Russian Academy of Sciences,
Proceedings of the Komarov Botanical Institute , 21 , 220pp.
May, J. L., Parker, T., Unger, S., & Oberbauer, S. F. (2018). Short term changes in moisture
content drive strong changes in Normalized Difference Vegetation Index and gross primary productivity in four Arctic moss communities.Remote Sensing of Environment, 212, 114–120. https://doi.org/10.1016/j.rse.2018.04.041
Meireles, J. E., Cavender‐Bares, J., Townsend, P. A., Ustin, S., Gamon, J. A., Schweiger, A. K.,
et al. (2020). Leaf reflectance spectra capture the evolutionary history of seed plants. New Phytologist, 228(2), 485–493. https://doi.org/10.1111/nph.16771
Metcalfe, D. B., Hermans, T. D. G., Ahlstrand, J., Becker, M., Berggren, M., Björk, R. G., et al.
(2018). Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecology & Evolution,2(9), 1443–1448. https://doi.org/10.1038/s41559-018-0612-5
Miller, C., Griffith, P., Goetz, S., Hoy, E., Pinto, N., McCubbin, I., et al. (2019). An overview of
ABoVE airborne campaign data acquisitions and science opportunities.Environmental Research Letters, 14(8), 080201.
Montesano, Paul M., Sun, G., Dubayah, R. O., & Ranson, K. J. (2016). Spaceborne potential for
examining taiga–tundra ecotone form andvulnerability.Biogeosciences, 13(13), 3847–3861. https://doi.org/10.5194/bg-13-3847-2016
Montesano, Paul M, Neigh, C. S. R., Macander, M., Feng, M., & Noojipady, P. (2020). The
bioclimatic extent and pattern of the cold edge of the boreal forest: the circumpolar taiga-tundra ecotone. Environmental Research Letters, 15(10), 105019. https://doi.org/10.1088/1748-9326/abb2c7
Montesano, Paul Mannix, Neigh, C. S. R., Sexton, J., Feng, M., Channan, S., Ranson, K. J., &
Townshend, J. R. (2016). Calibration and Validation of Landsat Tree Cover in the Taiga−Tundra Ecotone. Remote Sensing, 8(7), 551. https://doi.org/10.3390/rs8070551
Moorthy, I., Miller, J. R., & Noland, T. L. (2008). Estimating chlorophyll concentration in
conifer needles with hyperspectral data: An assessment at the needle and canopy level. Remote Sensing of Environment, 112(6), 2824–2838. https://doi.org/10.1016/j.rse.2008.01.013
Murray, K. J., Tenhunen, J. D., & Nowak, R. S. (1993). Photoinhibition as a control on
photosynthesis and production of Sphagnum mosses. Oecologia,96(2), 200–207. https://doi.org/10.1007/BF00317733
Myers-Smith, I. H., Thomas, H. J. D., & Bjorkman, A. D. (2019). Plant traits inform predictions
of tundra responses to global change. New Phytologist,221(4), 1742–1748. https://doi.org/10.1111/nph.15592
Myers-Smith, I. H., Kerby, J. T., Phoenix, G. K., Bjerke, J. W., Epstein, H. E., Assmann, J. J., et
al. (2020). Complexity revealed in the greening of the Arctic.Nature Climate Change, 10(2), 106–117.
Nelson, P. R., Roland, C., Macander, M. J., & McCune, B. (2013). Detecting continuous lichen
abundance for mapping winter caribou forage at landscape spatial scales.Remote Sensing of Environment, 137, 43–54. https://doi.org/10.1016/j.rse.2013.05.026
Neta, T., Cheng, Q., Bello, R. L., & Hu, B. (2010). Lichens and mosses moisture content
assessment through high-spectral resolution remote sensing technology: a case study of the Hudson Bay Lowlands, Canada. Hydrological Processes, 24(18), 2617–2628. https://doi.org/10.1002/hyp.7669
Nieke, J., & Rast, M. (2018). Towards the Copernicus Hyperspectral Imaging Mission For The
Environment (CHIME). In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 157–159). https://doi.org/10.1109/IGARSS.2018.8518384
Niinemets, Ü., & Tobias, M. (2014). Scaling Light Harvesting from Moss “Leaves” to Canopies.
