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Abstract14

In the context of space weather forecasting, solar EUV irradiance specification is needed15

on multiple time scales, with associated uncertainty quantification for determining the16

accuracy of downstream parameters. Empirical models of irradiance often rely on para-17

metric fits between irradiance in several bands and various solar indices. We build upon18

these empirical models by using Generalized Additive Models (GAMs) to represent so-19

lar irradiance. We apply the GAM approach in two steps: (1) A GAM is fitted between20

FISM2 irradiance and solar indices F10.7, Revised Sunspot Number, and the Lyman-21

α solar index. (2) A second GAM is fit to model the residuals of the first GAM with re-22

spect to FISM2 irradiance. We evaluate the performance of this approach during Solar23

Cycle 24 using GAMs driven by known solar indices as well as those forecasted 3 days24

ahead with an autoregressive modeling approach. We demonstrate negligible dependence25

of performance on solar cycle and season, and we assess the efficacy of the GAM approach26

across different wavelengths.27

Plain Language Summary28

Modeling solar irradiance at extreme ultraviolet wavelengths is very important for29

describing the behavior of the upper atmosphere. Many empirical models represent so-30

lar irradiance by describing it as linearly-dependent on measurements of other quanti-31

ties that are very strongly correlated with it. These methods have shown great promise,32

but require building their models from many sources of data. We build upon these meth-33

ods by showing that using only four sources of data (three solar proxies and irradiance34

from the FISM2 model), solar extreme ultraviolet irradiance can be modeled in differ-35

ent wavelengths efficiently. We use Generalized Additive Models (GAMs) for our approach,36

which are used to describe irradiance in terms of a sum of smooth functions of solar prox-37

ies. We show how this approach can be used to forecast solar EUV irradiance.38

1 Introduction39

Accurately describing space weather effects on the upper atmosphere is of critical40

importance for space situational awareness, satellite collision avoidance, safeguarding the41

electrical power grid, and protecting astronauts (Bussy-Virat et al., 2018). A key com-42

ponent of space weather operations involves describing the variability and effects of so-43

lar extreme ultraviolet (EUV) radiation, nearly all of which is absorbed in the thermo-44

sphere and serves as the dominant driver of energy input into the upper atmosphere dur-45

ing geomagnetic quiet times ((Stolarski et al., 1975; P. Richards et al., 1981)). Solar EUV46

irradiance additionally plays a central role in modulating the global variation of total47

electron content (TEC) (Hocke (2008); Lean et al. (2011)) and in driving the thermo-48

sphere response at multiple timescales (Guo et al., 2007).49

Until the advent of endeavors such of SOLSTICE aboard the Upper Atmospheric50

Research Satellite (UARS) in 1991 (Reber et al., 1993), the SOlar Radiation and Cli-51

mate Experiment (SORCE) in 2003 (Rottman, 2005), and the TIMED/SEE mission in52

2001 (Woods, Bailey, et al., 2000), regular and semi-continuous measurements of solar53

EUV irradiance were not obtainable. As a result, solar proxies well-correlated with so-54

lar EUV irradiance which can be measured from the ground, such as F10.7 (Tapping,55

2013), have seen regular usage due to their operational availability, and are routinely used56

as inputs for Ionosphere-Thermosphere models such as NRLMSISE 2.0 (Emmert et al.,57

2021) and Thermosphere Ionosphere Electrodynamics General Circulation Model (Cai58

et al., 2022). While these solar proxies have demonstrated applicability in downstream59

modeling for representing thermospheric and ionospheric climatology, they suffer from60

some important limitations, including:61
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1. Each solar index is best described as a proxy for solar processes occurring either62

in the photosphere, chromosphere, transition region, corona, or a combination of63

some of these regions, limiting their ability to capture the entire swath of varia-64

tion throughout the entire EUV range (To et al., 2023).65

2. The emissions most strongly correlated with each solar index are absorbed in dif-66

ferent regions of the thermosphere and mesosphere, resulting in either increasingly67

complex parameterization for their ingestion into atmospheric models and non-68

trivial impacts on quantification of uncertainty in derived thermospheric temper-69

atures and densities (Thayer et al., 2021).70

3. The indices struggle to capture variation of solar irradiance both beyond timescales71

of ∼27 days, on the order of hours ((de Wit et al., 2008; Tapping & Charrois, 1994)),72

and do not capture the influence of solar flares inherent in EUV measurements (Pawlowski73

& Ridley, 2008).74

These limitations have led to observed discrepancies in model performance when using75

different indices, especially when representing TEC (Tariku, 2019). More significantly,76

in the context of blackouts in solar proxies, it is possible to reconstruct those proxies for77

operational usage using solar radio measurements in neighboring wavelengths (Elvidge78

et al., 2023), which provides additional robustness for space situational awareness, but79

exacerbates the effects of the already inherent limitations of the index due to imperfect80

reconstruction.81

In response to some of these concerns, empirical models of solar EUV irradiance82

have been developed, the outputs of which can be ingested into coupled atmospheric mod-83

els such as the Global Ionosphere Thermosphere Model (GITM) (Ridley et al., 2006).84

The EUVAC model (P. Richards et al., 1994) is one such model that has seen regular85

used since its inception, and was succeeded by HEUVAC (P. G. Richards et al., 2006),86

which featured increased spectral resolution and flexible wavelength binning. Both mod-87

els were developed based on a parameterization of F10.7, 81-day averaged F10.7 and the88

F74113 quiet sun reference spectrum derived from rocket measurements during the 1960s89

and 1970s (Heroux & Hinteregger, 1978). Other paradigms include the GOES-R EUVS90

model developed by the National Oceanic and Atmospheric Administration (NOAA) (Thiemann91

et al., 2019), the SOLAR2000 empirical solar irradiance model and forecast tool, which92

was implemented with the development of the E10.7 solar EUV proxy derived from the93

time-dependent integrated solar EUV flux at the top of the terrestrial atmosphere (Tobiska94

et al., 2000), and the Flare Irradiance Spectrum Model (FISM) (Chamberlin et al., 2007).95

