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Electricity Dispatch and EGU Emission Remapping Algorithm 19 

To determine added electricity generation unit (EGU) emissions in the 30% electric all transport 20 

(eAT) scenario, we employ an electricity dispatch algorithm that provides a first-order approximation of 21 

altered EGU demand. We begin by determining the vehicle miles traveled (VMTs) for each vehicle type 22 

(k) in each U.S. county from the EPA’s National Emissions Inventory1. For our 30% EV adoption 23 

scenario, eAT, we convert 30% of VMTs in each category k to electric VMTs (eVMTs) using Eq.1: 24 

𝑒𝑉𝑀𝑇𝑐,𝑘 = 𝑉𝑀𝑇𝑐,𝑘 · 𝑓𝐸𝑉     (1) 25 

where 𝑒𝑉𝑀𝑇𝑐,𝑘 is a proportion of a county’s VMTs that will demand electricity for battery charging for 26 

vehicle type (k), 𝑉𝑀𝑇𝑐,𝑘 is a county’s total VMTs for vehicle type (k), and 𝑓𝐸𝑉is the fractional EV 27 

adoption rate (0.3 in the eAT scenario). Given the variability in driving habits among vehicle owners, we 28 

note that simulating the electrification of 30% of VMTs is likely to be different from 30% of vehicles. 29 

   Newly converted eVMTs are then translated into increased electricity demand from each CONUS 30 

county via Eq. 2: 31 

𝑡𝐸𝑐 = ∑ 𝑒𝑉𝑀𝑇𝑐,𝑘 · 𝐶𝐸𝑘
𝑘
1 · (1 − 𝐺𝐺𝐿)−1     (2) 32 



where 𝑒𝑉𝑀𝑇𝑐,𝑘 is the total eVMTs within county 𝑐 for all on-road MOVES vehicle types 𝑘 (Table S2), 33 

𝐶𝐸𝑘 is the mean charging efficiency for a representative vehicle type 𝑘 (Table S2), GGL is the grid gross 34 

loss or average transmission and distribution loss of electricity across the U.S. energy grid, (5.1%)2, and 35 

𝑡𝐸𝑐  is the resulting total added electricity a county will demand from EGUs.  36 

In the U.S., electricity is distributed in geographic zones referred to as North American Electric 37 

Reliability Corporation (NERC) entities (Figure 1). In our dispatch algorithm, we assume that electricity 38 

generated at an EGU is not distributed across NERC entity borders (note that this assumption is most 39 

accurate for WECC and TRE, which align with separate grids that are not synchronized with the rest of 40 

the country: flows across synchronized NERC entities in the Eastern interconnect are more common but 41 

ignored for this analysis). As such, our algorithm dispatches a county’s electricity demand to EGUs 42 

residing within their host NERC entity. To account for emission-free renewable generation sources, i.e., 43 

solar, wind, and hydroelectric, we determine the 2016 percentage of electricity generated by renewable 44 

sources within a county’s host NERC entity2. To determine the fraction of electricity within NERC entity 45 

n produced by renewable sources (𝑓𝑅𝑛) we divide the total amount of renewable electricity generated in a 46 

NERC entity n, by the total amount of electricity generated in NERC entity n using Eq 3: 47 

 48 

𝑓𝑅𝑛 = ∑ 𝑡𝐺𝑅,𝑛
𝑀
𝑚=1 · (∑ 𝑡𝐺𝑛𝑅,𝑛

𝑀
𝑚=1 + ∑ 𝑡𝐺𝑅,𝑛

𝑀
𝑚=1 )−1    (3) 49 

where 𝑡𝐺𝑅,𝑛 is the total electricity generated by a renewable EGU 𝑗 in NERC entity 𝑛, and 𝑡𝐺𝑛𝑅,𝑛 is the 50 

total electricity generated by a non-renewable EGU 𝑗 in NERC region 𝑛 for all 𝑀 EGUs in NERC entity 51 