In D. T. Hanson & S. K. Rice (Eds.), Photosynthesis in Bryophytes and Early Land Plants (pp. 151–171). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-6988-5_9
Niittynen, P., Heikkinen, R. K., Aalto, J., Guisan, A., Kemppinen, J., & Luoto, M. (2020). Fine-
scale tundra vegetation patterns are strongly related to winter thermal conditions. Nature Climate Change, 10(12), 1143–1148. https://doi.org/10.1038/s41558-020-00916-4
Oechel, W. C., Hastings, S. J., Vourlrtis, G., Jenkins, M., Riechers, G., & Grulke, N. (1993).
Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature, 361(6412), 520–523. https://doi.org/10.1038/361520a0
Ollinger, S. V., & Smith, M.-L. (2005). Net Primary Production and Canopy Nitrogen in a
Temperate Forest Landscape: An Analysis Using Imaging Spectroscopy, Modeling and Field Data. Ecosystems, 8(7), 760–778. https://doi.org/10.1007/s10021-005-0079-5
Olofsson, J., Tømmervik, H., & Callaghan, T. V. (2012). Vole and lemming activity observed
from space. Nature Climate Change, 2(12), 880–883. https://doi.org/10.1038/nclimate1537
Parazoo, N. C., Arneth, A., Pugh, T. A. M., Smith, B., Steiner, N., Luus, K., et al. (2018). Spring
photosynthetic onset and net CO2 uptake in Alaska triggered by landscape thawing. Global Change Biology, 24(8), 3416–3435. https://doi.org/10.1111/gcb.14283
Patankar, R., Mortazavi, B., Oberbauer, S. F., & Starr, G. (2013). Diurnal patterns of gas-
exchange and metabolic pools in tundra plants during three phases of the arctic growing season. Ecology and Evolution, 3(2), 375–388. https://doi.org/10.1002/ece3.467
Petzold, D. E., & Goward, S. N. (1988). Reflectance spectra of subarctic lichens. Remote Sensing
of Environment , 24 (3), 481–492. https://doi.org/10.1016/0034-4257(88)90020-X
Pierrat, Z., Nehemy, M. F., Roy, A., Magney, T., Parazoo, N. C., Laroque, C., et al. (2021).
Tower-Based Remote Sensing Reveals Mechanisms Behind a Two-phased Spring Transition in a Mixed-Species Boreal Forest. Journal of Geophysical Research: Biogeosciences, 126(5), e2020JG006191. https://doi.org/10.1029/2020JG006191
Puletti, N., Camarretta, N., & Corona, P. (2016). Evaluating EO1-Hyperion capability for
mapping conifer and broadleaved forests. European Journal of Remote Sensing, 49(1), 157–169. https://doi.org/10.5721/EuJRS20164909
Räsänen, A., & Virtanen, T. (2019). Data and resolution requirements in mapping vegetation in
spatially heterogeneous landscapes. Remote Sensing of Environment, 230, 111207. https://doi.org/10.1016/j.rse.2019.05.026
Rautiainen, M., Mõttus, M., Heiskanen, J., Akujärvi, A., Majasalmi, T., & Stenberg, P. (2011).
Seasonal reflectance dynamics of common understory types in a northern European boreal forest. Remote Sensing of Environment,115(12), 3020–3028. https://doi.org/10.1016/j.rse.2011.06.005
Raynolds, M. K., Walker, D. A., Balser, A., Bay, C., Campbell, M., Cherosov, M. M., et al.
(2019). A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sensing of Environment, 232, 111297.
Rees, W. G., Tutubalina, O. V., & Golubeva, E. I. (2004). Reflectance spectra of subarctic
lichens between 400 and 2400 nm. Remote Sensing of Environment,90(3), 281–292. https://doi.org/10.1016/j.rse.2003.12.009
Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., von Caemmerer, S., Dietze, M. C., et al.
(2017). A roadmap for improving the representation of photosynthesis in Earth system models. New Phytologist, 213(1), 22–42. https://doi.org/10.1111/nph.14283
Schaepman, M. E., Ustin, S. L., Plaza, A. J., Painter, T. H., Verrelst, J., & Liang, S. (2009). Earth
system science related imaging spectroscopy—An assessment.Remote Sensing of Environment, 113, S123–S137. https://doi.org/10.1016/j.rse.2009.03.001
Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S., Townsend, P., et al. (2015).
