Figure 2 : Experimental rupture dynamics along a frictional fault.
A, A schematic representation of an experimental system where two
contacting acrylic blocks form a frictional interface. A normal force,\(F_{N}\), (typically 3 MPa) is applied initially, then shear force,\(F_{S}\), is increased quasi-statically until the development of
stick-slip ruptures and frictional sliding. The rupture propagation
velocity and strains are monitored by real-time measurements of the
interface contact area with an optical method (Svetlizky & Fineberg,
2014), and a rapid measurements (1MHz rate) of the strain gauges (green
squares). B. The measured shear stresses along the interface prior
to rupture is presented for nine experiments conducted for identical
values of \(F_{N}\). The shown over-stresses, \(\Delta\tau\), are the
shear stress values in excess of the residual stress, \(\tau_{R}\), that
is measured in the wake of the rupture front. For each of these stress
profiles, a rupture was nucleated and propagated along the fault
(Svetlizky et al., 2017). C. The rupture propagation velocity,Cf , and acceleration along the interface of the
nine experiments in (B); shown the \(C_{f}\) normalize by the limiting
wave speed, \(C_{R}\) for ruptures. D. Using the equation of motion
(energy balance) predicted by fracture mechanics, all of the different
velocity measurements collapse onto a single curve (black line) that
depends on the ratio of the available elastic energy \(G_{S}\) and the
fracture energy, \(\Gamma\). Note that there are no adjustable
parameters to the theory’s predictions.
REFERENCES
Barras, F., Aldam, M., Roch, T., Brener, E., Bouchbinder, E., &
Molinari, J. (2020). The emergence of crack-like behavior of frictional
rupture: Edge singularity and energy balance. Earth and Planetary
Science Letters, 531. https://doi.org/10.1016/j.epsl.2019.115978
Bayart, E., Svetlizky, I., & Fineberg, J. (2016). Fracture mechanics
determine the lengths of interface ruptures that mediate frictional
motion. Nature Physics, 12(2), 166-170.
https://doi.org/10.1038/NPHYS3539
Ben-David, O., & Fineberg, J. (2011). Static Friction Coefficient Is
Not a Material Constant. Physical Review Letters, 106(25), 254301.
https://doi.org/10.1103/PhysRevLett.106.254301
Ben-David, O., Cohen, G., & Fineberg, J. (2010). The Dynamics of the
Onset of Frictional Slip. Science, 330(6001), 211–214.
https://doi.org/10.1126/science.1194777
Ben-Zion, Y. (2019). A Critical Data Gap in Earthquake Physics.
Seismological Research Letters, 90, 1721-1722
https://doi.org/10.1785/0220190167
Chen, X., Elwood Madden, A. S., & Reches, Z. (2017). The frictional
strength of talc gouge in high‐velocity shear experiments. J Geophysical
Research: Solid Earth, 122(5), 3661-3676.
Chen, X, Chitta, S. S., Zu, X., & Reches, Z. (2021). Dynamic fault
weakening during earthquakes: Rupture or friction? Earth and Planetary
Science Letters, 575, 117165. https://doi.org/10.1016/j.epsl.2021.117165
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi,
K., et al. (2011). Fault lubrication during earthquakes. Nature,
471(7339), 494-498.
Dieterich, J. H. (1979). Modeling of Rock Friction .1. Experimental
Results and Constitutive Equations. J Geophysical Research, 84(B5),
2161–2168.
Freund, L. B. (1998). Dynamic fracture mechanics. Cambridge university
press.
Griffith, A. A. (1920). The phenomena of rupture and flow in solids.
Phil. Trans. Roy. Soc, A221, 163–198.
Gvirtzman, S., & Fineberg, J. (2021). Nucleation fronts ignite the
interface rupture that initiates frictional motion. Nature Physics,
17(9), 1037-1042. https://doi.org/10.1038/s41567-021-01299-9
Heesakkers, V., Murphy, S. K., & Reches, Z. (2011). Earthquake Rupture
at Focal Depth, Part I: Structure and Rupture of the Pretorius Fault,
TauTona Mine, South Africa. Pure and Applied Geophysics, 168,
2395–2425.