𝑛. 52 

Using a NERC entity’s renewability fraction, 𝑓𝑅𝑛 , we determine the amount of electricity that all 53 

non-renewable EGUs will need to generate, 𝐸𝑐,𝑛, for county 𝑐 in NERC entity 𝑛, based on that county’s 54 

added electricity demand 𝑡𝐸𝑐,𝑛 using Eq. 4:  55 

 56 

𝐸𝑐,𝑛 = 𝑡𝐸𝑐,𝑛 · (1 − 𝑓𝑅𝑛)     (4) 57 



To determine which EGUs supply the added electricity demands of each county, we apply four 58 

weights using data from the EPA’s eGRID-2016 database: (1) the NERC entity, (2) an EGU’s generation 59 

capacity, (3) an EGU’s average generator age, and (4) the distance between a county and EGU, as 60 

summarized in Eq. 5: 61 

𝑎𝐸𝑗,𝑛 = ∑ 𝐸𝑐,𝑛
𝐶
𝑐=1 · ( (1 − 𝑓𝐶𝑗) · 𝑡𝐺𝑗) · (𝐴𝑗 · 𝐷𝑐,𝑗)−1   (5) 62 

where 𝑎𝐸𝑗,𝑛 is the added electricity demand for EGU 𝑗 in NERC entity 𝑛, 𝑓𝐶𝑗 is the capacity factor of 63 

EGU 𝑗, 𝑡𝐺𝑗is the nameplate capacity of EGU 𝑗, 𝐴𝑗 is the average age of EGU 𝑗’s component generators, 64 

and 𝐷𝑐,𝑗 is the distance between county 𝑐 and EGU 𝑗. This calculation is performed for all 𝐶 counties and 65 

𝑗 EGUs throughout CONUS. The age of an EGU is determined by averaging the ages of its component 66 

generators as of December 31, 2021. EGUs lacking ‘year on-line’ dates are assigned the national EGU 67 

age average3. An EGU’s distance from a county is determined using an EGU’s latitude and longitude and 68 

a county’s centroid4. Assumptions behind our weighting scheme are as follows, we assume that: (a) 69 

electricity generated at EGUs is not distributed across NERC entity borders; (b) EGUs cannot produce 70 

electricity beyond their generation capacity and EGUs with higher nameplate capacities are preferentially 71 

chosen to supply needed demand; (c) age functions as a reasonable proxy for which plants increase 72 

capacity factor in response to higher system loads, i.e., an EGU’s ability to change its net production 73 

during operation, thus newer EGUs will respond to a greater fraction of demand; and (d) EGUs more 74 

distal from a county will be responsible for fulfilling a smaller fraction of their energy demand relative to 75 

more proximal EGUs.  76 

Emission factors, 𝐸𝐹𝑗  for each EGU 𝑗 are calculated by dividing an EGU’s baseline generation, 77 

𝑡𝐺𝑗, plus added demand, 𝑎𝐸𝑗, by the baseline generation, such that an EF of 1 corresponds to no increase 78 

in electricity demand, while an EF of 2 would correspond to an added electricity demand double that of 79 

its baseline generation, as described by Eq. 6:  80 

 81 

𝐸𝐹𝑗 = (𝑎𝐸𝑗 + 𝑡𝐺𝑗) · (𝑡𝐺𝑗)−1       (6) 82 



To account for the increase in emissions attendant with increased electricity production at EGUs, 83 

we multiply each EGU’s baseline emissions by the fractional increase in generation demand that results 84 

from the eAT scenario as in Eq. 7: 85 

 𝑚𝑄𝑠,𝑗 = 𝑄𝑠,𝑗 · 𝐸𝐹𝑗                   (7) 86 

where an EGU 𝑗’s emission rate 𝑄 for species 𝑠 based on 2016 data is linearly scaled by its emission 87 

factor 𝐸𝐹𝑗  to produce species’ 𝑠 modified emission rate 𝑚𝑄𝑠,𝑗 . 88 

To account for the reduction in on-road vehicle emissions, given that  EVs do not emit tailpipe 89 

emissions, we reduce 30% of on-road emissions by multiplying each modal type’s emission factor by 0.3 90 

in the MOVES emission factor tables in SMOKE. Emission factor tables include emissions from 91 

refueling processes, thus these emissions are reduced as well. In addition to above mentioned 92 

assumptions, our first-order approximation of altered EGU demand and attendant emissions makes 93 

additional assumptions. We assume that EGU generation fuel types remain temporally consistent, 94 

meaning we do not account for daily, monthly, or seasonal variations in generation mix. We do not 95 

consider time-of-day charging, nor the ramifications associated with daytime versus nighttime charging 96 

and its upstream electricity generation. We assume that EGU emissions scale positively and linearly with 97 