The current iteration, FISM2 (Chamberlin et al., 2020), includes a daily component and96

a flare component, and improved empirical modeling due to the incorporation of mea-97

surements from the Solar Dynamics Observatory (SDO)/Extreme Ultraviolet Variabil-98

ity Experiment (EVE), SORCE/X-ray Photometer System (XPS), and SORCE/Solar99

Stellar Irradiance Comparison Experiment (SOLSTICE).100

This work shows the suitability of FISM2 outputs for operational use, and builds101

upon the empirical modeling paradigm by introducing a novel framework for parame-102

terizing solar EUV irradiance using Generalized Additive Models (GAMs), a class of lin-103

ear models that relate a response variable linearly to smooth functions of predictor vari-104

ables of interest (Hastie, 2017). This class of models allows for the capturing of the pro-105

portional impacts of various solar processes represented by proxies on each wavelength106

band, and natively support intuitive quantification of uncertainty in modeled irradiances107

due to the relating of the distribution of expected values of the response variable to the108

predictor variables through a link function. Since reliable measured solar EUV irradi-109

ance records do not extend before the early 1990s, we leverage FISM2 model results for110

data prior to that period, and construct a GAM to represent integrated solar EUV ir-111

radiance across all the considered wavelength bands using that data, after which we con-112

struct a second GAM to model residuals with respect to native FISM2 outputs. The re-113

sults of the GAM approach are evaluated using known historical space weather drivers,114
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and are compared to TIMED/SEE and SDO/EVE measurements in select wavelength115

bands. GAM results are also evaluated using space weather drivers hindcasted 3 days116

into the future using an Autoregressive Modeling approach during two 30-day periods117

in SC24: one corresponding to low solar activity and one corresponding to high solar ac-118

tivity. The contributions this study include (1) the application of a rigorous mathemat-119

ical modeling method for simplifying representation of solar EUV irradiance, and (2) the120

initial verification of this method for forecasting over time scales routinely utilized in the121

space weather community through hindcasts performed over low and high solar activ-122

ity periods.123

We wish to note that relative weakness of Solar SC24 in comparison to the preced-124

ing Solar Cycles may affect the results. While we foresee this effect being minimal since125

solar indices during this time show a weakness that is similar to the same degree, we ac-126

knowledge that it is of enough significance to warrant investigating the cycle-by-cycle127

modulations in indices and drivers in more detail in a future study. We also wish to men-128

tion that we have limited consideration of TIMED/SEE results to 16 bands between 280129

and 1170 Å due to the fact that TIMED/SEE did not make spectral measurements be-130

low about 280 Å; the TIMED/SEE Level 3 irradiance below 280 Å is derived from a model,131

subjecting it to model error. Additionally, above 1170 Å, FISM2 is calibrated against132

SORCE/SOLSTICE, which is more accurate than TIMED/SEE, and disagreement be-133

tween FISM2 and TIMED/SEE in this range is expected and systematic due to FISM2’s134

higher absolute accuracy. Likewise, due its limited wavelength range, we only consider135

21 wavelength bands corresponding to SDO/EVE, which suffers much less from inaccu-136

racies due to degradation than TIMED/SEE due to regular calibrations.137

The obtained GAM functions can be used for (1) operational assessment of the cur-138

rent state of solar irradiance, specifically when there are data outages, (2) improved ther-139

mosphere and ionosphere modeling and uncertainty quantification of the atmospheric140

state, and (3) forecasting future values of solar EUV irradiance across multiple wavelength141

bands and on multiple time scales.142

The paper is organized as follows, first, the data pre-processing strategy is outlined.143

Then, the GAM approach for modeling irradiance is described, followed by a descrip-144

tion of Autoregressive Models. After that, a description of the techniques used for val-145

idation of results is outlined. Thereafter, irradiance estimation results are presented and146

assessed by comparison against native FISM2 outputs, TIMED/SEE, and SDO/EVE.147

Finally, the results are discussed and conclusions drawn.148

2 Methodology149

2.1 Data Pre-processing150

We consider F10.7, revised Sunspot Number (SSN) and Lyman-α as drivers for the151

GAMs. These indices were chosen primarily due to their widespread use and familiar-152

ity within the space weather community. Additionally, since indices serve as proxies pri-153

marily for the upper chromosphere/lower corona and solar photosphere (Nusinov & Katyushina,154

1994; Johnson et al., 2023), constraining model parameterization to these parameters155

demonstrates the versatility of the GAM approach in its ability to address the problem156

of solar EUV modeling even with limited information. For this reason, we have not in-157

cluded other proxies such as the Mg-II cwr or Ca-II indices, even though their inclusion158

may increase accuracy by capturing the dynamics of slowly varying corona (Schonfeld159

et al., 2019) and better describing variation within entire chromosphere (Viereck et al.,160

2004). The selected indices were obtained from the NASA OMNIWeb Data Explorer (https://161

omniweb.gsfc.nasa.gov/form/dx1.html). Anomalous values were removed from the162

OMNIWeb solar index data, and the FISM2 Level 3 TIMED/SEE, and Level 3 SDO/EVE163

irradiances were obtained from the LASP Interactive Solar Irradiance Datacenter (https://164
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lasp.colorado.edu/lisird/) and were upsampled from their native daily resolution165

to the hourly resolution of the OMNIWeb solar indices. Additionally, the FISM2 and TIMED/SEE166

irradiances were arranged into 59 wavelength bins used by GITM for ease of compari-167

son and for eventual ingestion into GITM (see Table 1 below). Due to the lower accu-168

racy of TIMED/SEE compared to FISM2 outside of 280-1170 Å, only 16 non-singular169

wavelength bins between 280 and 1170 Å were used from TIMED/SEE for additional170

comparisons. In the case of SDO/EVE, the Level 3 data are bounded between wavelengths171

centered at 65 to 1055 Å, in 10 Å intervals; we consider 21 of these wavelength bands172

in our analysis. In Table 1 below, the salmon-colored bins correspond to those for which173

there was SDO/EVE data alone, the orchid-colored bins correspond to where there was174

both TIMED/SEE and SDO/EVE data, and the sky blue-colored bin corresponds to where175

there was TIMED/SEE data alone. FISM2 data was available in every bin.176

Table 1: Solar EUV irradiance wavelength bins considered for analysis.

Lower Boundary (Å) Upper Boundary (Å) Bin Center (Å)
1 2 1.5
2 4 3
4 8 6
8 16 12
16 23 19.5
23 32 27.5
32 50 41
50 100 75
100 150 125
150 200 175
200 250 225

256.3
284.15

250 300 275
303.31
303.78

300 350 325
368.07

350 400 375
400 450 425

465.22
450 500 475
500 550 525

554.37
584.33

550 600 575
609.76
629.73

600 650 625
650 700 675

703.31
700 750 725

765.15
770.41
789.36

750 800 775
800 850 825
850 900 875
900 950 925
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977.02
950 1000 975

1025.72
1031.91

1000 1050 1025
1050 1100 1075
1100 1150 1125
1150 1200 1175

1215.67
1200 1250 1225
1250 1300 1275
1300 1350 1325
1350 1400 1375
1400 1450 1425
1450 1500 1475
1500 1550 1525
1550 1600 1575
1600 1650 1625
1650 1700 1675
1700 1750 1725

Binning was performed as follows: For each spectrum at a given time, irradiance177

at the wavelength nearest to each of the singular wavelengths was obtained. These con-178

stitute the singular wavelengths, or ‘lines’. Afterwards, the irradiance in each wavelength179

range (the remaining non-singular bins) was calculated by summing the irradiance in that180

bin. This was done simply by adding the values of irradiance corresponding to the wave-181

lengths between the boundaries of each bin. Figure 1 shows the EUV spectrum for FISM2,182

