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Abstract23

Shortwave (SW) cloud feedback (SWFB) is the primary driver of uncertainty in the ef-24

fective climate sensitivity (ECS) predicted by global climate models (GCMs). ECS for25

several GCMs in the Sixth Coupled Model Intercomparison Project (CMIP6) exceed 5K,26

above the fifth assessment report (AR5) ‘likely’ maximum (4.5K) due to extratropical27

SWFB ’s that are more positive than those simulated in previous generation CMIP5 GCMs.28

Here we show that across 57 GCMs Southern Ocean SWFB can be predicted from the29

sensitivity of column-integrated liquid water mass (LWP) to moisture convergence and30

to surface temperature. The response of LWP to moisture convergence and the response31

of albedo to LWP anti-correlate across GCMs. This is because GCMs that simulate a32

larger response of LWP to moisture convergence tend to have higher mean-state LWPs,33

which reduces the impact of additional LWP on albedo. Observational constraints sug-34

gest a modestly negative Southern Ocean SWFB— inconsistent with extreme ECS.35

Plain Language Summary36

As the climate warms, moisture convergence into the extratropics strengthens, in-37

creasing cloudiness, reflected sunlight, and precipitation. Increased cloudiness is set by38

how efficiently clouds form relative to precipitation depletion. Simulations where clouds39

form efficiently cannot reflect much more sunlight in the extratropics because they are40

already very cloudy and bright. Observations constrain both the sensitivity of reflected41

sunlight to cloud and of cloud to moisture. Combining these constraints with constraints42

on other cloud regimes rules out extremely small and large future warming.43

1 Introduction44

The SW cloud feedback (SWFB) represents the central uncertainty in the future45

warming and effective climate sensitivity (ECS) predicted by GCMs. Uncertainty in SWFB46

is a function of the parameterizations of cloud processes necessitated by the relatively47

coarse resolution of GCMs. Most GCMs transition from a positive SWFB in the sub-48

tropics to a negative SWFB poleward of 50°, albeit with substantial uncertainty in mag-49

nitude (Zelinka et al., 2016, 2020; Terai et al., 2016; Gordon & Klein, 2014). Several CMIP650

GCMs with very high ECS (>5K) have emerged owing to a more positive extratropi-51

cal SWFB (Frey & Kay, 2018; Zelinka et al., 2020; Bjordal et al., 2020) and this feature52

needs to be evaluated.53

Different mechanisms have been put forward to explain negative extratropical SWFB :54

• Replacement of susceptible cloud ice with more reflective liquid (McCoy et al., 2014;55

Tsushima et al., 2006; Senior & Mitchell, 1993).56

• Suppression of ice hydrometeor sinks of cloud through reduced glaciation (Tsushima57

et al., 2006; Ceppi, Hartmann, & Webb, 2016; McCoy et al., 2015; Field & Heyms-58

field, 2015; Mülmenstädt et al., 2021; Tan & Storelvmo, 2019; Kay et al., 2014).59

• Enhanced air-sea exchange of aerosol precursors (Bodas-Salcedo et al., 2019).60

• Strongly increasing adiabatic water content at cold temperatures (Betts & Harsh-61

vardhan, 1987; Terai et al., 2019).62

• Increased extratropical moisture convergence driving enhanced condensation (McCoy63

et al., 2020, 2019).64

We focus on the last of these processes. This is motivated by previous studies that65

found that changes in surface temperature (Tskin) and moisture convergence could be66

used to explain changes in extratropical cloudiness with minor contributions from other67

terms such as boundary layer stability and subsidence (McCoy et al., 2020).68
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It is difficult to untangle the effects of increased local Tskin on clouds as it may act69

through several of the processes listed above. One probable explanation is that increased70

Tskin acts to enhance buoyancy fluxes in the boundary layer, reducing cloud condensate71

(Bretherton & Blossey, 2014). This mechanism has been found to be important to bound-72

ary layer cloud changes across the subtropics (Klein et al., 2017; Myers & Norris, 2016;73

Myers et al., 2021). Here we treat Tskin variations as a proxy for all processes not re-74

lated to moisture convergence.75

SWFB is essentially the change in upwelling SW (SW↑) due to clouds scaled by76

global mean temperature (GMT). We hypothesize that SW↑ scales with albedo (α) and77

the proportionality78

SWFB ∝ dα

dGMT
∼ ∂α

∂LWP
· dLWP

dGMT
(1)

holds. On the right hand side, the response of α to GMT can be broken into the response79

of α to liquid water mass (LWP) and the response of LWP to GMT. As discussed be-80

low, overbars denote regional means. We investigate and constrain GCM uncertainty in81

