Russian Academy of Sciences,
Proceedings of the Komarov Botanical Institute , 21 , 220pp.
May, J. L., Parker, T., Unger, S., & Oberbauer, S. F. (2018). Short
term changes in moisture
content drive strong changes in Normalized Difference Vegetation Index
and gross primary productivity in four Arctic moss communities.Remote Sensing of Environment, 212, 114–120.
https://doi.org/10.1016/j.rse.2018.04.041
Meireles, J. E., Cavender‐Bares, J., Townsend, P. A., Ustin, S., Gamon,
J. A., Schweiger, A. K.,
et al. (2020). Leaf reflectance spectra capture the evolutionary history
of seed plants. New Phytologist, 228(2), 485–493.
https://doi.org/10.1111/nph.16771
Metcalfe, D. B., Hermans, T. D. G., Ahlstrand, J., Becker, M., Berggren,
M., Björk, R. G., et al.
(2018). Patchy field sampling biases understanding of climate change
impacts across the Arctic. Nature Ecology & Evolution,2(9), 1443–1448. https://doi.org/10.1038/s41559-018-0612-5
Miller, C., Griffith, P., Goetz, S., Hoy, E., Pinto, N., McCubbin, I.,
et al. (2019). An overview of
ABoVE airborne campaign data acquisitions and science opportunities.Environmental Research Letters, 14(8), 080201.
Montesano, Paul M., Sun, G., Dubayah, R. O., & Ranson, K. J. (2016).
Spaceborne potential for
examining taiga–tundra ecotone form andvulnerability.Biogeosciences, 13(13), 3847–3861.
https://doi.org/10.5194/bg-13-3847-2016
Montesano, Paul M, Neigh, C. S. R., Macander, M., Feng, M., &
Noojipady, P. (2020). The
bioclimatic extent and pattern of the cold edge of the boreal forest:
the circumpolar taiga-tundra ecotone. Environmental Research
Letters, 15(10), 105019.
https://doi.org/10.1088/1748-9326/abb2c7
Montesano, Paul Mannix, Neigh, C. S. R., Sexton, J., Feng, M., Channan,
S., Ranson, K. J., &
Townshend, J. R. (2016). Calibration and Validation of Landsat Tree
Cover in the Taiga−Tundra Ecotone. Remote Sensing, 8(7),
551. https://doi.org/10.3390/rs8070551
Moorthy, I., Miller, J. R., & Noland, T. L. (2008). Estimating
chlorophyll concentration in
conifer needles with hyperspectral data: An assessment at the needle and
canopy level. Remote Sensing of Environment, 112(6),
2824–2838. https://doi.org/10.1016/j.rse.2008.01.013
Murray, K. J., Tenhunen, J. D., & Nowak, R. S. (1993). Photoinhibition
as a control on
photosynthesis and production of Sphagnum mosses. Oecologia,96(2), 200–207. https://doi.org/10.1007/BF00317733
Myers-Smith, I. H., Thomas, H. J. D., & Bjorkman, A. D. (2019). Plant
traits inform predictions
of tundra responses to global change. New Phytologist,221(4), 1742–1748. https://doi.org/10.1111/nph.15592
Myers-Smith, I. H., Kerby, J. T., Phoenix, G. K., Bjerke, J. W.,
Epstein, H. E., Assmann, J. J., et
al. (2020). Complexity revealed in the greening of the Arctic.Nature Climate Change, 10(2), 106–117.
Nelson, P. R., Roland, C., Macander, M. J., & McCune, B. (2013).
Detecting continuous lichen
abundance for mapping winter caribou forage at landscape spatial scales.Remote Sensing of Environment, 137, 43–54.
https://doi.org/10.1016/j.rse.2013.05.026
Neta, T., Cheng, Q., Bello, R. L., & Hu, B. (2010). Lichens and mosses
moisture content
assessment through high-spectral resolution remote sensing technology: a
case study of the Hudson Bay Lowlands, Canada. Hydrological
Processes, 24(18), 2617–2628. https://doi.org/10.1002/hyp.7669
Nieke, J., & Rast, M. (2018). Towards the Copernicus Hyperspectral
Imaging Mission For The
Environment (CHIME). In IGARSS 2018 - 2018 IEEE International
Geoscience and Remote Sensing Symposium (pp. 157–159).
https://doi.org/10.1109/IGARSS.2018.8518384
Niinemets, Ü., & Tobias, M. (2014). Scaling Light Harvesting from Moss
“Leaves” to Canopies.