Observing terrestrial ecosystems and the carbon cycle from space.Global Change Biology, 21(5), 1762–1776. https://doi.org/10.1111/gcb.12822
Serbin, S. P., & Townsend, P. A. (2020). Scaling Functional Traits from Leaves to Canopies. In
J. Cavender-Bares, J. A. Gamon, & P. A. Townsend (Eds.), Remote Sensing of Plant Biodiversity (pp. 43–82). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-33157-3_3
Serbin, S. P., Wu, J., Ely, K. S., Kruger, E. L., Townsend, P. A., Meng, R., et al. (2019). From
the Arctic to the tropics: multibiome prediction of leaf mass per area using leaf reflectance. New Phytologist, 224(4), 1557–1568. https://doi.org/10.1111/nph.16123
Shaver, G. R. (1981). Mineral nutrition and leaf longevity in an evergreen shrub, Ledum palustre
ssp. decumbens. Oecologia , 49 (3), 362–365. https://doi.org/10.1007/BF00347599
Shiklomanov, A. N., Bradley, B. A., Dahlin, K. M., M Fox, A., Gough, C. M., Hoffman, F. M.,
et al. (2019). Enhancing global change experiments through integration of remote-sensing techniques. Frontiers in Ecology and the Environment, 17(4), 215–224. https://doi.org/10.1002/fee.2031
Shiklomanov, A. N., Dietze, M. C., Fer, I., Viskari, T., & Serbin, S. P. (2021). Cutting out the
middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance.Geoscientific Model Development, 14(5), 2603–2633. https://doi.org/10.5194/gmd-14-2603-2021
Shur, Y. L., & Jorgenson, M. T. (2007). Patterns of permafrost formation and degradation in
relation to climate and ecosystems. Permafrost and Periglacial Processes, 18(1), 7–19. https://doi.org/10.1002/ppp.582
Singh, A., Serbin, S. P., McNeil, B. E., Kingdon, C. C., & Townsend, P. A. (2015). Imaging
spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. Ecological Applications, 25(8), 2180–2197. https://doi.org/10.1890/14-2098.1
Smith, C. W., Panda, S. K., Bhatt, U. S., & Meyer, F. J. (2021). Improved Boreal Forest Wildfire
Fuel Type Mapping in Interior Alaska Using AVIRIS-NG Hyperspectral Data.Remote Sensing, 13(5), 897.
Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., et al. (2016).
Basidiomycete yeasts in the cortex of ascomycete macrolichens.Science, 353(6298), 488–492. https://doi.org/10.1126/science.aaf8287
Starr, G., & Oberbauer, S. F. (2003). Photosynthesis of Arctic Evergreens Under Snow:
Implications for Tundra Ecosystem Carbon Balance. Ecology,84(6), 1415–1420. https://doi.org/10.1890/02-3154
Stasinski, L., White, D. M., Nelson, P. R., Ree, R. H., & Meireles, J. E. (n.d.). Reading light: leaf
spectra capture fine-scale diversity of closely related, hybridizing arctic shrubs. New Phytologist, n/a(n/a). https://doi.org/10.1111/nph.17731
Stow, D. A., Burns, B. H., & Hope, A. S. (1993). Spectral, spatial and temporal characteristics of
Arctic tundra reflectance. International Journal of Remote Sensing, 14(13), 2445–2462. https://doi.org/10.1080/01431169308904285
Stumberg, N., Bollandsås, O., Gobakken, T., & Næsset, E. (2014). Automatic Detection of Small
Single Trees in the Forest-Tundra Ecotone Using Airborne Laser Scanning.Remote Sensing, 6(10), 10152–10170. https://doi.org/10.3390/rs61010152
Sturm, M., Schimel, J., Michaelson, G., Welker, J. M., Oberbauer, S. F., Liston, G. E., et al.
(2005). Winter Biological Processes Could Help Convert Arctic Tundra to Shrubland. BioScience, 55(1), 17–26. https://doi.org/10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2
Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., & Friedl, M. A. (2019). Hierarchical
mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sensing of Environment,222, 183–194.
Tang, Z., Xu, W., Zhou, G., Bai, Y., Li, J., Tang, X., et al. (2018). Patterns of plant carbon,
nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences, 115(16), 4033–4038. https://doi.org/10.1073/pnas.1700295114
Tedesco, M. (Ed.). (2015). Remote Sensing of the Cryosphere (1st ed.). West Sussex, United
Kingdom: John Wiley & Sons Ltd.