increased electricity generation. For EVs, we assume that vehicles are charged in the county where they 98 

are driven, that is we constrain a county’s VMTs (and thus electricity demand) to that county and do not 99 

consider VMTs driven in a county by a vehicle not residing (and thus charging) in that county; we expect 100 

this assumption to largely hold for LDVs but potentially not for long haul trucks, which could lead to 101 

underestimated air quality benefits from increased EGU demand in drive-through counties and 102 

overestimated air quality benefits from increased EGU demand at HDV charging hubs. We do not 103 

perform a life cycle analysis in this study, but rather focus on emissions associated with on-road 104 

operations and charging. Emissions from EV and EV components (e.g., battery) production, resource 105 

gathering, transportation, disposal, and other life-cycle-related processes are not considered here, but have 106 

been by others5. 107 



 108 

Table S1 | Baseline WRF-CMAQ performance metrics for simulated NO2, MDA8O3 and PM2.5 109 

concentrations in grid cells with EPA AQS stations. Variables μd and μp represent the observed 110 

and predicted values, respectively. NMB% is the normalized mean bias, r is the correlation 111 

coefficient, and n represents the annual average number of EPA AQS measurement stations. The 112 

number of EPA AQS measurement stations vary for each month with 115, 115, 73 and 119 sites 113 

for August and October 2018 and January and April 2019, respectively. For context, within our 114 

1.3 km WRF-CMAQ simulation domain there are 90,720 grid cells. Table and values 115 

adapted from6.  116 

 117 

Pollutant Month μd μp NMB% r 

NO2 

(n=15) 

Aug 2018 10.4 10.7 3.0 0.6 

Oct 2018 10.8 11.0 2.6 0.5 

Jan 2019 13.1 9.6 -27.0 0.6 

Apr 2019 11.2 10.6 -5.6 0.6 

Annualized 11.4 10.5 -6.7 0.6 

MDA8O3 

(n=67) 

Aug 2018 42.8 53.6 25.1 0.5 

Oct 2018 28.0 39.0 39.3 0.4 

Jan 2019 29.7 37.3 25.4 0.6 

Apr 2019 44.2 55.2 24.8 0.4 

Annualized 36.2 46.3 28.7 0.5 

PM2.5 

(n=25) 

Aug 2018 12.1 7.5 -38.2 0.3 

Oct 2018 6.8 7.9 16.4 0.4 

Jan 2019 9.4 9.8 4.4 0.5 



Apr 2019 7.6 6.3 -17.6 0.5 

Annualized 9.0 7.9 -8.8 0.4 

 118 

 119 

Table S2 | On-road Transport Fleet Information Vehicle miles traveled (VMT), representative battery 120 

efficiency rates (BER), and cumulative total electricity demand (TED) resulting from 30% 121 

vehicle electrification for each vehicle type as classified in SMOKE’s MOVES for all counties in 122 

the contiguous United States along with gross vehicle weight rating (GVWR) and vehicle class 123 

for all on-road vehicle types considered in our EV scenarios. 124 

 125 

       

Vehicle Type     

VMT 

(Billion) 

BER 

(kWh/mile) 

TED 

(GWh) 

Motorcycle  Motorcycles (Gasoline) 19.51 0.17 653.62 

Passenger Car  

Class 1 

LD Gas Vehicles (0 – 6,000 lbs. GVWR) 

 

1369.61 0.248 102612.88 

Passenger 

Truck 

 

Class 2a 

LD Gas Vehicles (6,000 – 8,500 lbs.) 

 

Class 2b Trucks with 2 Axles and  

LD 2-Axle and 4-Tire Gas Trucks (8,501 – 10,000 

lbs.) 

 

1321.06 0.459 187926.73 



Light 

Commercial 

Truck 

 

Class 2a 

LD Gas Vehicles (6,000 – 8,500 lbs.) 

 

Class 2b Trucks with 2 Axles and  

LD 2-Axle and 4-Tire Gas Trucks (8,501 – 10,000 

lbs.) 

 

148.31 0.7110 33287.28 

Intercity Bus  

  

Class 4 and 5   

Light HD Gas Vehicles (14,001 -19,500 lbs. 

GVWR)   

  

5.04  1.6111  2569.94  

  

Class 6 and 7   

Medium HD Gas Vehicles (19,501 -33,000 lbs. 

GVWR)   

  

  

Class 8a and 8b   

Heavy HD Gas Vehicles (GVWR >33,000 lbs.)   