TIMED/SEE, and SDO/EVE during solar maximum in SC24, obtained via our binning183

procedure.184

Figure 1: The Solar EUV spectrum for SC24 during April of 2010 in the ascending
phase: (left) The spectrum in base units, and (right) the spectrum on a logarithmic scale.
In both figures, blue represents FISM2 estimates, cyan represents TIMED/SEE measure-
ments, and red represents SDO/EVE measurements.
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2.2 Generalized Additive Models185

Conventional linear models (Nelder & Wedderburn, 1972) assume a response vari-186

able y follows an exponential family distribution with mean µ, which may be a nonlin-187

ear function of βiX, where βi are coefficients and X = [X1, X2, ..., Xn] are covariates188

(predictor variables):189

g (E [y |X|]) = β0 +

n∑
i=1

βiXi, (1)

where g is the link function relating the predictor variables to the expected value of the190

dependent variable y.191

GAMs, by contrast, are linear models in which the response variable depends linearly192

on unknown smooth functions of several predictor variables. They take the following form:193

g (E [y |X|]) = β0 +

n∑
i=1

fi (Xi) , (2)

where fi are ‘feature functions’ which may be constructed from various families of bases194

functions. In the context of this paper, the solar EUV irradiance in a given band y was195

regressed using the predictor variables Day-of-the-year (DOY), F10.7, SSN, and Lyman-196

alpha. We specifically include DOY as a model driver in order to represent seasonal vari-197

ations in the solar indices. The regression was carried out using the GAM framework,198

which required the fitting of univariate spline functions for each those predictor variables.199

We assumed a normal/Gaussian error model for the responses y which naturally leads200

to a least-squares fitting problem. In our analysis, we proceeded with our approach as201

follows:202

1. For SC20 through the beginning of SC23, an initial GAM Y was fit between so-203

lar EUV irradiance represented by FISM2 and the F10.7 index, revised Sunspot204

Number (SSN) (Clette et al., 2015), and the Lyman-α index (Woods, Tobiska, et205

al., 2000) using penalized B-splines and the Normal distribution.206

2. A second GAMs ζ to capture the behavior of initial model residuals was fit dur-207

ing the remainder of SC23.208

3. SC24 integrated solar EUV irradiance was modeled using the F = Y−ζ for known209

solar inputs (termed models FK ; likewise, Y K refers to models Y driven by known210

solar inputs).211

4. Relative irradiance error ε with respect to native FISM2 was compared from FK ,212

and assessed for solar cycle, seasonal, and solar activity dependence. This was also213

done for TIMED/SEE Level 3 irradiances in 16 wavelength bands between 280214

and 1170 Åand SDO/EVE Level 3 irradiances in 21 bands between 65 and 1055215

Å.216

5. The approach was applied again for 59 different wavelength bands, to assess the217

behavior of the mean, standard deviation, kurtosis, and skew of relative error ε218

as a function of wavelength band i. These bands were selected due to their usage219

in global ionosphere-thermosphere models such as GITM and Aether (https://220

aetherdocumentation.readthedocs.io/en/latest/index.html). This step pro-221

vided us with models Fi = Yi − ζi, i ∈ [0, 59].222

6. The above steps were applied for a 3-day ahead Autoregressive Model hindcasts223

of the solar indices mentioned in Step 1, which were used to drive the GAMs. This224

was done for two 30-day periods in SC24: one during the low solar activity in the225

ascending phase and one during high solar activity during the peak.226
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The initial fitting for Yi was performed on solar index and FISM2 data between the be-227

ginning SC20 (October 10, 1964) and the peak of SC23 (taken as January 23, 2002). The228

fitting of ζi was done between the Yi residuals and solar indices between the peak of SC23229

and the remainder of its descending phase (up to December 1, 2008). The final models230

Fi were evaluated over the entirety of SC24 (December 1, 2008 to December 1, 2019).231

The GAMs were implemented with the aid of the recently-developed PyGAM package232

(Servén & Brummitt, 2018).233

An example of the results of the fitting procedure in two different wavelength bands234

(centered at 19.5 Å and 225.0 Å is shown) is shown in Figure 2 below. The solar indices235

used to perform the fits also shown, along with the GAM outputs for the same period236

of time corresponding to the training set used for fitting.237

Figure 3 shows the results of the fitting procedure for ζi for the wavelength bands238

centered at 19.5 Å and 225 Å. We observe that the aim of the inclusion of ζi is to ac-239

count for any trends in the residuals related to season or solar activity. While we acknowl-240

edge the limitations of fitting ζi only during the descending Phase of SC23 to achieve241

that aim effectively, we elected to restrict the fitting to that period of time in order to242

demonstrate the effectiveness of the approach with use of limited information, and to avoid243

the problem of over fitting.244

Figure 2: Time series data for solar EUV irradiance centered at 19.5 Å (top), solar EUV
irradiance centered at 225.0 Å. (second from the top), F10.7 (middle), SSN (second from
the bottom), and Lyman-α (bottom). The top two solar EUV plots show data for FISM2
and for the GAMs Yi (initial fit) and Fi (initial fit - model for residuals). The model fits
were performed between the beginning of SC20 and the peak of SC23.

Figure 4 shows the results of the fitting procedure in the same two bands, but view-245

ing up close a time period during the descending phase of SC22, between March 1, 1993246

and December 1, 1996. From this figure can be seen qualitatively how the inclusion of247

the second GAM ζi improves the overall correspondence between the model outputs and248

FISM2, while avoiding over-fitting.249

For added clarification on the construction of the GAM, we show Partial Depen-250

dence Functions (PDPs) for GAMs Yi for wavelengths centered at 19.5 Å and 225 Å in251
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Figure 3: The results of fitting the GAM ζi to model residuals for solar EUV irradiance
centered at 19.5 Å and at 225 Å. The time period over which this fit occurred corresponds
to the descending phase of SC23.

Figure 4: A closer examination (during the descending phase of SC22) of the same model
results as shown in the top two plots of Figure 2.

