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Key Points:

• Emulators of global surface temperature calibrated to individual climate
models can generate large errors in past and future predictions.

• Emulation errors are not systematically related to model parameters mean-
ing they cannot be predicted.

• Rigorous out-of-sample evaluation is necessary to characterize emulator
performance.

Abstract

Climate model emulators are widely used to generate temperature projections
for climate scenarios, including in the recent IPCC Sixth Assessment Report.
Here we evaluate the performance of a two-layer energy balance model in emu-
lating historical and future temperature projections from CMIP6 models. We
find that prediction errors can be large (greater than 0.5oC in a given year)
and differ markedly between climate models, forcing scenarios and time peri-
ods. Errors arise in emulating the near-surface temperature response to both
greenhouse gas and aerosol forcing; in some periods the errors due to these
forcings oppose one another, giving the spurious impression of better emulator
performance. Time-varying and state-dependent feedbacks may contribute to
prediction errors. Close emulations can be produced for a given period but,
crucially, this does not guarantee reliable emulations of other scenarios and pe-
riods. Therefore, rigorous out-of-sample evaluation is necessary to characterize
emulator performance.

Plain Language Summary

Complex climate models are state-of-the-art tools used to produce projections
of future climate but they are expensive and take a long time to run. Climate
model emulators are simple statistical or physically based models which can re-
produce projections from complex climate models at lower cost and more quickly.
In this study, we use a climate model emulator to reproduce projections of twen-
tieth and twenty-first century temperatures for eight complex climate models.
We show that close emulations can be produced for pre-defined climate scenar-
ios and time periods. Close emulations are not guaranteed, however, when the
emulator is used for other climate scenarios or other periods. This is important
because climate model emulators are frequently used to produce projections that
are not available from complex climate models. Evaluation of climate model em-
ulators and characterization of their uncertainties, therefore, should use data not
used in the calibration of the emulator.
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1 Introduction
Climate model emulators are simplified physical or statistical models that are
computationally efficient. Climate model emulators played a central role in
producing future global near-surface temperature projections for the Working
Group I Sixth Assessment Report (Forster et al. 2021; Lee et al. 2021) of the
Intergovernmental Panel on Climate Change (IPCC AR6). The IPCC AR6 used
climate model emulators to supplement simulations from coupled atmosphere-
ocean general circulation models (AOGCMs) extending available simulations
further into the future and projecting future climate scenarios not available
from AOGCMs. It is important, therefore, that the simplifying assumptions
used by emulators are rigorously tested so the robustness of their performance
is understood.

Physically based climate model emulators, such as energy balance models
(EBMs), use bulk physical relationships to emulate the large-scale behavior
of Earth’s climate system. For example, EBMs were used by Colman and
Soldatenko (2020) to investigate links between climate variability and climate
sensitivity and, by Modak and Mauritsen (2021) to investigate the probability
of occurrence of the 2000-2012 global warming hiatus.

Two-layer EBMs produce close emulations of idealized abrupt-4xCO2 and
1pctCO2 simulations from AOGCMs (e.g., “EBM-�” in Geoffroy et al. 2013b;
“held-two-layer-uom” in Nicholls et al. 2020). Differences between emulations
and AOGCM projections are generally greatest at times of pronounced change
in the rate of temperature increase. Such changes are associated with time-
varying feedbacks (Senior and Mitchell, 2000; Winton et al., 2010; Armour et
al., 2013; Dong et al., 2020; Dunne et al., 2020; Rugenstein et al., 2020; Dong
et al., 2021) which are caused by evolving spatial pattern effects in surface
temperature (Stevens 2016; Andrews et al., 2015; Rugenstein et al., 2016; Dong
et al., 2021) and non-linear state dependences in climate feedbacks (Good et
al., 2015; Rohrschneider et al., 2019; Bloch-Johnson et al., 2021). EBMs have
been enhanced to capture time-varying feedbacks: the Geoffroy et al. (2013b)
EBM includes an efficacy parameter for deep ocean heat uptake and the
“held-two-layer-uom” EBM also includes a state dependent feedback parameter
(Rohrschneider et al., 2019; Nicholls et al., 2020). These paradigms, however,
do not precisely capture the feedback changes in AOGCMs and contribute
to model structural error which is irreducible unless the EBM structure is
enhanced (e.g., extending a two-layer EBM to three or more layers (Cummins
et al., 2020)).