In D. T. Hanson & S. K. Rice (Eds.), Photosynthesis in Bryophytes
and Early Land Plants (pp. 151–171). Dordrecht: Springer Netherlands.
https://doi.org/10.1007/978-94-007-6988-5_9
Niittynen, P., Heikkinen, R. K., Aalto, J., Guisan, A., Kemppinen, J.,
& Luoto, M. (2020). Fine-
scale tundra vegetation patterns are strongly related to winter thermal
conditions. Nature Climate Change, 10(12), 1143–1148.
https://doi.org/10.1038/s41558-020-00916-4
Oechel, W. C., Hastings, S. J., Vourlrtis, G., Jenkins, M., Riechers,
G., & Grulke, N. (1993).
Recent change of Arctic tundra ecosystems from a net carbon dioxide sink
to a source. Nature, 361(6412), 520–523.
https://doi.org/10.1038/361520a0
Ollinger, S. V., & Smith, M.-L. (2005). Net Primary Production and
Canopy Nitrogen in a
Temperate Forest Landscape: An Analysis Using Imaging Spectroscopy,
Modeling and Field Data. Ecosystems, 8(7), 760–778.
https://doi.org/10.1007/s10021-005-0079-5
Olofsson, J., Tømmervik, H., & Callaghan, T. V. (2012). Vole and
lemming activity observed
from space. Nature Climate Change, 2(12), 880–883.
https://doi.org/10.1038/nclimate1537
Parazoo, N. C., Arneth, A., Pugh, T. A. M., Smith, B., Steiner, N.,
Luus, K., et al. (2018). Spring
photosynthetic onset and net CO2 uptake in Alaska triggered by landscape
thawing. Global Change Biology, 24(8), 3416–3435.
https://doi.org/10.1111/gcb.14283
Patankar, R., Mortazavi, B., Oberbauer, S. F., & Starr, G. (2013).
Diurnal patterns of gas-
exchange and metabolic pools in tundra plants during three phases of the
arctic growing season. Ecology and Evolution, 3(2),
375–388. https://doi.org/10.1002/ece3.467
Petzold, D. E., & Goward, S. N. (1988). Reflectance spectra of
subarctic lichens. Remote Sensing
of Environment , 24 (3), 481–492.
https://doi.org/10.1016/0034-4257(88)90020-X
Pierrat, Z., Nehemy, M. F., Roy, A., Magney, T., Parazoo, N. C.,
Laroque, C., et al. (2021).
Tower-Based Remote Sensing Reveals Mechanisms Behind a Two-phased Spring
Transition in a Mixed-Species Boreal Forest. Journal of
Geophysical Research: Biogeosciences, 126(5), e2020JG006191.
https://doi.org/10.1029/2020JG006191
Puletti, N., Camarretta, N., & Corona, P. (2016). Evaluating
EO1-Hyperion capability for
mapping conifer and broadleaved forests. European Journal of
Remote Sensing, 49(1), 157–169.
https://doi.org/10.5721/EuJRS20164909
Räsänen, A., & Virtanen, T. (2019). Data and resolution requirements in
mapping vegetation in
spatially heterogeneous landscapes. Remote Sensing of
Environment, 230, 111207.
https://doi.org/10.1016/j.rse.2019.05.026
Rautiainen, M., Mõttus, M., Heiskanen, J., Akujärvi, A., Majasalmi, T.,
& Stenberg, P. (2011).