Figures 5 and 6 below. PDPs are widely-used within the field of interpretable Machine252

Learning to explain the marginal effect of single features on a model prediction (Friedman,253

2001). In the case of the present study, the PDPs are identical with the aforementioned254

feature functions used to construct the GAM. Thus, in the examples shown, they illus-255

trate the proportional functional contributions to solar EUV irradiance in a specific band256

due to a specific feature represented by either DOY (a proxy for season) or a solar in-257

dex. The versatility of the GAM approach is demonstrated by the varied nature of PDPs258

for different wavelengths. This behavior is expected, since each model driver is not ex-259

pected to retain the same relationship with each wavelength band.260

In particular, for the examples shown, we observe a strongly oscillatory behavior261

between DOY and its respective contribution to solar EUV centered at 19.5 Å that, by262
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inspection, is characteristic of a dominant period between 75 and 100 days in duration.263

This is contrasted with the same PDP for 225 Å, which shows not only similar oscilla-264

tions on a shorter characteristic period of ∼ 50 days in duration, but an annual trend265

that reaches a trough just prior to the summer solstice.266

Similarly, we observe unique behavior for the PDPs of the solar indices for each wave-267

length. For 19.5 Å, the PDP for F10.7 is nearly linear, and only fails the to meet the de-268

scription of a monotonically increasing function at values beyond F10.7 = 300. This, how-269

ever, is not observed with the wavelength bin centered at 225 Å which behaves nearly270

like a negative quadratic function until F10.7 = 300. The PDP for SSN at 19.5 Å shows271

an inverse relationship, while at 225 Å, this inverse relationship persists only until SSN∼140,272

after which it reverses, terminating in a sharp, nearly-exponential relationship above SSN∼273

400. Lastly, the PDP for Lyman-α is a non-monotonic function at 19.5 Å, but it is a mono-274

tonically increasing function at 225 Å.275

Figure 5: PDPs for the GAM Yi used to model solar EUV irradiance centered at 19.5 Å.
Clockwise from the top-left: the PDP for DOY, for F10.7, SSN, and Lyman-α. In each
plot, the PDP itself is in blue, and the red dashed lines are the corresponding 95% confi-
dence bands.

2.3 Autoregressive Models276

Autoregressive (AR) models represent random processes by modeling values at fu-277

ture time steps as a weighted sum of values at previous time steps. Conventionally, for278

some AR model of order n, values of a quantity x at time t are given by279

xt =

n∑
i=1

βixt−i + δt, (3)

where the βi are the parameters of the model and δt is white noise (Box et al., 2015).280

AR models have been used for probabilistic forecasting of the disturbance storm time281

index (Chandorkar et al., 2017), predicting MeV electron fluxes in the outer radiation282

belt (Sakaguchi et al., 2015) and numerous AR approaches have been utilized for fore-283
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Figure 6: The same as Figure 5, but for solar EUV irradiance centered at 225 Å.

casting solar proxies (Lean et al., 2009; Si-Qing et al., 2010; Chattopadhyay & Chattopad-284

hyay, 2012; Du, 2020). In this study, we highlight the applicability of the GAM approach285

for forecasting by mirroring the approach of (Du, 2020) to hindcast the solar indices F10.7,286

Lyman-α, and SSN 3 days into the future. These hindcasted indices are then used to drive287

the GAMs in SC24 over a 30-day period (just beyond the duration of a single solar ro-288

tation) during Solar Minimum (December 1, 2008 through December 29, 2008) as well289

as Solar Maximum (June 1, 2014 through June 29, 2014).290

In our approach, we rely on an AR paradigm known as the Autoregressive Inte-291

grated Moving Average (ARIMA), which not only models the variable of interest as a292

function of its own prior values, but utilizes a moving average to model the regression293

error as a linear combination of error terms whose values occurred contemporaneously294

in the past. ARIMA models take advantage of non-stationarity (the mean and variance295

of a process vary as a function of time) and thus are suitable for forecasting solar indices,296

since they have been found to exhibit heteroscedasticity (Wang et al., 2018). ARIMA297

models have a general form given by the following:298

xt = α+ β1xt−1 + β2xt−2 + ...+ βpxt−p + ϕ1δt−1 + ϕ2δt−2 + ...+ ϕqδt−q, (4)

where α is a constant, βi are AR model parameters for an AR model order of p, ϕi are299

moving average model parameters up to order q, and δi are lagged forecast errors.300

A key component of ARIMA models is that they employ differencing in order to301

enforce stationarity. This involves subtracting the previous value from the current value302

a total of d times. In the present study, during the application of our AR approach, we303

focused on forecasting daily solar indices, and set p = 33, d = 1, and q = 2, similar304

to the methods for short-term F10.7 AR forecasting recommended by Du (2020). An ex-305

ample of the solar indices hindcasted during SC24 is shown in Figures 7 and 8 below.306

We utilized the Python Statsmodels package to perform model fitting and forecast-307

ing (Seabold & Perktold, 2010). We briefly consider the percentage difference between308
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Figure 7: Solar indices hindcasted with an ARIMA approach using (p, d, q) = (33, 1, 2),
between Dec 1, 2008 and Dec 30, 2008 of SC24.

Figure 8: The same as Figure 7, but between June 1, 2014 and July 1, 2014 of SC24.

average values of the residuals for each hindcasted solar index, using the expression be-309

low:310
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P =
xi − xf[
(xi+xf )

2

] × 100, (5)

where xi is the initial average value of the residuals (in this case corresponding to low311

solar activity) and xf is the final average value of the residuals (in this case correspond-312

ing to high solar activity). Overall, we observed that the hindcasted indices exhibited313

lower prediction error during low solar activity, with values of the residuals increasing314

by a percentage difference of P ≈ 179.43%, 156.7%, and 158.97% for F10.7, SSN, and315

Lyman-α, respectively, from low solar activity to high solar activity. We suspect this is316

primarily due to increased uncertainty owing to the impulsive nature and sporadic oc-317

currence of active regions on the solar disk during high solar activity as suggested by Du318

(2020) and observed in F10.7 by Wilson et al. (1987), especially due to the fact that on319

time scales in excess of 1-2 days, magnetic structures tend to dominate in affecting fluc-320

tuations in solar irradiance (Solanki et al., 2003). Despite this, a detailed investigation321

and compensation for this behavior is beyond the scope of this paper. For more detail322

on AR models, we refer the reader to Shumway et al. (2017).323

2.4 Validation324

To assess the accuracy of the estimated irradiances, we followed an analogue of the325

analysis of (Gondelach & Linares, 2021). This involved comparing estimated irradiances326

with native FISM2 estimates of solar EUV irradiance. Due to non-trivial degradation327

issues with TIMED/SEE that have worsened in severity since late 2017, and due to the328

limited wavelength coverage for SDO/EVE, we avoid using both of those sources as con-329

trols for the evaluation of the GAM results. Measurements for TIMED/SEE and SDO/EVE330

are included in select results for qualitative comparison only. For the comparisons, we331

define the relative irradiance error as follows:332

ε =
ĪEST − ĪFISM2

ĪFISM2
× 100%, (6)

where ĪEST and ĪSEE indicate the daily average estimated and measured solar irradi-333

ance. For additional insight into the behavior of the relative irradiance error, we gen-334

erated histograms of ε by wavelength band along with corresponding fits to a skew nor-335

mal distribution, and we assessed variation of ε as a function of Day-of-the-Year (DOY)336

and solar activity proxied by F10.7.337

We wish to note that particularly at wavelengths below 6 Å, use of Equation 6 be-338

comes less insightful, since the characteristic irradiances are on the order of 10−8 W/m2/nm,339

and discrepancies of two or three orders of magnitude can result in values of ε that rapidly340

grow beyond hundreds of percent. Since these discrepancies are expected (as it is rou-341

tine for the irradiance in these lower bands to often be measured at 0, or nearly equiv-342

alent to it in numerical precision), we also make use of the Normalized Root Mean Square343