Assessments of emulator performance are more trustworthy when projections
are validated using data different from those used to calibrate the model pa-
rameters (out-of-sample validation). EBM parameters are frequently calibrated
using idealized step-forcing experiments (e.g., abrupt-4xCO2) with the param-
eters estimated using analytical methods (Geoffroy et al., 2013a) or statistical
methods (e.g., Cummins et al., 2020). The Coupled Model Intercomparison
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Project Phase 6 (CMIP6) (Eyring et al. 2016) historical and future shared
socio-economic pathway (SSP) projections for AOGCMs, therefore, are well
suited for assessing EBM emulator performance. They can be used to produce
out-of-sample assessments using realistic climate scenarios. Although climate
model emulators have been evaluated (e.g., Nicholls et al., 2020; Nicholls et
al., 2021), it is not known how well emulators perform for the latest CMIP6
(Eyring et al. 2016) AOGCMs using realistic, out-of-sample climate projections
and latest assessments of effective radiative forcing (ERF). Furthermore, the
contribution of irreducible model structural errors to total prediction error re-
mains poorly understood.

In this study, we evaluate the performance of a two-layer energy balance model
(EBM2) (Held et al. 2010; Geoffroy et al. 2013a, b) for emulating CMIP6
historical and future temperature trends using different EBM calibrations. We
calibrate the EBM2 parameters for specific periods and ERFs and evaluate the
temperature projections for subsequent periods and alternative ERF scenarios.
EBM2 is benchmarked against an impulse-response step model and a three-layer
EBM.

2 Methods and data
2.1 Impulse-response step model
We use a step model (Good et al. 2011) to provide a benchmark of EBM
emulator performance for temperature projections. The step-response function
for each AOGCM was derived by dividing the projected temperature changes
from a single realization of a CMIP6 abrupt-4xCO2 simulation by the radiative
forcing for 4xCO2 (Byrne & Goldblatt 2013). The step-response function was
smoothed using cubic splines, and linear regession (years 121-150) was used for
extrapolation beyond the 150 years of the abrupt-4xCO2 simulations. Temper-
ature projections from the step model were produced by convolution of annual
changes in ERF and the step-response functions.

2.2 Two-layer EBM
In the two-layer EBM (EBM2) (Held et al. 2010; Geoffroy et al. 2013a) the
upper layer represents the Earth’s atmosphere, land surface and ocean mixed
layer, and the lower layer represents the deep ocean. The rate of temperature
change in each model layer is determined from:

𝐶1
𝑑𝑇1
dt = 𝐹 + 𝜆𝑇1 − 𝜀𝛾(𝑇1 − 𝑇0) (1)

𝐶0
𝑑𝑇0
dt = 𝛾(𝑇1 − 𝑇0) (2)

Where C representations heat capacity, T temperature, F ERF, � the climate
feedback parameter and � the heat transfer coefficient between the upper layer
(layer 1) and the lower layer (layer 0). We follow the formulation of Geoffroy

3



et al. (2013b) which includes an efficacy parameter for deep ocean heat uptake
(�) to account for the forced pattern effect in surface temperature (Stevens et
al. 2016). As is commonplace (Geoffroy et al. 2013a, b; Gregory et al. 2015;
Cummins et al., 2020), the EBM2 parameters (Table S1) were calibrated for
each AOGCM using a single realization of a CMIP6 abrupt-4xCO2 simulation
(Table S1).

2.3 Calibration of EBM2 using linear optimization
As an alternative to abrupt-4xCO2 calibration, we use a linear optimization
algorithm (scipy.optimize.minimize v1.6.2) to optimize the � and � parameters by
minimizing the root mean squared error (RMSE) of the emulated temperatures
compared to the AOGCM. The temperature projections are less sensitive to
changes in the other EBM2 parameters (i.e., C0, C1, and �), so these parameters
are unchanged from their abrupt-4xCO2 calibrations. We also applied the linear
optimization methodology to the abrupt-4xCO2 simulations and affirmed the
calibrated parameter values of Geoffroy et al. (2013b).