SWFB terms on the right of Eq. 1.82

2 Materials and Methods83

Section 2.1 discussed the GCM data used in our analysis and Section 2.2 discusses84

the observational data used to constrain GCM behavior.85

2.1 GCM analysis86

The GCM variables examined are clivi (ice water path), clwvi (total cloud water87

path), pr (precipitation), hfls (evaporative flux), rsut (SW↑), rsutcs (clear-sky SW↑), ts88

(Tskin), and tas (2m air temperature). clwvi is the sum of ice water path (IWP) and LWP.89

We calculate LWP as clwvi-clivi.90

For each GCM we analyze the pre-industrial control (piControl) and CO2 quadru-91

pling (abrupt4xCO2) simulations. The list of analyzed GCMs is given in the supplemen-92

tary material (Table S1). The first 150 years of each simulation are examined, consis-93

tent with Sherwood et al. (2020).94

The latitude range is 40-85°S unless otherwise stated. This is set by the region where95

zonal precipitation and evaporation difference (P − E) is consistently positive, which96

is similar across GCMs (Fig. S1). P−E approximates moisture convergence when av-97

eraged over a large enough region (Held & Soden, 2006).98

Our analysis is motivated in part by what variables can be well-observed in the ex-99

tratropics. LWP is defined as the vertically-integrated mass of cloud liquid in a model100

grid cell, consistent with the microwave observations of cloud condensate (Elsaesser et101

al., 2017). Microwave LWP is insensitive to multi-layered clouds and does not have any102

dependence on sun-angle, making it optimal for observing clouds in the extratropics.103

Cloud source processes are investigated in the HadGEM3 GCM by perturbing the104

cloud fraction scheme. HadGEM3 is as described in Mulcahy et al. (2018) and is run in105

atmosphere-only mode (the General Atmosphere 7.1, GA7.1). The only change from the106

base version of the model is to switch the cloud scheme from PC2 (Wilson et al., 2008)107

to Smith (Smith, 1990) because only one parameter needs to be perturbed in the lat-108

ter.109
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2.2 Observations110

MERRA-2 reanalysis(Molod et al., 2015) is used to characterize mean-state vari-111

ability in P−E, Tskin, and 2m temperature. Observations of clear- and all-sky SW flux112

are taken from the CERES EBAF data set (Ed 4.1) for the period 2000-2016 (Wielicki113

et al., 1996). Observations of LWP are taken from MAC-LWP 1988-2016 (Elsaesser et114

al., 2017). MAC-LWP is a multi-satellite microwave column LWP record that is corrected115

for diurnal cycle artifacts and is directly comparable to GCM output without a satel-116

lite simulator (Bodas-Salcedo et al., 2011). However, microwave LWP is only available117

over open ocean (not over sea ice or land). The GCM output used in the main text are118

not filtered to remove land and sea ice to compare to existing SWFB calculations (Zelinka119

et al., 2020). Resultant sampling uncertainty is evaluated below.120

3 Results121

At a regional scale the extratropics are characterized by convergence of moisture122

carried from the subtropics by transient eddies (e.g. extratropical cyclones) (Held & So-123

den, 2006; Hartmann, 2015; Yettella & Kay, 2017; Algarra et al., 2020; Guo et al., 2020).124

As shown in Held and Soden (2006), global warming drives enhanced moisture conver-125

gence in this region. Moisture convergence is represented, as in previous work, as P−126

E. As in McCoy et al. (2020), we consider a steady-state model of the extratropical at-127

mosphere. In this framework increased moisture convergence is balanced by increased128

precipitation. The conversion of vapor to precipitation happens in clouds and increased129

moisture convergence drives increased cloudiness. This is shown schematically in Fig.130

1. In this framework the diversity of model responses is driven by the complexity of pa-131

rameterizing subgrid-scale condensation and precipitation processes. Rates of creation132

and removal of cloud are considered in terms of efficiency of cloud sources (esource) and133

sinks (esink) and the reservoirs of vapor and condensed water (Fig. 1a). The response134

of the extratropics to global warming is characterized by increased moisture convergence135

(Fig. 1b). In models where sources are efficient relative to sinks this leads to sharp in-136

creases in cloud and a relatively strong negative cloud feedback. If the efficiencies are137

reversed the negative cloud feedback is weak (Fig. 1c) (McCoy et al., 2020).138

3.1 Changes in liquid cloud139

In this section we characterize the dependence of extratropical liquid water path140