Error (NRMSE) when evaluating performance as a function of wavelength band. RMSE344

is defined as follows (Wilks, 2011):345

RMSE =

√√√√ 1

n

n∑
k=1

(
ĪEST − ĪFISM2

)
, (7)

where n represents the number of data points, and the remaining variables are defined346

as they are in Equation 6. We performed normalization in the same manner as Lean et347

al. (2009) by multiplying by 100 and dividing by the mean value of the observed values348

(i.e.: NRMSE = 100RMSE
<ĪFISM2>

). In the determination of this statistic, we minimized the349
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influence of outliers by computing the centered 24-hour rolling NRMSE with respect to350

FISM2, and considering the median values obtained across all considered wavelength bands.351

3 Results352

Results for the GAM approach are first given for integrated solar EUV irradiance353

across all 59 wavelength bands. We consider how well results from FK correlate with354

FISM2, as well as the distribution of relative irradiance error ε over SC24. Thereafter355

is detailed the behavior of the variance and skew of ε̄ as a function of band, followed by356

an example of forecasting 3-days ahead with the AR approach.357

3.1 Integrated Solar EUV358

Figure 9 shows the overall result of the GAM approach using known solar indices.359

With the exception of the very end of the declining phase of SC24. We observe consis-360

tent correspondence between FK and FISM2 throughout the entirety of SC24.361

Figure 9: Results of the GAM approach applied to solar EUV irradiance integrated
across all considered wavelengths, showing the entirety of the training, correction, and
test sets (top) and a zoom in on the test set alone (bottom). In the top, the training re-
gion over which Y was fitted is shaded grey, the correction region over which ζ is fitted
is shaded yellow, and the test region over which F is evaluated is shaded green. The pale
orange shaded region in both figures corresponds to the 95% confidence interval for FK .
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For Y and ζ, we use the default condition that spline terms have a penalty on their362

second derivative, which encourages the feature functions to be smoother. In both cases,363

the regularization parameter λ, which controls the strength of this penalty, was set to364

0.6 for all terms. The number of samples η used to fit each model differed due to the train-365

ing set for Y being ∼5.5 times greater in length than the set used for fitting ζ. We ob-366

tained important statistics for Y and ζ, including deviance explained, scale, and McFad-367

den’s pseudo R-squared (McFadden et al., 1973). Deviance, as detailed by Wood (2017),368

is defined as369

D = 2
[
l
(
β̂max

)
− l

(
β̂
)]

ϕ, (8)

where l
(
β̂max

)
is the maximized likelihood of the saturated model(a model with one370

parameter for each data point, so that the data are fitted exactly), l
(
β̂
)
is the maxi-371

mized likelihood of the fitted model, and ϕ is the scale parameter. The scaled deviance372

is given by373

D∗ = D/ϕ (9)

In the case of Y and ζ, ϕ is estimated during model fitting, and represents the resid-374

ual standard error squared, due to the use of the Normal distribution. The deviance ex-375

plained Ξ then corresponds to the representing D∗ as the proportion of total deviance376

explained by the current model. We also computed McFadden’s adjusted pseudo R-squared377

(ρ2adj) as the coefficient of determination for Y and ζ, allowing us to determine the pro-378

portion of variation of integrated solar EUV irradiance predicted by the fitted model pa-379

rameters, while controlling for the number of those parameters (more detail may be found380

in Long and Freese (2006)). Succinctly, this statistic gives us an idea of how much vari-381

ation in each of the model parameters affects changes in the irradiance. Table 2 below382

shows the values of η, Ξ, and ρ2adj for both Y and ζ.383

Integrated Solar EUV Irradiance GAM Statistics

Model η Ξ ρ2adj

Y 327,049 0.981 0.981
ζ 59,160 0.476 0.476

Table 2: Statistics for the components of F for representing integrated Solar EUV irradi-
ance, rounded to three decimal places.

While we expect values of ρ2adj to run lower than conventional R2, as shown in Fig-384

ure 5.5 of McFadden et al. (1973), we note that for both Y and ζ, values of ρ2adj are suf-385

ficiently high (especially for the former case) to show excellent model fit for both param-386

eterizing FISM2 irradiance and the associated residuals with respect to native FISM2387

with a GAM, respectively.388

Next, we consider how well the GAM correlates with native FISM2 over SC24. Fig-389

ure 10 shows the correlations for F and FISM2. The correlation is significantly positive390

with a value of Pearson’s Correlation Coefficient of 0.992. We observe that the linear fit391

between the outputs of F and that of native FISM2 suggests a tendency for overestima-392

tion that slightly increases as a function of solar irradiance. We attribute this primar-393
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ily to the relatively short period over which ζ was fit in comparison to Y , though we note394

that the overestimation grows only from ∼ 0.0003 to ∼ 0.001 W/m2 throughout the395

entire range of irradiance values, showing a high degree of consistency.396

Figure 10: The linear relationship between the GAM outputs from FK and FISM2, for
solar EUV irradiance integrated across all 59 wavelength bands. The blue line corresponds
to the line-of-best fit, and the red shaded region corresponds to the 95% confidence inter-
val.

We also considered the variation of relative irradiance error ε over the solar cycle397

in general, as shown on the left in Figure 11. To illustrate the improvement afforded by398

the inclusion of ζ, we show the relative error over SC24 between both Y K and native FISM2399

as well as FK and native FISM2.400

Figure 11: Left: Relative error (ε) for Y K and FK with respect to FISM2 integrated so-
lar EUV irradiance throughout the entirety of SC24. These results demonstrate laudable
performance at under 5% relative error for FK throughout nearly the entirety of SC24.
They additionally show that these improvements are possible in part due to the action of
ζ in reducing error. Right: Relative error (ε) histograms for Y K (top) and for FK (bot-
tom), with respect to FISM2 integrated solar EUV irradiance for the entirety of SC24.
The action of ζ is observable in its moving the center of the distribution of errors closer to
zero for FK compared to Y K , as well as reducing the width of the distribution.