2.4 Three-layer EBM
We use a three-layer EBM (EBM3) (Cummins et al. 2020) as a second bench-
mark for EBM2 performance. We follow the method of Cummins et al. (2020)
to calibrate EBM3 parameters for each AOGCM using a single realization of a
CMIP6 abrupt-4xCO2 simulation.

2.5 Data
We use projections of global annual mean near-surface temperature and radiative
fluxes at the top of atmosphere (TOA) from the CMIP6 archive. We emulate
temperatures for eight AOGCMs selected because data was available for the
CMIP6 experiments of interest. For projections of recent and future climate
change, the Historical and SSP experiments were used. The Detection and
Attribution Model Intercomparison Project (DAMIP) experiments (Gillett et
al. 2016) are used for projections of temperature change attributed to different
sources of ERF. RFMIP experiments (Pincus et al. 2016; Smith et al. 2021) are
used for estimates of ERF during the historical period and ERF projected to
2100 under SSP2-4.5. Following Forster et al. (2013), unforced drift is removed
from the AOGCM projections using the preindustrial control simulation.

3 Results
3.1 Historical period
EBM2 captures the increasing temperature trend during the twentieth century
and distinguishes between high and low climate sensitivity AOGCMs (Figure
1). In all EBM2 emulations, a proportion of the RMSE (~ 0.07 K) arises
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from interannual variations in the AOGCM ensemble means that is not cap-
tured in the emulations (there are three members in each AOGCM historical
ensemble). The performance of EBM2, however, varies substantially between
AOGCMs. There are instances of both large and small RMSE emulations for
both high and low climate sensitivity AOGCMs. For AOGCMs where there are
substantial differences between the emulations and the AOGCM projections,
the differences occur over different time periods. Differences are large for 1925-
1950 (HadGEM3-GC31-LL), for 1950-1975 (NorESM2-LM) and for 2000-2015
(HadGEM3-GC31-LL, IPSL-CM6A-LR, GFDL-ESM4 and NorESM2-LM). For
IPSL-CM6A-LR, temperatures are overestimated by the emulators throughout
1915-2014. Intriguingly, close emulation of temperatures in abrupt-4xCO2 does
not guarantee close emulation for the historical period (e.g. GFDL-ESM4), and
a relatively poor emulation of abrupt-4xCO2 does not prohibit close emulation
for the historical period (e.g. CNRM-CM6-1) (Figure S1).

The step model produces emulations with RMSEs equivalent to or less than em-
ulations from EBM2 in seven of the eight AOGCMs. The exception is NorESM2-
LM which has relatively large inter-annual variability and is the only model to
show an apparent cooling trend during years 20-50 of its abrupt-4xCO2 simula-
tion (Figure S1).

EBM3 performs better than EBM2 for abrupt-4xCO2, which is expected given
the additional timescales resolved by the third layer. The additional degrees
of freedom enable a much closer emulation of temperatures during years 10-
40 of the abrupt-4xCO2 experiment, a period when the rate of temperature
increase weakens rapidly (Figure S1). However, the improvement of EBM3
over EBM2 in the abrupt-4xCO2 experiment does not consistently translate
to the historical experiment. Indeed there are two AOGCMs for which EBM2
has smaller RMSEs than EBM3 (MIROC6 and IPSL-CM6A-LR). Both EBMs
overestimate temperatures for 1990-2014 in four of the eight AOGCMs and
generally produce larger RMSEs than the step model.
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Figure 1. Global mean temperature anomalies from a 1850-1900 baseline for
CMIP6 AOGCMs. The range between the ensemble maximum and minimum
temperature changes is shown by gray shading. Changes in temperatures are
forced by historical forcings during 1850-2014 and are shown for the period
1915-2014. RMSEs are calculated over 1915-2014.
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3.2 Roles of different forcings for near-surface temperature
change
In Figure 2 we focus on two AOGCMs with relatively large errors in their
emulations for the historical period (HadGEM3-GC31-LL and IPSL-CM6A-LR),
one AOGCM with relatively small errors (CanESM5), and one AOGCM whose
responses contrast with the other AOGCMs (NorESM2-LM).

Although EBM2 was calibrated using abrupt-4xCO2, errors predominantly arise
from emulation of the response to GHG forcing; in part because GHG has
the largest ERF. The EBM2 emulations overestimate the temperature increase
due to GHGs for HadGEM3-GC31-LL, IPSL-CM6A-LR and CanESM5 (even
though the CanESM5 historical fit is good). In contrast, the EBM2 emulation
underestimates the temperature response to GHGs for NorESM2-LM.

