (b-e) 1247 
between individual new physics feature (i.e., P3 cloud microphysics, MCSP, convective 1248 
microphysics scheme in ZM, and cloud base mass flux adjustment) and CTL simulations, 1249 
respectively. Convective precipitation fraction is calculated as the contribution of hourly 1250 
convective precipitation rate to total precipitation rate in the model. 1251 
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 1252 
 1253 
Figure 14. Same as Figure 11, but for the CONUS region from March to August between 2005 1254 
and 2009. 1255 