(LWP ) on moisture convergence (P − E) and surface temperature (TSkin) to predict141

dLWP/dGMT (Eq. 1). (Note average of quantities over 40°-85°S are denoted ( ).) GCMs142

predictions of LWP vary by an order of magnitude (Fig. S2), while P − E varies by only143

a factor of three (Fig. S1).144

As discussed in Section 2.2, LWP is column-integrated all-sky liquid mass, in con-145

trast to focusing on low-topped clouds (Myers et al., 2021). This allows comparison be-146

tween GCM output and microwave radiometer observations (Elsaesser et al., 2017).147

We choose P − E and TSkin as cloud controlling factors (Stevens & Brenguier, 2009)148

based on previous analysis that found that within a given meteorological regime hori-149

zontal moisture convergence and sea surface temperature dominated the predicted change150

in extratropical LWP across a suite of GCMs (McCoy et al., 2020, 2019). The effect of151

neglecting other predictors in this study will be evaluated by prediction of out-of-sample152

future simulations, as in Qu et al. (2015). The approximation of moisture convergence153

as P−E ignores advection out of the atmospheric column and zonal averaging is used154

to account for zonal advection over the Southern Ocean (Seager & Henderson, 2013).155

In each GCM, the multiple linear regression model156
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LWP = b1 · P − E + b2 · TSkin + b3 (2)

is trained in the piControl simulation and used to predict the abrupt4xCO2 simulation.157

This follows the approach used to constrain subtropical cloud feedback in Qu et al. (2015).158

As discussed in Qu et al. (2015), predictor correlation between cloud controlling factors159

can be problematic when R2 > 0.9 between predictors. The strongest correlation be-160

tween predictors in our study was R2 = 0.6.161

One of the assumptions inherent to cloud controlling factor predictions is that the162

relationship between clouds and meteorological factors is unchanged between the climate163

mean-state and future warmed climates, referred to as ’time-scale invariance’ (Klein et164

al., 2017). We evaluate whether the predictors in Eq. 2 are time-scale invariant in the165

context of the GCMs. As in Qu et al. (2015), we contrast coefficients derived in mean-166

state and warmed simulations. The predictors in Eq. 2 are consistent when inferred from167

piControl or from abrupt4xCO2 simulations (Fig. S3).168

Eq. 2 predicts extratropical LWP. Extratropical moisture convergence is driven by169

local flux and tropical export (Hartmann, 2015; Algarra et al., 2020). SWFB is typically170

given as the feedback on global, rather than regional, mean temperature. Thus we write171

the prediction of LWP response to GMT as:172

dLWP

dGMT
= b1 ·

dP − E

dGMT
+ b2 ·

dTSkin

dGMT
+ b3 (3)

dP − E/dGMT , and dTskin/dGMT are quantified as the linear regression of annual-173

mean P − E, and Tskin on GMT for the first 150 years of abrupt4xCO2. b1−3 are cal-174

culated using multiple linear regression on monthly-mean piControl output using Eq. 2.175

The changes in LWP predicted by Eq. 3 agree with the abrupt4xCO2 simulations176

(Fig. 2). The correlation between abrupt4xCO2 dLWP/dGMT and the prediction based177

on Eq. 3 is r = 0.71, and predictions fall along the 1-1 line (see discussion below). Fit178

lines in Fig. 2 are calculated using orthogonal regression with uncertainty in both pre-179

dictors and predictands. The 95% confidence range on the intercept and slope of the best180

fit line are calculated using Jackknife resampling (Tukey, 1958). Uncertainty is propa-181

gated from uncertainty in b1−3 and uncertainty in dP − E/dGMT and dTskin/dGMT .182

Several GCMs that share the same cloud physics (CESM2, CESM2-FV, CESM2-183

WACCM, WACCM-FV, E3SM-1-0) are excluded from the fit in Fig. 2. These GCMs184

are unique in only increasing extratropical LWP in the first 15 years of the abrupt4xCO2185

simulation followed by decreasing LWP (Bjordal et al., 2020) (Fig. S4). The extratrop-186

ical cloud response of CESM2 is an active area of investigation at this time and may re-187

lated to the treatment of ice in the cloud physics parameterization (Bjordal et al., 2020).188

An observational constraint on dLWP/dGMT is calculated by training Eq. 2 on189

observations from microwave radiometers (Elsaesser et al., 2017) and reanalysis from MERRA-190