Emulation of the temperature response to aerosol forcing is the largest source
of error in one model (NorESM2-LM). For all models, errors associated with
aerosol forcing offset errors associated with GHG forcing. This cancellation
of errors gives a spurious impression of better performance for the historical
simulations. As shown for the combined forcings (Figure 1), the step model
produces closer emulations of temperature for both GHG and aerosol forcings.

Emulation of the temperature response to natural forcings is a small source of
error for the eight AOGCMs and the emulations are mostly within the spread
of the AOGCM ensemble (Figures 2 and S2). Although larger ensembles and
longer simulations are required to robustly assess the emulated response to vol-
canic forcing, thermal inertia of the EBM2 layers and allowance for rapid cloud
adjustments within RFMIP ERFs will contribute to closer emulations (Held et
al. 2010; Gregory et al. 2016).

7



Figure 2. As Figure 1, except that temperature changes are forced by histori-
cal greenhouse gas (top row), anthropogenic aerosol (middle row), and natural
(bottom row) forcings from RFMIP.

3.3 Alternative calibration of EBM2
To determine whether temperature emulations from EBM2 for the historical
period can be improved by changes to the fitted parameters alone, we apply
optimization (Section 2.3) to calibrate the � and � parameters (Figure 3, Tables
S2 and S3).

This improves the emulations for all models. The greatest improvement oc-
curs during 1980-2014 and the emulation of temperature during this period is
improved further if the optimization is amended to minimize the RMSE specifi-
cally over this period. The spread in emulated temperatures about the 1:1 line
is mainly driven by the small AOGCM ensemble sizes and is, therefore, simi-
lar for both EBM2 calibrations. Interannual variability is particularly large for

8



NorESM2-LM and the emulated temperatures have a low correlation with the
AOGCM temperatures for years prior to the 1980s when the climate response
to forcing is relatively weak.

The emulations of the net radiative flux at the TOA (N) (Figure 3) show that
close emulations of near-surface temperature can be produced despite poor em-
ulations of N. There is a large spread in the emulations of N about the 1:1 line
for all models. The emulation of N during the late twentieth/early twenty-first
century is poor for HadGEM3-GC31-LL and emulated N has a weak correla-
tion with its AOGCM for NorESM2-LM. Optimization does not improve the
emulation of N. There are small changes in emulated N for CanESM5 and
NorESM2-LM. The improved temperature emulations from the optimization
method for HadGEM3-GC31-LL and IPSL-CM6-LR come at the expense of
poorer emulations of N. This result is important because it demonstrates that
climate model emulators can produce reasonable simulations of near-surface
temperature change, but the evolution of ocean heat uptake and TOA energy
imbalance is incorrect demonstrating limitations to physical interpretation.

We also constrained the � and � parameters separately for GHG and aerosol
forcing using the DAMIP experiments. The constrained parameter values differ
for the two types of forcing (Tables S2 and S3). Constrained parameter values
also vary when RMSE is minimized over different periods of time.
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Figure 3. Projected changes in global mean temperature (top row) and en-
ergy balance at the TOA (N) (bottom row). Each panel shows changes in the
AOGCM (x-axis) against the EBM2 emulation (y-axis). Each point represents
an annual mean during 1915-2014.

3.4 Future near-surface temperature projections
We compare temperature emulations for the twenty-first century from EBM2
based on the different methods for calibrating � and � (Figure 4). Results are
shown for five of the eight AOGCMs where the most complete CMIP6 data is
available. Results for other models and experiments are shown in Figure S4.

The performance of the abrupt-4xCO2 calibration varies greatly between the
AOGCMs and typically performs worse than the step model (Figure S4). For
four of the AOGCMs, the emulations of SSP2-4.5 deteroriate during the twenty-
first century. The errors in the emulations are correlated with the magnitude
of the forcing and peak near the end of the twenty-first century for total and
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GHG forcing and early in the twenty-first century for aerosol forcing. The
exception is MIROC6 for which the abrupt-4xCO2 calibrated EBM2 performs
well throughout 1850-2100 and across the three simulations. For NorESM2-LM,
SSP2-4.5 is relatively closely emulated but SSP2-4.5-AER is not. Optimization
of the � and � parameters (the “1850-2100” calibration in Figure 4) yielded close
emulations for all of the AOGCMs and across the three experiments. Similarly
close emulations were also achieved by minimizing the RMSE over 2015-2100
(not shown). Minimizing the RMSE for the later years of the projection, when
the temperature anomalies are largest, is key.