  

Transit Bus  

  

Class 4 and 5   

Light HD Gas Vehicles (14,001 -19,500 lbs. 

GVWR)   

  2.92  2.0112 1851.99  

  

Class 6 and 7   

Medium HD Gas Vehicles (19,501 -33,000 lbs. 

GVWR)   



  

  

Class 8a and 8b   

Heavy HD Gas Vehicles (GVWR >33,000 lbs.)   

  

School Bus  

  

Class 2b Trucks with 2 Axles and at least 6 Tiers or 

Class 3   

Light HD Gas Vehicles (8,501 -14,000 lbs. 

GVWR)   

  

6.98  1.3613 2989.06  

  

Class 4 and 5   

Light HD Gas Vehicles (14,001 -19,500 lbs. 

GVWR)   

  

  

Class 6 and 7   

Medium HD Gas Vehicles (19,501 -33,000 lbs. 

GVWR)   

  

  

Class 8a and 8b   

Heavy HD Gas Vehicles (GVWR >33,000 lbs.)   

  

Refuse Truck    

Class 2b Trucks with 2 Axles and at least 6 Tiers or 

Class 3   

Light HD Gas Vehicles (8,501 -14,000 lbs. 

GVWR)   

  

2.24  1.9814 1396.20  



  

Class 4 and 5   

Light HD Gas Vehicles (14,001 -19,500 lbs. 

GVWR)   

  

  

Class 6 and 7   

Medium HD Gas Vehicles (19,501 -33,000 lbs. 

GVWR)   

  

Single Unit 

Short-Haul 

Truck  

  

Class 2b Trucks with 2 Axles and at least 6 Tiers or 

Class 3   

Light HD Gas Vehicles (8,501 -14,000 lbs. 

GVWR)   

  

62.27  2.0015  39372.95  

  

Class 4 and 5   

Light HD Gas Vehicles (14,001 -19,500 lbs. 

GVWR)   

  

  

Class 6 and 7   

Medium HD Gas Vehicles (19,501 -33,000 lbs. 

GVWR)   

  

Single Unit 

Long-Haul 

Truck  

  

Class 2b Trucks with 2 Axles and at least 6 Tiers or 

Class 3   

Light HD Gas Vehicles (8,501 -14,000 lbs. 

GVWR)   

39.42  2.0015  24919.99  



  

  

Class 4 and 5   

Light HD Gas Vehicles (14,001 -19,500 lbs. 

GVWR)   

  

  

Class 6 and 7   

Medium HD Gas Vehicles (19,501 -33,000 lbs. 

GVWR)   

  

Motor Home  

  

Class 2b Trucks with 2 Axles and at least 6 Tiers or 

Class 3   

Light HD Gas Vehicles (8,501 -14,000 lbs. 

GVWR)   

  

2.73  0.4316  373.68  

  

Class 4 and 5   

Light HD Gas Vehicles (14,001 -19,500 lbs. 

GVWR)   

  

  

Class 6 and 7   

Medium HD Gas Vehicles (19,501 -33,000 lbs. 

GVWR)   

  

  

Class 8a and 8b   

Heavy HD Gas Vehicles (GVWR >33,000 lbs.)   

  



Combination 

Short-Haul 

Truck  

  

Class 6 and 7   

Medium HD Gas Vehicles (19,501 -33,000 lbs. 

GVWR)   

  56.84  2.0015  35937.80  

    

Class 8a and 8b   

Heavy HD Gas Vehicles (GVWR >33,000 lbs.)   

  

Combination 

Long-Haul 

Truck 

  

Class 6 and 7   

Medium HD Gas Vehicles (19,501 -33,000 lbs. 

GVWR)   

  

106.26  2.0015  67182.95  

 126 

Table S3 | EGU Information Identifying information for all electricity generating units (EGUs) in the 127 

modeling domain including generative increase per the eAT scenario, net 2016 baseline 128 

generation, power plant name, and operative status per eGRID’s 2020 report. 129 

ORIS 

eAT 

Increase 

2016 

Generation 

(MWh) Power Plant Name 

Operating as of 

2020? 