Seasonal reflectance dynamics of common understory types in a northern
European boreal forest. Remote Sensing of Environment,115(12), 3020–3028. https://doi.org/10.1016/j.rse.2011.06.005
Raynolds, M. K., Walker, D. A., Balser, A., Bay, C., Campbell, M.,
Cherosov, M. M., et al.
(2019). A raster version of the Circumpolar Arctic Vegetation Map
(CAVM). Remote Sensing of Environment, 232, 111297.
Rees, W. G., Tutubalina, O. V., & Golubeva, E. I. (2004). Reflectance
spectra of subarctic
lichens between 400 and 2400 nm. Remote Sensing of Environment,90(3), 281–292. https://doi.org/10.1016/j.rse.2003.12.009
Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., von Caemmerer, S.,
Dietze, M. C., et al.
(2017). A roadmap for improving the representation of photosynthesis in
Earth system models. New Phytologist, 213(1), 22–42.
https://doi.org/10.1111/nph.14283
Schaepman, M. E., Ustin, S. L., Plaza, A. J., Painter, T. H., Verrelst,
J., & Liang, S. (2009). Earth
system science related imaging spectroscopy—An assessment.Remote Sensing of Environment, 113, S123–S137.
https://doi.org/10.1016/j.rse.2009.03.001
Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S.,
Townsend, P., et al. (2015).
Observing terrestrial ecosystems and the carbon cycle from space.Global Change Biology, 21(5), 1762–1776.
https://doi.org/10.1111/gcb.12822
Serbin, S. P., & Townsend, P. A. (2020). Scaling Functional Traits from
Leaves to Canopies. In
J. Cavender-Bares, J. A. Gamon, & P. A. Townsend (Eds.), Remote
Sensing of Plant Biodiversity (pp. 43–82). Cham: Springer
International Publishing. https://doi.org/10.1007/978-3-030-33157-3_3
Serbin, S. P., Wu, J., Ely, K. S., Kruger, E. L., Townsend, P. A., Meng,
R., et al. (2019). From
the Arctic to the tropics: multibiome prediction of leaf mass per area
using leaf reflectance. New Phytologist, 224(4),
1557–1568. https://doi.org/10.1111/nph.16123
Shaver, G. R. (1981). Mineral nutrition and leaf longevity in an
evergreen shrub, Ledum palustre
ssp. decumbens. Oecologia , 49 (3), 362–365.
https://doi.org/10.1007/BF00347599
Shiklomanov, A. N., Bradley, B. A., Dahlin, K. M., M Fox, A., Gough, C.
M., Hoffman, F. M.,
et al. (2019). Enhancing global change experiments through integration
of remote-sensing techniques. Frontiers in Ecology and the
Environment, 17(4), 215–224. https://doi.org/10.1002/fee.2031
Shiklomanov, A. N., Dietze, M. C., Fer, I., Viskari, T., & Serbin, S.
P. (2021). Cutting out the
middleman: calibrating and validating a dynamic vegetation model
(ED2-PROSPECT5) using remotely sensed surface reflectance.Geoscientific Model Development, 14(5), 2603–2633.
https://doi.org/10.5194/gmd-14-2603-2021
Shur, Y. L., & Jorgenson, M. T. (2007). Patterns of permafrost
formation and degradation in
relation to climate and ecosystems. Permafrost and Periglacial
Processes, 18(1), 7–19. https://doi.org/10.1002/ppp.582
Singh, A., Serbin, S. P., McNeil, B. E., Kingdon, C. C., & Townsend, P.
A. (2015). Imaging
spectroscopy algorithms for mapping canopy foliar chemical and
morphological traits and their uncertainties. Ecological
Applications, 25(8), 2180–2197.
https://doi.org/10.1890/14-2098.1
Smith, C. W., Panda, S. K., Bhatt, U. S., & Meyer, F. J. (2021).
Improved Boreal Forest Wildfire
Fuel Type Mapping in Interior Alaska Using AVIRIS-NG Hyperspectral Data.Remote Sensing, 13(5), 897.
Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H.,
Aime, M. C., et al. (2016).