For added clarity we generated histograms of ε for Y K and FK with respect to FISM2,401

and skew normal distributions were fit in order to elucidate the statistical behavior of402

the ε (on the right of Figure 11). The resulting parameters describing each distribution403
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can be found in Table 3. We consider in particular the shape (α), location (ξ), scale (ω),404

kurtosis (κ), and skewness (γ). We observe a growth in the value of α after applying ζ,405

which, along with a decreased value of κ, indicate that the effect of the inclusion of the406

second GAM is to draw mean error closer to zero and constraint the majority of errors407

to clustering around values in the vicinity of ∼ 2.5%. The negative excess kurtosis shown408

by the value of κ for FK also indicates that the inclusion of ζ results in a reduction of409

the likelihood of errors attaining values more extreme that that corresponding to a nor-410

mal distribution.411

Integrated Solar EUV Irradiance ε Skew Normal Statistics

Model α ξ ω κ γ

Y K 1.878 0.201 1.829 0.657 0.424
FK 2.595 -0.551 1.971 -0.515 0.296

Table 3: Statistics for skew normal distributions of ε for Y K and FK , rounded to three
decimal places.

3.2 Dependency of ε on Season and Solar Activity412

To evaluate dependency on season and solar activity, we sorted values of ε by DOY413

and F10.7 (Figure 12). Linear fits to the sorted data resulted in slopes (m) and inter-414

cepts (b) suggesting a slightly negative correlation (Pearson’s R≈-0.303) between sea-415

son and relative error, while the converse is true regarding dependency on solar activ-416

ity (Pearson’s R≈0.134). We note that the clustering of values of ε plays a role in affect-417

ing the resulting linear fits, particular for dependency on solar activity. The coefficient418

of determination R2 for the linear fit of ε to DOY was ∼ 0.092, while it was ∼ 0.018419

for F10.7. These values indicate no statistically-significant relationship between DOY420

or solar activity and relative irradiance error.421

Figure 12: ε for integrated solar EUV irradiance across 59 wavelength bins as a function
of season (top) and ε as a function of F10.7 (bottom). The coloring of the data in each
plot relates to the density of the data points, which in each plot, have been distributed
over 50 bins in both axes.
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3.3 Behavior of ε as a Function of Wavelength422

Next, we consider the behavior of mean (µεi) and standard deviation (σεi), kur-423

tosis (κεi), and skew (γεi) relative irradiance error as a function wavelength band. We424

additionally compare the values corresponding to FK
i with those of TIMED/SEE and425

SDO/EVE with respect to FISM2, in select bands. We show these results for wavelengths426

between 4 Å and 1750 Å, inclusive (Figure 13). For the bin centered at 1.5 Å, we ob-427

served that µε0 ≈ 125.18, σε0 ≈ 1546.73, κε0 ≈ 613.29, γε0 ≈ 23.30, and for the bin428

centered at 3 Å, we observed that µε1 ≈ 355.44, σε1 ≈ 4800.59, κε1 ≈ 28.22, γε1 ≈429

955.11. These values, particularly for µεi and σεi , differed significantly than those of the430

other bands, hence their suppression in Figure 13. In these two wavelength bands, FISM2431

irradiances routinely were at values of zero, outside of which they would oscillate accord-432

ing to a pattern typical of neighboring wavelength bands and solar indices. By virtue433

of its construction, the GAM models quantities smoothly, and therefore would occasion-434

ally return negative values of irradiance in these bands over regions where it the predic-435

tion should be zero. In these cases, we manually zeroed the model estimate. Unfortu-436

nately in cases where FISM2 values were nonzero but exceedingly small (on the order437

of (10−11 W/m2/nm and less) and the GAM result was greater by 1 or 2 orders of mag-438

nitude, and in the converse, we observed a dramatic increase in the estimates of relative439

irradiance error. In these bands, when temporal averaging is employed over a rolling 30-440

day period, the values of µεi in particular, are reduced to 87.07% for the bin centered441

at 1.5 Å, and to 84.55% for the bin centered at 3.0 Å (Figures 14 and 15). This is ex-442

pected, as the effect of the temporal averaging is to act as a low-pass filter that excludes443

high frequencies corresponding to the most extreme deviations of model results from FISM2.444

Figure 13: Clockwise from the top left: Mean, Standard Deviation, Kurtosis, and
Skew of relative irradiance error as a function of wavelength band, for GAMs FK

i ,
TIMED/SEE, and SDO/EVE, with respect to FISM2. The bands shown exclude the
first two from Table 1, and are only those between 4 Å and 1750Å inclusive. The only
values not shown on a symmetric log scale are σεi .
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Figure 14: (Left - top and bottom) Solar EUV irradiance in the bin centered at 1.5 Åover
SC24. The top shows native FISM2 outputs in blue and GAM outputs in orange. The
bottom shows the a rolling 30-day average of the same. (Right - top and bottom) His-
tograms of the ε between FK

0 and FISM2. The top shows the original results before tem-
poral averaging, and the bottom shows the results after a rolling centered 30-day average
was applied to both FISM2 and FK

0 outputs. We note that histograms were constructed
using 50 bins set within the widest range afforded by the 5th and 95th percentiles of both
datasets.

Figure 15: The same as Figure 14 but for EUV irradiance in the bin centered 3 Å.

In order to understanding the performance of the approach of the present work with-445

out recourse to temporal averaging, we also considered NRMSE values across bands. We446

first considered values of the rolling NRMSE computed in centered 24-hour windows (not447

shown). In the wavelength bands centered at 1.5 and 3.0 Å, we still observed occasional448

large spikes in NRMSE similar to that of ε, so we initially computed the median NRMSE449

value as a function of band in order to minimize the influence of outliers (Figure 16). We450

observe a behavior of the median values of NRMSE similar that of µεi , with values for451

the GAM approach lower than that of SDO/EVE in only wavelength band (centered at452

275 Å) and lower than TIMED/SEE in all wavelength bands. Regarding the first two453

wavelength bands, we observe median NRMSE values of ∼ 59% for both. Though these454

are the highest values observed for all wavelengths, we note that they remain below the455
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Figure 16: Median rolling daily NRMSE as a function of wavelength band, during SC24.

highest median values for SDO/EVE and TIMED/SEE, which at 1075 Å were ∼ 83%456

and ∼ 199%, respectively.457

Regarding µεi , we observe no values in excess of 10% for the GAMs FK
i in any wave-458

length band. In comparison, TIMED/SEE and SDO/EVE show values of µεi in excess459

of in excess of 10% in 8 and 3 of their 16 and 21 wavelength bands, respectively. Only460

a single wavelength band centered at 475 Å, was µεi for TIMED/SEE lower than that461

of FK
i , and then only by an absolute difference of εi ∼ 0.24. In comparison, values of462

µεi for SDO/EVE were lower than that of FK
i in 7 of the 21 considered bands, with the463

most appreciable performance exhibited by SDO/EVE at 125 Å, 175 Å, 225 Å, and 275464