2 (Molod et al., 2015). Observed b1−3 (Eq. 2, see Fig. S3) is combined with dP − E/dGMT191

and dTSkin/dGMT for each GCM following Eq. 3. Uncertainty is propagated from un-192

certainty in b1−3, but is dominated by spread between GCMs in dP − E/dGMT and dTSkin/dGMT .193

Microwave LWP is only available over open water (Wentz & Meissner, 2000). We194

quantify the sampling error due to neglecting data over ice and land. Predicted dLWP/dGMT195

for GCMs when the regression model (Eq. 2) is trained using only data over open wa-196

ter is contrasted with the value when all data is used. Monthly values on the native grid197

of the GCM where αclear−sky > 0.4 are excluded to remove ice and land. The zonal-,198

latitudinal-, monthly-means calculated from the filtered data are used to train Eq. 2. The199

constraint on dLWP/dGMT is not strongly affected by only considering open ocean (Fig.200

S5) and sampling error is included in the constraint in Fig. 2.201
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The median value and standard deviation of dP − E/dGMT across GCMs is 0.77202

± 0.39 Wm−2K−1. For dTSkin/dGMT it is 1.19 ± 0.36 K/K. The relative contribu-203

tion to dLWP/dGMT by changes in P − E has a median value of 15% across GCMs204

but ranges from 0% up to 250% (values greater than 100% occur in GCMs where con-205

tributions from surface warming and moistening have opposing effects on LWP ).206

Combining the observational constraint on dLWP/dGMT with the best fit line207

in Fig. 2 yields a constraint on dLWP/dGMT ranging from 0.9 · 10−3 to 3 · 10−3kg ·208

m−2K−1. Direct comparison to other studies is difficult given differing study regions,209

lack of regime-partitioning, temporal-averaging and configurations of the warming sig-210

nal, but qualitatively there is agreement regarding an increase in extratropical LWP in211

response to warming, albeit weaker than most GCMs (Fig. S2) (Ceppi, McCoy, & Hart-212

mann, 2016; Manaster et al., 2017; McCoy et al., 2020, 2019; Ceppi & Nowack, 2021).213

Based on our analysis, we find that extratropical LWP changes in response to warm-214

ing across many GCMs can be predicted based on their present-day, monthly covariabil-215

ity between Southern Ocean LWP, moisture convergence, and TSkin. Given that these216

terms are among the simplest descriptors of atmospheric state (is the atmosphere warm217

on the bottom and is it moist), this is not too unexpected.218

3.2 Compensation between moisture removal and radiative efficiency219

across GCMs220

We now consider the radiative sensitivity term ∂α/∂LWP from Eq. 1. Because221

LWP integrates over cloudy and clear regions (Elsaesser et al., 2017) it is an emergent222

property of a complex population of clouds. To first order, the relation between LWP223

and SW↑ is a function of cloud areal extent (Bender et al., 2017), cloud optical thick-224

ness (Gordon & Klein, 2014), and the underlying surface properties (increased cloud will225

affect SW↑ more over a dark surface). To quantify how SW↑ responds to changes in LWP,226

we train the following multiple linear regression model relating albedo (α) to LWP and227

clear-sky α (αclear−sky)228

α = c1 · LWP + c2 · αclear−sky + c3 (4)

where α = SW↑/SW↓ is calculated from monthly means of top-of-atmosphere flux. (Note229

the lack of overbars in Eq. 4. This is because a regional average is not required as it is230

in Eq. 2 to make P−E a reasonable approximation for moisture convergence.) The re-231

gression model in Eq. 4 is trained on data 40-85°S at the native resolution of each GCM.232

It is trained independently in each calendar month due to residual effects from the sea-233

sonal cycle of solar zenith angle, which strongly affects α (McCoy et al., 2018). The re-234

gression model in Eq. 4 could easily be improved, for instance by including information235

about ice water path, but we have chosen to consider variables that can be quantified236

accurately in observations and that are available from GCMs (Jiang et al., 2012)—in this237

case LWP and SW↑.238

The sensitivity of α to LWP (∂α/∂LWP ) derived from piControl simulations is239

inversely related to the mean-state LWP (Fig. 3). Albedo and cloud fraction (the areal240

coverage of cloud, CF ) are nearly linearly related (Bender et al., 2017), but the effects241

of in-cloud LWP (LWPin−cloud) on α saturates at high LWPin−cloud (Liou, 2002; Lacis242

& Hansen, 1974). LWP includes information about LWPin−cloud and cloud extent (LWP ≈243