The “1850-2014” calibration yields a close emulation of temperatures to 2014 but
errors increase strongly after the calibration period. Extending the calibration
period from 1850-2014 to 1850-2040 (not shown) does improve the emulation to
2040 but not always after 2040. Importantly, it does not mitigate the risk of
large emulation errors outside the calibration period and its impact varies greatly
between AOGCMs and between different experiments for the same AOGCM.

To investigate the impact of using a calibration from one experiment for a dif-
ferent experiment, the “1850-2100” calibration from SSP2-4.5 was applied to
the SSP2-4.5-GHG and SSP2-4.5-AER experiments (the “SSP2-4.5” calibration
in Figure 4). For both SSP2-4.5-GHG and SSP2-4.5-AER, the error for the
“SSP2-4.5” calibration is greater than for the “1850-2100” calibration. The im-
pact also varies between models and experiments in terms of the size of the
impact and its temporal behaviour. For CanESM5 for instance, the difference
in temperature emulation is evident early in the twentieth century for SSP2-4.5-
AER compared to early in the twenty-first century for SSP2-4.5-GHG. Bespoke
parameter calibrations for different ERF scenarios are necessary, therefore, to
achieve close emulations throughout 1850-2100. This result is important be-
cause it demonstrates that emulator performance can be poor for out-of-sample
predictions, yet there is no clear a priori way to know if this will be the case.
This poses a problem since the value of emulators lies in their use for creating
out-of-sample scenarios where AOGCM simulations do not exist and cannot be
readily performed.

The average of the emulations for individual models (Figure 4 “Ensemble mean”)
has relatively small RMSEs (except for the 1850-2014 calibration). This is due,
in part, to averaging of interannual variability across the ensemble of emulations.
Further, the ensemble mean generally has smaller RMSEs than an emulation
in which the ensemble mean ERF is used to emulate the ensemble temperature
projection (Figure 4 “Ensemble emulation”).

Finally, while the optimization method yields unique parameter solutions there
is a near linear trade-off between the � and � parameters when minimizing the
RMSE (Figure S5). For the same RMSE, there are solutions with a strong
feedback (�) with weak pattern effect (�), and solutions with a weak feedback with
strong pattern effect.This shows that optimized values for the � and � parameters
may not be robust estimates of climate feedback or the AOGCM pattern effect.
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Figure 4. Differences between EBM2 emulations and AOGCM temperature
projections. Rows show results for four calibrations of EBM2. Row B uses
� and � parameter values which minimize the RMSE for temperatures during
1850-2100. Similarly, row C uses parameter values which minimize the RMSE
during 1850-2014. In row D, EBM2 is calibrated to minimize the RMSE during
1850-2100 for SSP2-4.5 and this calibration is used to emulate SSP2-4.5-GHG
and SSP2-4.5-AER. For plotting, annual means are smoothed using a 21-year
moving average.

4 Discussion and conclusions
Our results show prediction errors in EBM2 for future global temperature pro-
jections vary greatly between AOGCMs, forcings, time periods and methods of
emulator calibration. The errors can be large, in many cases exceeding 20%. In
this section, we discuss: the implications of our results; how emulations from
EBM2 might be improved; and, the real-world relevance of our results.

We agree with Nicholls et al. (2021) that close emulation of the historical period
is not sufficient to guarantee reliable emulation of future temperature changes.
Late twentieth-century warming is suppressed by strong aerosol cooling (Smith
and Forster 2021) and opposing errors in the emulation of GHG and aerosol
forcings give a misleading impression of the accuracy of emulator performance.
Further, opposing trends in GHG and aerosol forcings during the twenty-first
century can cause a large divergence between AOGCM and EBM2 projections.
Nicholls et al. (2021) found that many climate model emulators do not re-
liably emulate future projections from AOGCMs for high emissions scenarios.
Our results also suggest that strong mitigation scenarios may not be reliably
emulated.