Å. We highlight that the values of µεi we observe are indicative of a systematic tendency465

of TIMED/SEE to overestimate FISM2, owing in part to continued degradation and re-466

liance on calibrations corresponding to rocket measurements for which the most recent467

rocket flight was 2012. The daily calibrations performed for SDO/EVE partially con-468

tribute to its greater correspondence to FISM2 in several wavelength bands, such as that469

centered at 375 Å, as shown in Figure 17.470

Results for σεi show that for FK
i , there is a general downward trend as wavelength471

increases, and for 46 of the 59 wavelength bands considered (∼ 78%) we observed val-472

ues of σεi under 5%. These values show tight clustering of distributions of relative ir-473

radiance error for FK
i that indicative of the most favorable performance for the GAM474

approach in particular above 250 Å. For TIMED/SEE, all values of σεi were in excess475

of 2%, whereas for SDO/EVE, values of σεi all were below those of TIMED/SEE and476

but in excess of FK
i in all but 2 wavelength bands (75 Å and 1075 Å).477

For κεi , for F
K
i , we observe a general decrease of kurtosis as wavelength increases,478

with distributions of εi having positive excess kurtosis (leptokurticity) in 34 of the 59479

bands and negative excess kurtosis (platykurticity) in 25 of the 59 bands. By inspection,480

we observe a cutoff at ∼1000 Å below which leptokurticity dominates and above which481

we only observe platykurticity. Given that platykurtic distributions produce fewer and482

less extreme outliers than the normal distribution, we observe again that values of κεi483

show that the GAM approach is again more favorable as wavelength increases. For TIMED/SEE484
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Figure 17: Time series of solar EUV irradiance centered at 375 Å, during a period of
time corresponding to uninterrupted coverage provided by SDO/EVE during SC24.

and SDO/EVE, we observe platykurticity in only 1 and 3 of their respective considered485

bands.486

Regarding skew, we observe variable skew for FK
i that is primarily positive below487

∼ 1050 Å, after which it is remarkably consistent in the vicinity of ∼ 0.35. Positive skew-488

ness is observed in 39 of the 59 bands for FK
i , with a trend that mirrors that of µεi . This489

indicates that over ∼ 66% of the solar EUV spectrum considered, relative irradiance er-490

ror is most likely to deviate in the positive direction, a result indicative of a minimal but491

consistent tendency for the GAMs to overestimate FISM2.492

3.4 Short-term Forecasting493

The suitability for the GAM approach for forecasting was evaluated through hind-494

casts of integrated daily solar EUV irradiance. These hindcasts were performed during495

30 days of low solar activity during the beginning of SC24 and 30 days high solar activ-496

ity during the peak of SC24. As before, we assess this suitability first for solar EUV ir-497

radiance integrated across all 59 wavelength bands, followed by an evaluation of the be-498

havior of ε as a function of wavelength.499

In the case of integrated daily solar EUV irradiance, we observe that due to the500

behavior of the residuals in the hindcasted solar indices, values of ε are lower for low so-501

lar activity (average of -0.24%) than high solar activity (average of 1.68%) (Figure 18).502

The movement of the mean value of ε from negative to positive from low to high solar503

activity indicates the predilection of the GAM approach, as applied in the present work,504

to generally overestimate values of the solar irradiance during high solar activity when505

forecasting. We also observe a shift in the standard deviation σε from -0.512% to 3.5%,506

corresponding to an increase by a percentage difference of ∼ 148.95%. In absolute terms,507

this change of P is nearly identical to that corresponding to the mean, which grew by508

a percentage difference of 150%. No absolute values of ε were observed to exceed 10%,509
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and were comparable to values resulting from successful companion techniques such as510

the Air Force Data Assimilative Photospheric Flux Transport (ADAPT), which relies511

on comprehensive estimates of the solar magnetic field distribution to derive estimates512

of EUV irradiance (Arge et al., 2010; Henney et al., 2015).513

Figure 18: Time series of hindcasted integrated solar EUV irradiance during low solar
activity (top) and high solar activity (bottom) during SC24. The light shaded orange
region denotes the 95% Confidence Interval for the GAM results. The y-axes have been
harmonized to show irradiance values that span 0.007 W/m2 (left axis) and values of ε
between -6 and 10% (right axis).

In closing, we consider values of ε as a function of wavelength band, for both low514

and high solar activity (Figures 19). We focus in particular on the quantities µεi and σεi ,515

which show the most variability as wavelength increases. We note that values of µεi of-516

ten show opposite sign from low to high solar activity. In particular, during low solar517

activity, values of µεi are most often negative below 375 Å (associated with higher val-518

ues of σεi), they oscillate between the boundaries of ±5% between 375 and 1000 Å, while519

they remain negative but increasingly close to zero above 1000 Å. For high solar activ-520

ity, values of σεi show the same decreasing trend as a function of increasing wavelength521

that is observed at low solar activity, but their baseline is notably higher, indicating a522

spread in errors indicative of lower accuracy during the peak of the solar cycle. Addi-523

tionally, although the oscillatory behavior is again observed between 375 and 1000 Å,524
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Figure 19: Mean (left) and standard deviation (right) of εi as a function of wavelength
band, during low (blue) and high (red) solar activity during SC24, on a symmetric loga-
rithmic scale.

the spread is slightly larger, extending up to ±10%, while values below 375 Å and above525

1000 Å show systemic overestimation.526

Overall, we observed the most favorable performance at low solar activity for wave-527

lengths in excess of 1000 Å, while for wavelengths below 1000 Å, results indicate that528

forecasted values are on average likely to have absolute relative errors at most in the vicin-529

ity of 10% when forecasts are on the order of 3 days. This performance, however, becomes530

less reliable at wavelengths below 10 Å, where difficulty forecasting sharp declines in ir-531

radiance in the vicinity of zero can result in significant uncertainty. Overall, and cou-532

pled with the NRMSE results in Figure 16, we observe favorable results for the GAM533

approach in all wavelength bands that are comparable with and routinely exceed the ac-534

curacies of the measurements from TIMED/SEE and SDO/EVE, with forecasting er-535

rors that are comparable with companion approaches that rely on much more compre-536

hensive information. This not only speaks to the operational suitability of the FISM2537

estimates, but additionally to the fidelity of the GAM approach in retaining the statis-538

tical characteristics of the FISM2 estimates even when parameterized with a constrained539

set of solar drivers.540

4 Conclusions and Discussion541

When fitted appropriately, the GAM approach demonstrates itself as robust, sta-542

tistically well-grounded, and accurate for representing solar irradiance in multiple wave-543

length bands. As shown for the case concerning integrated solar EUV irradiance, a ro-544

bust GAM may be constructed between integrated solar EUV irradiance from FISM2545

and only three solar indices with minimal sacrifice of statistical characteristics of esti-546

mated irradiance. This demonstrates the power GAMs for capturing non-linear behav-547

ior with limited drivers. This work also highlights the suitability of an approach lever-548

aging FISM2 data for operational use, and highlights the degree to which it remains a549

powerful and versatile empirical paradigm for modeling of solar EUV. FISM2’s capac-550

ities are inherent in its construction using three solar irradiance datasets (from SDO/EVE,551