957 9.64% 1731 Princeton (IL), City of Princeton - (IL) Yes 

54556 52.26% 248942 

Ingredion Incorporated Argo Plant, Commonwealth 

Edison Co Yes 

886 32.06% 2548 Fisk, Commonwealth Edison Co Yes 

972 23.39% 4854 Winnetka, Village of Winnetka - (IL) Yes 

55438 66.19% 231282 Elgin Energy Center, LLC, Commonwealth Edison Co Yes 

55281 70.80% 39778 

Southeast Chicago Energy Project, Commonwealth 

Edison Co No 

55296 71.03% 20164 Calumet Energy Team, LLC, Commonwealth Edison Co Yes 



55279 68.05% 382098 Aurora, Commonwealth Edison Co Yes 

55216 32.78% 583178 Morris Cogeneration, LLC, Commonwealth Edison Co Yes 

55109 56.94% 75128 Rocky Road Power, LLC, Commonwealth Edison Co Yes 

56462 82.17% 6441 Geneva Generation Facility, City of Geneva- (IL) Yes 

55131 20.62% 7195291 Kendall Energy Facility, Commonwealth Edison Co Yes 

55392 59.34% 435494 Zion Energy Center, Commonwealth Edison Co Yes 

883 15.97% 1772897 Waukegan, Commonwealth Edison Co Yes 

955 32.27% 40418 Peru (IL), City of Peru - (IL) Yes 

55236 37.56% 54965 

Lee County Generating Station, LLC, Commonwealth 

Edison Co Yes 

55183 93.05% 1053862 Nelson Energy Center, Commonwealth Edison Co Yes 

960 15.17% 1976 North Ninth Street, Rochelle Municipal Utilities Yes 

856 6.57% 2811862 E D Edwards, Ameren Illinois Company Yes 

892 3.55% 1436468 Hennepin Power Station, Ameren Illinois Company No 

55253 63.88% 93734 Crete Energy Park, Commonwealth Edison Co Yes 

55199 54.26% 1196164 Elwood Energy Facility, Commonwealth Edison Co Yes 

55222 68.35% 63299 Lincoln Generating Facility, Commonwealth Edison Co Yes 

55250 59.72% 207434 University Park Energy, Commonwealth Edison Co Yes 

384 19.62% 1601067 Joliet 29, Commonwealth Edison Co Yes 

874 22.88% 206765 Joliet 9, Commonwealth Edison Co Yes 

884 18.18% 2112720 Will County, Commonwealth Edison Co Yes 

55640 58.42% 848299 LSP University Park, LLC, Commonwealth Edison Co Yes 

55238 41.93% 164918 Rockford Energy Center, Commonwealth Edison Co Yes 

55936 45.31% 118207 Rockford II Energy Center, Commonwealth Edison Co Yes 

6085 20.77% 4426067 

R M Schahfer Generating Station, Northern Indiana Pub 

Serv Co Yes 

55259 30.58% 2769149 

Whiting Clean Energy, Inc., Northern Indiana Pub Serv 

Co Yes 

997 12.29% 1701530 

Michigan City Generating Station, Northern Indiana Pub 

Serv Co Yes 

55096 21.91% 291384 Portside Energy, Northern Indiana Pub Serv Co Yes 



995 14.15% 1778747 

Bailly Generating Station, Northern Indiana Pub Serv 

Co No 

50240 22.26% 166005 

Purdue University-Wade Utility, Duke Energy Indiana 

Inc Yes 

55229 52.78% 188440 

Montpelier Electric Gen Station, Indiana Michigan 

Power Co Yes 

1880 21.11% 13889 Claude Vandyke, Wolverine Power Supply Coop Yes 

7258 35.55% 14034 48th Street Peaking Station, City of Holland Yes 

1844 15.83% 186 Marshall (MI), City of Marshall - (MI) Yes 

55101 53.29% 7080 Kalamazoo River Generating Station, ITC Transmission Yes 

50860 11.60% 100776 

Kent County Waste to Energy Facility, Consumers 

Energy Co Yes 

10819 16.49% 162129 Ada Cogeneration LP, Consumers Energy Co Yes 

1881 12.43% 6806 Vestaburg, Wolverine Power Supply Coop Yes 

55402 41.18% 1041855 

Renaissance Power, Michigan Electric Transmission 

Company Yes 

1695 11.26% 555994 B C Cobb, ITC Transmission No 

1825 13.81% 285805 J B Sims, City of Grand Haven - (MI) Yes 

1867 18.11% 50 Zeeland, City of Zeeland - (MI) Yes 

55087 26.45% 4000792 Zeeland Generating Station, ITC Transmission Yes 

1826 13.23% 25 Grand Haven Diesel Plant, City of Grand Haven - (MI) No 

1710 9.37% 6469844 J H Campbell, ITC Transmission Yes 

1830 15.16% 13915 James De Young, City of Holland No 