Basidiomycete yeasts in the cortex of ascomycete macrolichens.Science, 353(6298), 488–492.
https://doi.org/10.1126/science.aaf8287
Starr, G., & Oberbauer, S. F. (2003). Photosynthesis of Arctic
Evergreens Under Snow:
Implications for Tundra Ecosystem Carbon Balance. Ecology,84(6), 1415–1420. https://doi.org/10.1890/02-3154
Stasinski, L., White, D. M., Nelson, P. R., Ree, R. H., & Meireles, J.
E. (n.d.). Reading light: leaf
spectra capture fine-scale diversity of closely related, hybridizing
arctic shrubs. New Phytologist, n/a(n/a).
https://doi.org/10.1111/nph.17731
Stow, D. A., Burns, B. H., & Hope, A. S. (1993). Spectral, spatial and
temporal characteristics of
Arctic tundra reflectance. International Journal of Remote
Sensing, 14(13), 2445–2462.
https://doi.org/10.1080/01431169308904285
Stumberg, N., Bollandsås, O., Gobakken, T., & Næsset, E. (2014).
Automatic Detection of Small
Single Trees in the Forest-Tundra Ecotone Using Airborne Laser Scanning.Remote Sensing, 6(10), 10152–10170.
https://doi.org/10.3390/rs61010152
Sturm, M., Schimel, J., Michaelson, G., Welker, J. M., Oberbauer, S. F.,
Liston, G. E., et al.
(2005). Winter Biological Processes Could Help Convert Arctic Tundra to
Shrubland. BioScience, 55(1), 17–26.
https://doi.org/10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2
Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., & Friedl, M. A.
(2019). Hierarchical
mapping of annual global land cover 2001 to present: The MODIS
Collection 6 Land Cover product. Remote Sensing of Environment,222, 183–194.
Tang, Z., Xu, W., Zhou, G., Bai, Y., Li, J., Tang, X., et al. (2018).
Patterns of plant carbon,
nitrogen, and phosphorus concentration in relation to productivity in
China’s terrestrial ecosystems. Proceedings of the National
Academy of Sciences, 115(16), 4033–4038.
https://doi.org/10.1073/pnas.1700295114
Tedesco, M. (Ed.). (2015). Remote Sensing of the Cryosphere (1st
ed.). West Sussex, United
Kingdom: John Wiley & Sons Ltd.
Tenhunen, J. D., Siegwolf, R. T. W., & Oberbauer, S. F. (1995). Effects
of Phenology,
Physiology, and Gradients in Community Composition, Structure, and
Microclimate on Tundra Ecosystem CO2 Exchange. In E.-D. Schulze & M. M.
Caldwell (Eds.), Ecophysiology of Photosynthesis (pp. 431–460).
Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-79354-7_21
Thomas, H. J. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C.,
Kattge, J., Diaz, S., et
al. (2020). Global plant trait relationships extend to the climatic
extremes of the tundra biome. Nature Communications,11(1), 1351. https://doi.org/10.1038/s41467-020-15014-4
Thompson, D. R., Boardman, J. W., Eastwood, M. L., & Green, R. O.
(2017). A large airborne
survey of Earth’s visible-infrared spectral dimensionality. Optics
Express, 25(8), 9186–9195. https://doi.org/10.1364/OE.25.009186
Thompson, D. R., Natraj, V., Green, R. O., Helmlinger, M. C., Gao,
B.-C., & Eastwood, M. L.
(2018). Optimal estimation for imaging spectrometer atmospheric
correction. Remote Sensing of Environment, 216, 355–373.
https://doi.org/10.1016/j.rse.2018.07.003
Thomson, E. R., Spiegel, M. P., Althuizen, I. H., Bass, P., Chen, S.,
Chmurzynski, A., et al.
(2021). Multiscale mapping of plant functional groups and plant traits
in the High Arctic using field spectroscopy, UAV imagery and Sentinel-2A
data. Environmental Research Letters, 16(5), 055006.