Tenhunen, J. D., Siegwolf, R. T. W., & Oberbauer, S. F. (1995). Effects of Phenology,
Physiology, and Gradients in Community Composition, Structure, and Microclimate on Tundra Ecosystem CO2 Exchange. In E.-D. Schulze & M. M. Caldwell (Eds.), Ecophysiology of Photosynthesis (pp. 431–460). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-79354-7_21
Thomas, H. J. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Kattge, J., Diaz, S., et
al. (2020). Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications,11(1), 1351. https://doi.org/10.1038/s41467-020-15014-4
Thompson, D. R., Boardman, J. W., Eastwood, M. L., & Green, R. O. (2017). A large airborne
survey of Earth’s visible-infrared spectral dimensionality. Optics Express, 25(8), 9186–9195. https://doi.org/10.1364/OE.25.009186
Thompson, D. R., Natraj, V., Green, R. O., Helmlinger, M. C., Gao, B.-C., & Eastwood, M. L.
(2018). Optimal estimation for imaging spectrometer atmospheric correction. Remote Sensing of Environment, 216, 355–373. https://doi.org/10.1016/j.rse.2018.07.003
Thomson, E. R., Spiegel, M. P., Althuizen, I. H., Bass, P., Chen, S., Chmurzynski, A., et al.
(2021). Multiscale mapping of plant functional groups and plant traits in the High Arctic using field spectroscopy, UAV imagery and Sentinel-2A data. Environmental Research Letters, 16(5), 055006.
Ustin, S. L., & Middleton, E. M. (2021). Current and near-term advances in Earth observation
for ecological applications. Ecological Processes, 10(1), 1. https://doi.org/10.1186/s13717-020-00255-4
Van Gaalen, K. E., Flanagan, L. B., & Peddle, D. R. (2007). Photosynthesis, chlorophyll
fluorescence and spectral reflectance in Sphagnum moss at varying water contents. Oecologia, 153(1), 19–28. https://doi.org/10.1007/s00442-007-0718-y
Verhoeven, A. (2014). Sustained energy dissipation in winter evergreens.New Phytologist ,
201 (1), 57–65. https://doi.org/10.1111/nph.12466
Vickers, H., Karlsen, S. R., & Malnes, E. (2020). A 20-year MODIS-based snow cover dataset
for Svalbard and its link to phenological timing and sea ice variability. Remote Sensing, 12(7). https://doi.org/10.3390/rs12071123
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007).
Let the concept of trait be functional! Oikos, 116(5), 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
Virtanen, T., & Ek, M. (2014). The fragmented nature of tundra landscape. International Journal
of Applied Earth Observation and Geoinformation, 27, 4–12. https://doi.org/10.1016/j.jag.2013.05.010
Vogelmann, J. E., & Moss, D. M. (1993). Spectral reflectance measurements in the genus
Sphagnum. Remote Sensing of Environment, 45(3), 273–279. https://doi.org/10.1016/0034-4257(93)90110-J
Walker, D. A., Jia, G. J., Epstein, H. E., Raynolds, M. K., Chapin III, F. S., Copass, C., et al.
(2003). Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies. Permafrost and Periglacial Processes, 14(2), 103–123. https://doi.org/10.1002/ppp.452
Walker, Donald A., Raynolds, M. K., Daniëls, F. J. A., Einarsson, E., Elvebakk, A., Gould, W.
A., et al. (2005). The Circumpolar Arctic vegetation map. Journal of Vegetation Science, 16(3), 267–282. https://doi.org/10.1111/j.1654-1103.2005.tb02365.x
Walter, H. (1931). Die Hydratur Der Pflanze Und Ihre Physiologisch-Okologische Bedeutung .
Jena, Germany: Fischer.
Walther, S., Voigt, M., Thum, T., Gonsamo, A., Zhang, Y., Köhler, P., et al. (2016). Satellite
chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests.Global Change Biology, 22(9), 2979–2996. https://doi.org/10.1111/gcb.13200
Walther, S., Guanter, L., Heim, B., Jung, M., Duveiller, G., Wolanin, A., & Sachs, T. (2018).
Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis.Biogeosciences, 15(20), 6221–6256. https://doi.org/10.5194/bg-15-6221-2018
Wang, J., Chen, J. M., Feng, L., Xu, J., & Zhang, F. (2020). Redefining the Directional-
Hemispherical Reflectance and Transmittance of Needle-Shaped Leaves to Address Issues in Their Existing Measurement Methods.Photogrammetric Engineering & Remote Sensing, 86(10), 627–641. https://doi.org/10.14358/PERS.86.10.627
Wang, J. A., & Friedl, M. A. (2019). The role of land cover change in Arctic-Boreal greening
and browning trends. Environmental Research Letters,14(12), 125007. https://doi.org/10.1088/1748-9326/ab5429
Wang, J. A., Sulla‐Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R. F., & Friedl, M.
A. (2020). Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and climate forcing.Global Change Biology, 26(2), 807–822. https://doi.org/10.1111/gcb.14804
Wang, Z., Townsend, P. A., Schweiger, A. K., Couture, J. J., Singh, A., Hobbie, S. E., &
Cavender-Bares, J. (2019). Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sensing of Environment, 221, 405–416. https://doi.org/10.1016/j.rse.2018.11.016
Wang, Z., Chlus, A., Geygan, R., Ye, Z., Zheng, T., Singh, A., et al. (2020). Foliar functional
traits from imaging spectroscopy across biomes in eastern North America.New Phytologist, 228(2), 494–511. https://doi.org/10.1111/nph.16711
Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics.
Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1
Wong, C. Y. S., & Gamon, J. A. (2015a). The photochemical reflectance index provides an
optical indicator of spring photosynthetic activation in evergreen conifers. New Phytologist, 206(1), 196–208. https://doi.org/10.1111/nph.13251
Wong, C. Y. S., & Gamon, J. A. (2015b). Three causes of variation in the photochemical
reflectance index (PRI) in evergreen conifers. New Phytologist,206(1), 187–195. https://doi.org/10.1111/nph.13159
Wong, C. Y. S., D’Odorico, P., Arain, M. A., & Ensminger, I. (2020). Tracking the phenology of
photosynthesis using carotenoid-sensitive and near-infrared reflectance vegetation indices in a temperate evergreen and mixed deciduous forest.New Phytologist, 226(6), 1682–1695. https://doi.org/10.1111/nph.16479
Woodward, F. I., & Diament, A. D. (1991). Functional Approaches to Predicting the Ecological
Effects of Global Change. Functional Ecology, 5(2), 202–212. https://doi.org/10.2307/2389258
Wullschleger, S. D., Epstein, H. E., Box, E. O., Euskirchen, E. S., Goswami, S., Iversen, C. M.,
et al. (2014). Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Annals of Botany,114(1), 1–16. https://doi.org/10.1093/aob/mcu077
Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K., & Parazoo, N. C. (2021). Emerging satellite
observations for diurnal cycling of ecosystem processes. Nature Plants, 7(7), 877–887. https://doi.org/10.1038/s41477-021-00952-8
Xu, X., & Trugman, A. T. (2021). Trait-Based Modeling of Terrestrial Ecosystems: Advances
and Challenges Under Global Change. Current Climate Change Reports, 7(1), 1–13. https://doi.org/10.1007/s40641-020-00168-6
Yang, D., Meng, R., Morrison, B. D., McMahon, A., Hantson, W., Hayes, D. J., et al. (2020). A
Multi-Sensor Unoccupied Aerial System Improves Characterization of Vegetation Composition and Canopy Properties in the Arctic Tundra.Remote Sensing, 12(16), 2638. https://doi.org/10.3390/rs12162638
Yang, D., Morrison, B. D., Hantson, W., Breen, A. L., McMahon, A., Li, Q., et al. (2021).
Landscape-scale characterization of Arctic tundra vegetation composition, structure, and function with a multi-sensor unoccupied aerial system, 16(8), 085005. https://doi.org/10.1088/1748-9326/ac1291
Zakharova, L., Meyer, K. M., & Seifan, M. (2019). Trait-based modelling in ecology: A review
of two decades of research. Ecological Modelling, 407, 108703. https://doi.org/10.1016/j.ecolmodel.2019.05.008
Zhang, W., Miller, P. A., Jansson, C., Samuelsson, P., Mao, J., & Smith, B. (2018). Self-
Amplifying Feedbacks Accelerate Greening and Warming of the Arctic.Geophysical Research Letters, 45(14), 7102–7111. https://doi.org/10.1029/2018GL077830