Figure 2 : Experimental rupture dynamics along a frictional fault. A, A schematic representation of an experimental system where two contacting acrylic blocks form a frictional interface. A normal force,\(F_{N}\), (typically 3 MPa) is applied initially, then shear force,\(F_{S}\), is increased quasi-statically until the development of stick-slip ruptures and frictional sliding. The rupture propagation velocity and strains are monitored by real-time measurements of the interface contact area with an optical method (Svetlizky & Fineberg, 2014), and a rapid measurements (1MHz rate) of the strain gauges (green squares). B. The measured shear stresses along the interface prior to rupture is presented for nine experiments conducted for identical values of \(F_{N}\). The shown over-stresses, \(\Delta\tau\), are the shear stress values in excess of the residual stress, \(\tau_{R}\), that is measured in the wake of the rupture front. For each of these stress profiles, a rupture was nucleated and propagated along the fault (Svetlizky et al., 2017). C. The rupture propagation velocity,Cf , and acceleration along the interface of the nine experiments in (B); shown the \(C_{f}\) normalize by the limiting wave speed, \(C_{R}\) for ruptures. D. Using the equation of motion (energy balance) predicted by fracture mechanics, all of the different velocity measurements collapse onto a single curve (black line) that depends on the ratio of the available elastic energy \(G_{S}\) and the fracture energy, \(\Gamma\). Note that there are no adjustable parameters to the theory’s predictions.
REFERENCES
Barras, F., Aldam, M., Roch, T., Brener, E., Bouchbinder, E., & Molinari, J. (2020). The emergence of crack-like behavior of frictional rupture: Edge singularity and energy balance. Earth and Planetary Science Letters, 531. https://doi.org/10.1016/j.epsl.2019.115978
Bayart, E., Svetlizky, I., & Fineberg, J. (2016). Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion. Nature Physics, 12(2), 166-170. https://doi.org/10.1038/NPHYS3539
Ben-David, O., & Fineberg, J. (2011). Static Friction Coefficient Is Not a Material Constant. Physical Review Letters, 106(25), 254301. https://doi.org/10.1103/PhysRevLett.106.254301
Ben-David, O., Cohen, G., & Fineberg, J. (2010). The Dynamics of the Onset of Frictional Slip. Science, 330(6001), 211–214. https://doi.org/10.1126/science.1194777
Ben-Zion, Y. (2019). A Critical Data Gap in Earthquake Physics. Seismological Research Letters, 90, 1721-1722 https://doi.org/10.1785/0220190167
Chen, X., Elwood Madden, A. S., & Reches, Z. (2017). The frictional strength of talc gouge in high‐velocity shear experiments. J Geophysical Research: Solid Earth, 122(5), 3661-3676.
Chen, X, Chitta, S. S., Zu, X., & Reches, Z. (2021). Dynamic fault weakening during earthquakes: Rupture or friction? Earth and Planetary Science Letters, 575, 117165. https://doi.org/10.1016/j.epsl.2021.117165
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., et al. (2011). Fault lubrication during earthquakes. Nature, 471(7339), 494-498.
Dieterich, J. H. (1979). Modeling of Rock Friction .1. Experimental Results and Constitutive Equations. J Geophysical Research, 84(B5), 2161–2168.
Freund, L. B. (1998). Dynamic fracture mechanics. Cambridge university press.
Griffith, A. A. (1920). The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc, A221, 163–198.
Gvirtzman, S., & Fineberg, J. (2021). Nucleation fronts ignite the interface rupture that initiates frictional motion. Nature Physics, 17(9), 1037-1042. https://doi.org/10.1038/s41567-021-01299-9
Heesakkers, V., Murphy, S. K., & Reches, Z. (2011). Earthquake Rupture at Focal Depth, Part I: Structure and Rupture of the Pretorius Fault, TauTona Mine, South Africa. Pure and Applied Geophysics, 168, 2395–2425.
Hirose, T., & Shimamoto, T. (2005). Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. J Geophysical Research: Solid Earth, 110(B5). https://doi.org/10.1029/2004JB003207
Ide, S., Baltay, A., & Beroza, G. C. (2011). Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 332(6036), 1426–1429. https://doi.org/10.1126/science.1207020
Kanamori, H., & Brodsky, E. E. (2004). The physics of earthquakes. Reports on Progress in Physics, 67(8), 1429–1496.
Lapusta, N., & Rice, J. R. (2003). Nucleation and early seismic propagation of small and large events in a crustal earthquake model. J Geophysical Research-Solid Earth, 108(B4), 2205.
Lucier, A. M., Zoback, M. D., Heesakkers, V., Reches, Z., & Murphy, S. K. (2009). Constraining the far-field in situ stress state near a deep South African gold mine. International J Rock Mechanics and Mining Sciences, 46(3), 555–567. https://doi.org/10.1016/j.ijrmms.2008.09.005
Madariaga, R., Olsen, K., & Archuleta, R. (1998). Modeling dynamic rupture in a 3D earthquake fault model. Bulletin of the Seismological Society of America, 88(5), 1182–1197.
Moore, D. & Rymer, M. (2007). Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature, 448, 795–797.
Muhuri, S. K., Dewers, T. A., Scott, T. E., & Reches, Z. (2003). Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion? Geology, 31, 881–884.
Palmer, A., C., & Rice, J., R. (1973). The Growth of Slip Surfaces in the Progressive Failure of Over-Consolidated Clay. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 332(1591 DO–10.1098/rspa.1973.0040), 527–548.
Passelegue, F. X., Almakari, M., Dublanchet, P., Barras, F., Fortin, J., & Violay, M. (2020). Initial effective stress controls the nature of earthquakes. Nature Communications, 11(1), 1-8. https://doi.org/10.1038/s41467-020-18937-0
Reches, Z., & Dewers, T. A. (2005). Gouge formation by dynamic pulverization during earthquake rupture. Earth and Planetary Science Letters, 235(1), 361–374. https://doi.org/10.1016/j.epsl.2005.04.009
Savage, J. C., Byerlee, J. D., & Lockner, D. A. (1996). Is internal friction friction? Geophysical Research Letters, 23(5), 487–490. https://doi.org/10.1029/96GL00241
Svetlizky, I., & Fineberg, J. (2014). Classical shear cracks drive the onset of dry frictional motion. Nature, 509(7499), 205-208. https://doi.org/10.1038/nature13202
Svetlizky, I., Kammer, D. S., Bayart, E., Cohen, G., & Fineberg, J. (2017). Brittle Fracture Theory Predicts the Equation of Motion of Frictional Rupture Fronts. Physical Review Letters, 118(12), 125501. https://doi.org/10.1103/PhysRevLett.118.125501
Wilson, B., Dewers, T., Reches, Z., & Brune, J. (2005). Particle size and energetics of gouge from earthquake rupture zones. Nature, 434(7034), 749-752. https://doi.org/10.1038/nature03433
Wu, B. S., & McLaskey, G. C. (2019). Contained Laboratory Earthquakes Ranging From Slow to Fast. J Geophysical Research-Solid Earth, 124(10), 10270–10291. https://doi.org/10.1029/2019JB017865
Xu, S., Fukuyama, E., & Yamashita, F. (2019). Robust Estimation of Rupture Properties at Propagating Front of Laboratory Earthquakes. J Geophysical Research-Solid Earth, 124(1), 766-787. https://doi.org/10.1029/2018JB016797
Ulrich, T., Gabriel, A. A., Ampuero, J. P., & Xu, W. (2019). Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults. Nature communications, 10(1), 1-16.