Ustin, S. L., & Middleton, E. M. (2021). Current and near-term advances
in Earth observation
for ecological applications. Ecological Processes, 10(1),
1. https://doi.org/10.1186/s13717-020-00255-4
Van Gaalen, K. E., Flanagan, L. B., & Peddle, D. R. (2007).
Photosynthesis, chlorophyll
fluorescence and spectral reflectance in Sphagnum moss at varying water
contents. Oecologia, 153(1), 19–28.
https://doi.org/10.1007/s00442-007-0718-y
Verhoeven, A. (2014). Sustained energy dissipation in winter evergreens.New Phytologist ,
201 (1), 57–65. https://doi.org/10.1111/nph.12466
Vickers, H., Karlsen, S. R., & Malnes, E. (2020). A 20-year MODIS-based
snow cover dataset
for Svalbard and its link to phenological timing and sea ice
variability. Remote Sensing, 12(7).
https://doi.org/10.3390/rs12071123
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel,
I., & Garnier, E. (2007).
Let the concept of trait be functional! Oikos, 116(5),
882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
Virtanen, T., & Ek, M. (2014). The fragmented nature of tundra
landscape. International Journal
of Applied Earth Observation and Geoinformation, 27,
4–12. https://doi.org/10.1016/j.jag.2013.05.010
Vogelmann, J. E., & Moss, D. M. (1993). Spectral reflectance
measurements in the genus
Sphagnum. Remote Sensing of Environment, 45(3), 273–279.
https://doi.org/10.1016/0034-4257(93)90110-J
Walker, D. A., Jia, G. J., Epstein, H. E., Raynolds, M. K., Chapin III,
F. S., Copass, C., et al.
(2003). Vegetation-soil-thaw-depth relationships along a low-arctic
bioclimate gradient, Alaska: synthesis of information from the ATLAS
studies. Permafrost and Periglacial Processes, 14(2),
103–123. https://doi.org/10.1002/ppp.452
Walker, Donald A., Raynolds, M. K., Daniëls, F. J. A., Einarsson, E.,
Elvebakk, A., Gould, W.
A., et al. (2005). The Circumpolar Arctic vegetation map. Journal
of Vegetation Science, 16(3), 267–282.
https://doi.org/10.1111/j.1654-1103.2005.tb02365.x
Walter, H. (1931). Die Hydratur Der Pflanze Und Ihre
Physiologisch-Okologische Bedeutung .
Jena, Germany: Fischer.
Walther, S., Voigt, M., Thum, T., Gonsamo, A., Zhang, Y., Köhler, P., et
al. (2016). Satellite
chlorophyll fluorescence measurements reveal large-scale decoupling of
photosynthesis and greenness dynamics in boreal evergreen forests.Global Change Biology, 22(9), 2979–2996.
https://doi.org/10.1111/gcb.13200
Walther, S., Guanter, L., Heim, B., Jung, M., Duveiller, G., Wolanin,
A., & Sachs, T. (2018).
Assessing the dynamics of vegetation productivity in circumpolar regions
with different satellite indicators of greenness and photosynthesis.Biogeosciences, 15(20), 6221–6256.
https://doi.org/10.5194/bg-15-6221-2018
Wang, J., Chen, J. M., Feng, L., Xu, J., & Zhang, F. (2020). Redefining
the Directional-
Hemispherical Reflectance and Transmittance of Needle-Shaped Leaves to
Address Issues in Their Existing Measurement Methods.Photogrammetric Engineering & Remote Sensing, 86(10),
627–641. https://doi.org/10.14358/PERS.86.10.627
Wang, J. A., & Friedl, M. A. (2019). The role of land cover change in
Arctic-Boreal greening
and browning trends. Environmental Research Letters,14(12), 125007. https://doi.org/10.1088/1748-9326/ab5429
Wang, J. A., Sulla‐Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling,
R. F., & Friedl, M.
A. (2020). Extensive land cover change across Arctic–Boreal
Northwestern North America from disturbance and climate forcing.Global Change Biology, 26(2), 807–822.
https://doi.org/10.1111/gcb.14804
Wang, Z., Townsend, P. A., Schweiger, A. K., Couture, J. J., Singh, A.,
Hobbie, S. E., &
Cavender-Bares, J. (2019). Mapping foliar functional traits and their
uncertainties across three years in a grassland experiment. Remote
Sensing of Environment, 221, 405–416.
https://doi.org/10.1016/j.rse.2018.11.016
Wang, Z., Chlus, A., Geygan, R., Ye, Z., Zheng, T., Singh, A., et al.