EBM2 calibration using the abrupt-4xCO2 simulation does not produce reliable
projections of historical warming for several AOGCMs. Although calibration
of the � and � parameters using optimization substantially reduces emulation
errors for time periods where an AOGCM simulation is available, optimization of
these parameters does not guarantee reliable out-of-sample projections. Further,
without an AOGCM projection for a given AOGCM and scenario, it is not
knowable if the EBM2 future projection will be reliable. This undermines trust
in the EBM2 future projections.

Incorporating time varying feedbacks and an unforced pattern effect into EBM2
could reduce emulation errors and improve the reliability of future projections.
Late twentieth-century warming has been suppressed by changes in the observed
sea surface temperature (SST) patterns and associated cloud feedbacks (An-
drews et al., 2018; Dong et al., 2021; Fueglistaler and Silvers, 2021) and future
warming could be affected by future changes in the pattern effect (Zhou et al.,
2021). Climate model simulations show that climate feedbacks weaken through
time in response to step-forcings and changes in feedbacks are associated with
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changes in SST patterns (e.g., Dong et al., 2020; Dunne et al. 2020). To in-
clude time varying feedbacks in EBM2, however, requires further research to
distinguish forced changes in feedbacks from unforced climate noise and to ex-
plicitly link global feedback changes to variations in SST patterns (e.g., using
SST anomalies for regions of tropical deep convection (Fueglistaler and Silvers
(2021)).

Improvements in the emulations by optimization of the � and � parameters could
be implicitly compensating for errors arising from being unable to cleanly sepa-
rate forcing and climate feedbacks in AOGCMs, as forcing estimates are depen-
dent on the method used (Forster et al. 2013; Sherwood et al. 2015; Larson and
Portmann 2016; Fredriksen et al. 2021). We used the latest estimates of ERF
derived from fixed-SST simulations but substantial uncertainty in ERF remains
(Forster et al. 2016; Dong et al. 2021).

We optimized the � and � parameters by minizing the RMSE for temperature.
Using the Hector emulator, Dorheim et al. (2020) show that minimizing errors
for temperature and ocean heat flux produces more physically plausible parame-
ter tunings than minimizing errors in temperature projections alone. Our initial
investigations minimizing RMSE for temperature and N, however, showed that
the emulation of historical temperatures was substantially worse than minimiz-
ing RMSE for temperature alone. Incorporating time varying feedbacks may
mitigate this issue. Machine learning could also provide new techniques for
calibrating and designing climate model emulators (Strobach and Bel, 2020;
Watson-Parris, 2020).

There are several reasons why some AOGCMs are closely emulated and others
not. First, some AOGCMs have greater symmetry in their responses to GHG
and aerosol forcings (Figure 2) and EBM2 assumes symmetric responses to op-
posing forcings. Second, optimization of the � and � parameters (for temperature)
yields closer emulations of N for some AOGCMs (Figure 3). Third, if EBM2
has a good representation of time varying feedbacks and the evolution of pat-
tern effects in a AOGCM, model structural error is smaller. Finally, with small
ensemble sizes, some of the variation in emulation errors arises from chance.

One approach for managing the variability in emulation errors between
AOGCMs is to use a multi-model ensemble. Multi-model ensembles can be
used to estimate structural uncertainty (e.g., Tebaldi and Knutti, 2007) and
typically offer improved skill over individual climate models (e.g., Hagedorn
et al. 2005). Our AOGCM ensemble is small, however, and we find that the
ensemble mean of AOGCM emulations does not perform as well as the best
AOGCM (Figure 4).

Our findings are relevant to observationally contrained climate model emulators
aiming to simulate real-world changes (e.g., Forster et al. 2021). Emulator
structural errors and uncertainties in inputs (e.g., ERF) are as relevant to real-
world emulations as to emulations of AOGCMs. Indeed, there are additional
challenges. There is only one realization of past climate and future climate is
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unknown. Observational large ensembles (McKinnon et al. 2017) could be used
to characterize uncertainty in emulating past climate. For future projections,
AOGCMs remain an essential tool for estimating out-of-sample prediction errors,
as done in this study, and enable the use of optimization techniques for emulator
calibration.
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