Hirose, T., & Shimamoto, T. (2005). Growth of molten zone as a
mechanism of slip weakening of simulated faults in gabbro during
frictional melting. J Geophysical Research: Solid Earth, 110(B5).
https://doi.org/10.1029/2004JB003207
Ide, S., Baltay, A., & Beroza, G. C. (2011). Shallow Dynamic Overshoot
and Energetic Deep Rupture in the 2011 Mw 9.0 Tohoku-Oki Earthquake.
Science, 332(6036), 1426–1429. https://doi.org/10.1126/science.1207020
Kanamori, H., & Brodsky, E. E. (2004). The physics of earthquakes.
Reports on Progress in Physics, 67(8), 1429–1496.
Lapusta, N., & Rice, J. R. (2003). Nucleation and early seismic
propagation of small and large events in a crustal earthquake model. J
Geophysical Research-Solid Earth, 108(B4), 2205.
Lucier, A. M., Zoback, M. D., Heesakkers, V., Reches, Z., & Murphy, S.
K. (2009). Constraining the far-field in situ stress state near a deep
South African gold mine. International J Rock Mechanics and Mining
Sciences, 46(3), 555–567. https://doi.org/10.1016/j.ijrmms.2008.09.005
Madariaga, R., Olsen, K., & Archuleta, R. (1998). Modeling dynamic
rupture in a 3D earthquake fault model. Bulletin of the Seismological
Society of America, 88(5), 1182–1197.
Moore, D. & Rymer, M. (2007). Talc-bearing serpentinite and the
creeping section of the San Andreas fault. Nature, 448, 795–797.
Muhuri, S. K., Dewers, T. A., Scott, T. E., & Reches, Z. (2003).
Interseismic fault strengthening and earthquake-slip instability:
Friction or cohesion? Geology, 31, 881–884.
Palmer, A., C., & Rice, J., R. (1973). The Growth of Slip Surfaces in
the Progressive Failure of Over-Consolidated Clay. Proceedings of The
Royal Society A: Mathematical, Physical and Engineering Sciences,
332(1591 DO–10.1098/rspa.1973.0040), 527–548.
Passelegue, F. X., Almakari, M., Dublanchet, P., Barras, F., Fortin, J.,
& Violay, M. (2020). Initial effective stress controls the nature of
earthquakes. Nature Communications, 11(1), 1-8.
https://doi.org/10.1038/s41467-020-18937-0
Reches, Z., & Dewers, T. A. (2005). Gouge formation by dynamic
pulverization during earthquake rupture. Earth and Planetary Science
Letters, 235(1), 361–374. https://doi.org/10.1016/j.epsl.2005.04.009
Savage, J. C., Byerlee, J. D., & Lockner, D. A. (1996). Is internal
friction friction? Geophysical Research Letters, 23(5), 487–490.
https://doi.org/10.1029/96GL00241
Svetlizky, I., & Fineberg, J. (2014). Classical shear cracks drive the
onset of dry frictional motion. Nature, 509(7499), 205-208.
https://doi.org/10.1038/nature13202
Svetlizky, I., Kammer, D. S., Bayart, E., Cohen, G., & Fineberg, J.
(2017). Brittle Fracture Theory Predicts the Equation of Motion of
Frictional Rupture Fronts. Physical Review Letters, 118(12), 125501.
https://doi.org/10.1103/PhysRevLett.118.125501
Wilson, B., Dewers, T., Reches, Z., & Brune, J. (2005). Particle size
and energetics of gouge from earthquake rupture zones. Nature,
434(7034), 749-752. https://doi.org/10.1038/nature03433
Wu, B. S., & McLaskey, G. C. (2019). Contained Laboratory Earthquakes
Ranging From Slow to Fast. J Geophysical Research-Solid Earth, 124(10),
10270–10291. https://doi.org/10.1029/2019JB017865
Xu, S., Fukuyama, E., & Yamashita, F. (2019). Robust Estimation of
Rupture Properties at Propagating Front of Laboratory Earthquakes. J
Geophysical Research-Solid Earth, 124(1), 766-787.
https://doi.org/10.1029/2018JB016797
Ulrich, T., Gabriel, A. A., Ampuero, J. P., & Xu, W. (2019). Dynamic
viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal
faults. Nature communications, 10(1), 1-16.