1855 15.92% 102 Sturgis City Diesel Plant, City of Sturgis Yes 

55297 23.80% 5982979 New Covert Generating Project, ITC Transmission Yes 

8023 12.14% 4976899 Columbia, American Transmission Co Yes 

55391 38.70% 395145 Rockgen Energy Center, American Transmission Co Yes 

3992 11.54% 96827 Blount Street, American Transmission Co Yes 

3991 18.80% 749 

Fitchburg Generating Station, Madison Gas & Electric 

Co No 



7991 36.98% 521641 

West Campus Cogeneration Facility, American 

Transmission Co Yes 

7203 80.42% 17399 South Fond Du Lac, American Transmission Co Yes 

7159 30.92% 101441 Concord, American Transmission Co Yes 

55011 25.08% 873036 

Whitewater Cogeneration Facility, American 

Transmission Co Yes 

7270 41.70% 160537 Paris, American Transmission Co Yes 

6170 13.15% 6084250 Pleasant Prairie, American Transmission Co No 

7549 43.18% 9343 Milwaukee County, Wisconsin Electric Power Co No 

4041 11.67% 3853795 South Oak Creek, American Transmission Co Yes 

56068 35.35% 7835248 

Elm Road Generating Station, American Transmission 

Co Yes 

4042 20.52% 444315 Valley (WEPCO), American Transmission Co Yes 

4040 12.31% 5818155 

Port Washington Generating Station, American 

Transmission Co Yes 

4057 13.57% 16952 Rock River, American Transmission Co No 

4059 16.38% 1247 Sheepskin, American Transmission Co No 

55641 79.74% 2290661 Riverside Energy Center, American Transmission Co Yes 

56427 26.58% 11214 Ameresco Janesville, Wisconsin Power & Light Co Yes 

4050 8.17% 3455141 Edgewater (4050), American Transmission Co Yes 

56166 53.65% 77223 

Sheboygan Falls Energy Facility, American 

Transmission Co Yes 

6253 25.11% 13272 Germantown Power Plant, American Transmission Co Yes 

 130 

 131 

 132 

Table S4 | Emission Rates Average on-road and point-source emission rates for primary pollutants 133 

emitted over the entire modeling domain for the baseline simulation, and the difference in 134 

emission rates resulting from the eAT scenario. 135 



Emissions 

Baseline   Difference (eAT – Baseline) 

On-road 

(g/s) 

EGUs 

(g/s) 
 

On-road 

(g/s) 
 

EGUs 

(g/s) 

Total % 

Difference 

CO 58236.44 445.25  -10151.80  74.68 -17.17%  

NH3 2976.38 48.93  -43.91  -3.31 -1.56%  

NO2 1121.86 95.76  -200.39  16.03 -15.14%  

SO2 262.22 958.40  -9.45  83.37 +6.06%  

CH4 4365.04 39.81  -42.68  8.50 -0.78%  

VOC 11266.01 43.13  -942.47  1.34 -8.32%  

PEC 259.50 4.77  -23.46  0.67 -8.62%  

PSO4 40.93 9.45  -2.56  1.22 -2.66%  

PNH4 12.89 1.51  -0.66  0.28 -2.64%  

PNO3 8.46 0.72  -0.20  0.14 -0.65%  

 136 

Table S5 | Population Weighted Means Domain-average annualized population-weighted pollutant 137 

concentrations for NO2, PM2.5, and MDA8O3. Population-weighted means are computed from the 138 

simulated baseline scenarios and compared to the eAT and eAT_EF simulations. 139 

Pop. Weighted 

Means 
Baseline  eAT eAT-Baseline  eAT_EF eAT_EF-Baseline 

NO2 (ppb) 8.11  7.15 -0.96  7.13 -0.98 

PM2.5 (μg · m-3) 7.75  7.55 -0.20  7.53 -0.22 

MDA8O3 (ppb) 45.39  45.69 0.30  45.70 0.31 

 140 

 141 

Table S6 | Health Impacts Estimated deaths per year associated with baseline pollutant concentrations 142 

and changes in annual deaths due to changes in NO2, PM2.5, and MDA8O3 concentrations in the 143 

eAT and eAT_EF scenarios. Negative values indicate premature deaths avoided per year due to 144 

pollutant reductions while positive values indicate additional premature deaths due to increases in 145 



pollutant concentrations. Lower and upper bounds of the 95% confidence interval corresponding 146 

to the respective 𝛽 coefficient used are included parenthetically below each central estimate. 147 