SORCE/SOLSTICE, and SORCE/XPS), three solar proxies (F10.7, Mg-II cwr, and Lyman-552

α), and four additional solar proxies primarily from emission lines measured by SDO/EVE.553

When combined with an additional GAM for modeling residuals, we demonstrate ap-554

preciable performance over an entire solar cycle, as shown by absolute mean values of555

ε under 10% across the overwhelming majority of wavelength bands considered.556
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We additionally observe that combined with well-principled autoregressive model557

approaches for forecasting solar drivers, the GAM performs well in the context of short-558

term 3-day forecasts, with the resulting absolute forecast errors again regularly attain-559

ing values below 10% for both low and high solar activity, on par with companion tech-560

niques that rely on estimates of the solar magnetic field or utilize neural networks (Stevenson561

et al., 2022). While our approach has demonstrated suitability for nowcasting and fore-562

casting solar EUV irradiance, it experiences some limitations, particularly in the con-563

text of heightened forecast errors during solar maximum and at wavelengths below 6 Å.564

We contend that these drawbacks are attributable to (1) the choice of solar drivers - im-565

proved performance may be achieved with the inclusion of other drivers such as Ca-II,566

Mg-II, S10, allowing for greater capturing the influence of solar chromospheric activity567

and solar active regions, which are particularly important during solar maximum, and568

(2) the fitting of ζ only during the descending phase of a single solar cycle. The latter569

struggles to capture variability of the residuals to a similar degree as Y capture the vari-570

ability of integrated solar EUV irradiance due the usage of fewer samples. We contend571

that the fitting of ζ over multiple solar cycles would thus decrease kurtosis and scale of572

the resulting skew normal distribution of ε. Given that it has been determined that the573

mutual relationship between solar indices such as F10.7 and SSN show quasi-linearity574

that is dependent on the degree of temporal averaging (Clette, 2021), it is worth inves-575

tigating how such averaging can lead to improved representation of solar EUV using the576

GAM approach in wavelengths below 6 Å that have shown difficult to model with a high577

degree of accuracy in the present work. In order to contextualize this investigation, we578

contend that it should be placed in the context of how the resulting irradiance estimates579

affect downstream ionospheric and thermospheric parameters in a coupled thermosphere-580

ionosphere model.581

We emphasize that the principal power of this approach is its applicability for fore-582

casting. GAMs constructed in various wavelength bands in the manner described in this583

paper enable forecasts of solar EUV irradiance directly from a reduced number of solar584

indices as drivers. With robust approaches to solar index forecasting, the GAM approach585

can be used to obtain much more comprehensive and accurate solar EUV forecasts for586

ingestion into thermospheric models, allowing for the reduction of thermospheric den-587

sity errors. This is crucial especially for short-term forecasts that are needed to reduce588

the uncertainty of atmospheric density for satellite collision avoidance (Bussy-Virat et589

al., 2018).590

Future work will involve the improvement of the GAM approach with the use of591

rigorous statistical methods such as Feature Ordering by Conditional Independence (FOCI)592

(Azadkia & Chatterjee, 2021), and extended application through principled medium and593

long-term solar driver forecasting for prediction of solar EUV irradiance on multiple timescales594

with quantified uncertainties.595

5 Open Research596

Solar indices F10.7, revised Sunspot Number, and Lyman-α were obtained via NASA597

OMNIWeb (https://omniweb.gsfc.nasa.gov/form/dx1.html). FISM2 and TIMED/SEE598

data were obtained via LISIRD, which is curated by the University of Colorado, Boul-599

der (https://lasp.colorado.edu/lisird/). The current version of the dataset for this600

paper is available via Figshare at the following DOI: 10.6084/m9.figshare.24236581.v2.601

After publication, all of the processed data, and all code used to analyze the data will602

be found on Zenodo at the following DOI: 10.5281/zenodo.8250196.603

Acknowledgments604

This research was internally supported by Michigan Tech Research Institute (MTRI).605

We are grateful for the valuable statistical insight provided by others at MTRI, partic-606

ularly Dr. Brian J. Thelen and Dr. Joseph W. Burns. We additionally are grateful for607

–24–



manuscript submitted to Space Weather

insight into the FISM2 algorithm from Dr. Brandon Ponder, and we are most thankful608

for the valuable criticism provided by the two anonymous reviewers.609

References610

Arge, C. N., Henney, C. J., Koller, J., Compeau, C. R., Young, S., MacKenzie, D.,611

. . . Harvey, J. W. (2010). Air force data assimilative photospheric flux trans-612

port (adapt) model. In Aip conference proceedings (Vol. 1216, pp. 343–346).613

Azadkia, M., & Chatterjee, S. (2021). A simple measure of conditional dependence.614

The Annals of Statistics, 49 (6), 3070–3102.615

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series616

analysis: forecasting and control. John Wiley & Sons.617

Bussy-Virat, C. D., Ridley, A. J., & Getchius, J. W. (2018). Effects of uncertain-618

ties in the atmospheric density on the probability of collision between space619

objects. Space Weather , 16 (5), 519–537.620

Cai, Y., Yue, X., Wang, W., Zhang, S.-R., Liu, H., Lin, D., . . . others (2022). Al-621

titude extension of the ncar-tiegcm (tiegcm-x) and evaluation. Space Weather ,622

20 (11), e2022SW003227.623

Chamberlin, P. C., Eparvier, F. G., Knoer, V., Leise, H., Pankratz, A., Snow, M.,624

. . . Woods, T. N. (2020). The flare irradiance spectral model-version 2 (fism2).625

Space Weather , 18 (12), e2020SW002588.626

Chamberlin, P. C., Woods, T. N., & Eparvier, F. G. (2007). Flare irradiance spec-627

tral model (fism): Daily component algorithms and results. Space Weather ,628

5 (7).629

Chandorkar, M., Camporeale, E., & Wing, S. (2017). Probabilistic forecasting of the630

disturbance storm time index: An autoregressive gaussian process approach.631

Space Weather , 15 (8), 1004–1019.632

Chattopadhyay, G., & Chattopadhyay, S. (2012). Monthly sunspot number time se-633

ries analysis and its modeling through autoregressive artificial neural network.634

The European Physical Journal Plus, 127 , 1–8.635

Clette, F. (2021). Is the f10. 7cm–sunspot number relation linear and stable? Jour-636

nal of Space Weather and Space Climate, 11 , 2.637
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