CF · LWPin−cloud); thus, as the LWP across the extratropics increases, liquid begins244

to affect SW↑ less efficiently by increasing liquid water density in cloud rather than fill-245

ing in cloud cover. This leads to the saturation in ∂α/∂LWP as a function of increas-246

ing mean-state LWP.247

Eq. 4 is trained on observations from CERES and MAC-LWP to yield an obser-248

vational estimate of ∂α/∂LWP . The ∂α/∂LWP estimated from observations falls along249
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the relation between mean-state LWP and ∂α/∂LWP emerging from GCMs (Fig. 3).250

This is encouraging as it suggests that the relationship between LWP and α is based on251

radiative transfer and distributions of cloud that are well-represented in GCMs (time-252

scale invariance is shown in Fig. S3 ). ∂α/∂LWP inferred from observations is on the253

lower end of the ∂α/∂LWP in GCMs. The finding that GCM SW↑ is too sensitive to254

LWP is consistent with previous studies(Kelleher & Grise, 2019).255

The sensitivity of LWP to converging moisture (∂LWP/∂P − E, Eq. 2) correlates256

positively with mean-state LWP (Fig. 3). The sensitivity of LWP to Tskin (∂LWP/∂TSkin)257

does not correlate with mean-state LWP, and 95% of GCMs fall between −0.0001kg ·258

m−2K−1 and 0.007kg·m−2K−1. Observations infer ∂LWP/∂TSkin = 0.0006±0.0001kg·259

m−2K−1. The diagnosed relationship relating LWP to Tskin is likely to represent sev-260

eral processes (Terai et al., 2019). We focus on ∂LWP/∂P − E because of its emergent261

relationship with mean-state LWP .262

The relationship between ∂LWP/∂P − E and mean-state LWP shown in Fig. 3263

can be explained in the framework of sources and sinks of cloud (Fig. 1). LWP will be264

high when sources of cloud are efficient relative to sinks. Further, LWP will be sensitive265

to increased moisture convergence (a large ∂LWP/∂P − E). However, radiation will be266

insensitive to increased LWP (a small ∂α/∂LWP ) because the extratropics will already267

be extremely cloudy (CF ≈ 1) and thus there will be relatively few clear patches that268

can be filled in for maximum radiative effect. Instead, overcast regions must increase in-269

cloud liquid content for diminishing returns in SW↑.270

We test the hypothesis that the dependence of ∂LWP/∂P − E and ∂α/∂LWP on271

mean-state LWP is a function of varying cloud source and sink strength using HadGEM3272

run in atmosphere-only mode (Mulcahy et al., 2018) with the Smith cloud scheme (Smith,273

1990), which uses a critical relative humidity (RHcrit) (Quaas, 2012; Smith, 1990). Use274

of the Smith cloud scheme allows us to represent the strength of the source term using275

a single parameter (RHcrit). RHcrit is varied from 100% (clouds are only formed when276

the GCM grid box has total relative humidity >100%) to 20%. The mean-state pattern277

of P −E changes dramatically for RHcrit <80%. To provide a fair comparison to the278

coupled GCMs we examine the latitude range in each HadGEM3 simulation where cli-279

matological, zonal-mean P−E is positive as opposed to selecting 40-85°S, as in the cou-280

pled GCMs (see Fig. S1). The dependence of ∂LWP/∂P − E and ∂α/∂LWP on mean-281

state LWP derived from the HadGEM3 simulations agrees with the behavior of the cou-282

pled GCMs. As RHcrit decreases (stronger cloud source) ∂LWP/∂P − E increases and283

∂α/∂LWP decreases. This supports our hypothesis that the relative efficiency of sources284

and sinks in GCMs affect mean-state cloud, the response of extratropical cloud to in-285

creased moisture convergence, and the effect of increased cloud on SW↑.286

In summary, strong responses of LWP to moisture convergence in warming sim-287

ulations are compensated by weak increases in SW↑ in response to LWP. The relation-288

ships in Fig. 3 may provide a useful process-level constraint on GCMs.289

3.3 Constraints on SW cloud feedback290

In the preceding sections we provided constraints on the terms on the right-hand-291

side of Eq. 1. We now combine these constraints to provide a constraint on SWFB fol-292

lowing Eq. 1. It is found that Eq. 1 using values from Fig. 2 and 3 predicts SWFB across293