Baseline deaths are calculated using Equation (1), where ∆𝑥 is the ambient pollutant 148 

concentration in the baseline simulation. 149 

 150 

Health Impacts  
Baseline Deaths eAT eAT_EF 

NO2 9,000 

(2,320 –13,210) 

-1,120 

(-1,690 – -280) 

-1,150 

(-1,730 – -290) 

PM2.5 6,840 
(2,320 – 11,210) 

-170 
(-290 – -60) 

-190 
(-320 – -60) 

MDA8O3 13,300 

(6,800 – 25,450) 

80 

(40 – 170) 

90 

(40 – 180) 

 151 

 152 

Table S7 | Air Quality and Public Health Disparities (a) All cause mortality rates (deaths per 100,000 153 

people) are computed by dividing the USALEEP tract mortality17 by the population (30 years and 154 

over) of that tract18 and multiplying by 100,000. (b) Mean pollutant concentration changes over 155 

least-white and most-white census tracts for the eAT and eAT_EF scenarios. Percent change as 156 

compared to simulated baseline pollutant concentrations in parentheses. (c) Changes in estimated 157 

attributable mortality rates due to changes in NO2, PM2.5, and O3 concentrations in the eAT and 158 

eAT_EF scenarios for least-white (≤10% white) and most-white (≥90% white) census tracts in 159 

our CTM domain. Percent change in mortality rates for the eAT and eAT_EF scenarios are 160 

computed by dividing the pollutant-attributable change in mortality rate by the USLEEP tract 161 

level-derived mortality rate. 162 

 163 

a) All-Cause 

Mortality Rates 

(per 100,000) 
 

     

 

  

Least-white 

 

Most-white    

 



Mortality Rate 1,661.08 1,427.63   

 

  

b) Pollutant 

Change 

Disparities 

 

 

eAT  

 

eAT_EF 
 

 
 

Least-white 

 

Most-white  

 

Least-white Most-white 

 

NO2 (ppb) -1.47 

(-52.31%) 

-0.33 

(-11.74%) 

 -1.52 

(-54.09%) 

-0.34 

(-12.09%) 

 

PM2.5 (μg · m-3) -0.28 

(-5.07%) 

-0.10 

(-1.81%) 

 -0.32 

(-5.79%) 

-0.11 

(-1.99%) 

 

MDA8O3 (ppb) 

 

0.59 

(1.23%) 

 

-0.02 

(-0.04%) 

 

 0.66 

(1.38%) 

 

-0.02 

(-0.04%) 

 

 

c) Mortality Rate  

Change 

Disparities 

 

 

eAT  

 

eAT_EF 

 

  

Least-white 

 

Most-white  

 

Least-white Most-white 

 

NO2 -19.66 

(-1.18%) 

-3.81 

(-0.27%) 

 -20.31 

(-1.22%) 

-3.92 

(-0.27%) 

 

PM2.5 -2.75 

(-0.17%) 

-0.87 

(-0.06%) 

 -3.15 

(-0.19%) 

-0.92 

(-0.06%) 

 

MDA8O3 1.98 

(0.12%) 

-0.04 

(0.00%) 

 2.21 

(0.13%) 

-0.04 

(-0.00%) 
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 165 

 166 

Figure S1 | Simulated SO2 Concentrations Baseline (left) and eAT difference (right) in simulated SO2 167 

concentrations. 168 



 169 

 170 



Figure S2 | eAT_EF  Scenario Difference plots of pollutants between the annualized emission-free EGU 171 

scenario (eAT_EF) and the baseline (a, c, e) and between the eAT scenario using 2016 grid 172 

infrastructure and the annualized emission-free EGU scenario (eAT_EF) . 173 

 174 

 175 



Figure S3 | Pollutant Seasonality Difference plots of NO2, PM2.5, and MDA8O3 for the four modeled 176 

months for the eAT scenario compared to the baseline simulation. 177 

  178 
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