(2020). Foliar functional
traits from imaging spectroscopy across biomes in eastern North America.New Phytologist, 228(2), 494–511.
https://doi.org/10.1111/nph.16711
Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic
tool of chemometrics.
Chemometrics and Intelligent Laboratory Systems, 58(2),
109–130. https://doi.org/10.1016/S0169-7439(01)00155-1
Wong, C. Y. S., & Gamon, J. A. (2015a). The photochemical reflectance
index provides an
optical indicator of spring photosynthetic activation in evergreen
conifers. New Phytologist, 206(1), 196–208.
https://doi.org/10.1111/nph.13251
Wong, C. Y. S., & Gamon, J. A. (2015b). Three causes of variation in
the photochemical
reflectance index (PRI) in evergreen conifers. New Phytologist,206(1), 187–195. https://doi.org/10.1111/nph.13159
Wong, C. Y. S., D’Odorico, P., Arain, M. A., & Ensminger, I. (2020).
Tracking the phenology of
photosynthesis using carotenoid-sensitive and near-infrared reflectance
vegetation indices in a temperate evergreen and mixed deciduous forest.New Phytologist, 226(6), 1682–1695.
https://doi.org/10.1111/nph.16479
Woodward, F. I., & Diament, A. D. (1991). Functional Approaches to
Predicting the Ecological
Effects of Global Change. Functional Ecology, 5(2),
202–212. https://doi.org/10.2307/2389258
Wullschleger, S. D., Epstein, H. E., Box, E. O., Euskirchen, E. S.,
Goswami, S., Iversen, C. M.,
et al. (2014). Plant functional types in Earth system models: past
experiences and future directions for application of dynamic vegetation
models in high-latitude ecosystems. Annals of Botany,114(1), 1–16. https://doi.org/10.1093/aob/mcu077
Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K., & Parazoo, N. C.
(2021). Emerging satellite
observations for diurnal cycling of ecosystem processes. Nature
Plants, 7(7), 877–887.
https://doi.org/10.1038/s41477-021-00952-8
Xu, X., & Trugman, A. T. (2021). Trait-Based Modeling of Terrestrial
Ecosystems: Advances
and Challenges Under Global Change. Current Climate Change
Reports, 7(1), 1–13. https://doi.org/10.1007/s40641-020-00168-6
Yang, D., Meng, R., Morrison, B. D., McMahon, A., Hantson, W., Hayes, D.
J., et al. (2020). A
Multi-Sensor Unoccupied Aerial System Improves Characterization of
Vegetation Composition and Canopy Properties in the Arctic Tundra.Remote Sensing, 12(16), 2638.
https://doi.org/10.3390/rs12162638
Yang, D., Morrison, B. D., Hantson, W., Breen, A. L., McMahon, A., Li,
Q., et al. (2021).
Landscape-scale characterization of Arctic tundra vegetation
composition, structure, and function with a multi-sensor unoccupied
aerial system, 16(8), 085005.
https://doi.org/10.1088/1748-9326/ac1291
Zakharova, L., Meyer, K. M., & Seifan, M. (2019). Trait-based modelling
in ecology: A review
of two decades of research. Ecological Modelling, 407,
108703. https://doi.org/10.1016/j.ecolmodel.2019.05.008
Zhang, W., Miller, P. A., Jansson, C., Samuelsson, P., Mao, J., &
Smith, B. (2018). Self-
Amplifying Feedbacks Accelerate Greening and Warming of the Arctic.Geophysical Research Letters, 45(14), 7102–7111.
https://doi.org/10.1029/2018GL077830