GCMs (Fig. 4a). The term ∂α/∂LWP is calculated using December values (when in-294

solation is strong, Eq. 4).295

The prediction of SWFB for three regions by 40-85°S dLWP/dGMT and ∂α/∂LWP296

is shown. Moistening is not uniform across the 40-85°S region (Fig. S1). LWP is reduced297

in the 40-50°S region consistent with Hadley cell expansion and drying (Kay et al., 2014;298

Tselioudis et al., 2016; Grise & Medeiros, 2016; Lu et al., 2007; Sousa et al., 2018; Kelle-299
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her & Grise, 2021) (Fig. S1) and SWFB tends to be positive in this region (Fig. 4a). In300

the 50-85°S region there is consistent moistening (Fig. S1), LWP increases (Fig. S2), and301

SWFB tends to be negative (Fig. 4a). The prediction of SWFB averaged 40-85°S is the302

area-weighted sum of these effects. Clearly, influence on the region of moistening by Hadley303

cell expansion modulates extratropical SWFB (Kelleher & Grise, 2021).304

Prediction of Hadley cell expansion is beyond the scope of this work. Thus, we ex-305

amine the region of consistent moistening. Eq. 1 explains 83% of the variance in SWFB306

averaged between 50-85°S (Fig. 4a). The observational constraints on the right hand side307

of Eq. 1 predicts the contribution to global-mean SWFB from the 50°S-85°S region to308

be between −0.1Wm−2K−1 to 0.0Wm−2K−1, consistent with the interpretation of Eq.309

1 as an emergent constraint on 50°S-85°S SWFB (Klein & Hall, 2015; Hall & Qu, 2006).310

In summary, SWFB is negative in regions of moistening.311

3.4 Conclusion and probable range of ECS312

How does the constraint on SWFB from Eq. 1 inform the most probable range for313

ECS? For illustrative purposes we detail a simple constraint. The ECS calculated from314

71 CMIP5 and CMIP6 models (Zelinka et al., 2020)1 is constrained by 50-85°S (extra-315

tropical moistening regime) and 35°S-35°N (subtropical) cloud feedback (Fig. 4b). The316

subtropical marine, low-topped cloud feedback is examined for consistency with previ-317

ous studies(Myers et al., 2021). The number of GCMs is increased here because some318

GCMs did not have all the necessary variables to examine moisture and cloud changes.319

The subtropical and extratropical SWFB are considered simultaneously because subtrop-320

ical cloud feedback is a key uncertainty (Bony, 2005; Myers & Norris, 2016; Bretherton321

& Caldwell, 2020).322

More positive cloud feedback in either averaging region corresponds to higher ECS.323

Subtropical and extratropical cloud feedbacks are correlated across GCMs (Fig. 4b). This324

has been noted before (McCoy et al., 2016), but the physical reason for this behavior in325

GCMs is not clear.326

Constraining GCMs to be consistent with constraints on either regional cloud feed-327

back doesn’t substantially narrow ECS (Fig. 4c). Consideration of both constraints re-328

sults in ECS falling between 2.6K and 4.8K with a median of 4.3K. No GCMs with ECS329

< 2.5K or > 5K out of the original 71 GCMs are consistent with constraints on both330

subtropical and extratropical cloud feedback and the means differ at 95% confidence us-331

ing a Welch’s t-test. However, this approach is sensitive to the prior distribution from332

GCMs.333

We calculate a more rigorous constraint on ECS using the World Climate Research334

Programme (WCRP) Bayesian framework (Sherwood et al., 2020). In Sherwood et al.335

(2020) process-level understanding of cloud feedbacks from the literature was evaluated336

and the most likely ranges for cloud feedback in various geographic regions and cloud337

regimes were input into a Bayesian model along with other constraints on ECS, such as338

paleoclimate records. The cloud feedbacks in the 50°-85° regions considered by Sherwood339

et al. (2020) were: 40°-70°cloud optical depth set at 0.0 Wm−2K−1 with σ± 0.1 and mid-340

dle latitude (30°-60°) marine low cloud set at +0.08 ± 0.08 Wm−2K−1. All other po-341

tential cloud feedbacks in the 50°-85° region were assumed to be 0.0±0.0 Wm−2K−1 be-342

cause of insufficient process-level understanding and constraints.343

Summing the different probable feedback values from Sherwood et al. (2020) for344

the 50°S-85°S region (assuming all feedbacks are constant in their given latitude ranges)345

gives a value of +0.01 ± 0.03 Wm−2K−1, or at 95% ± 0.06 Wm−2K−1. Both Sherwood346

1 https://github.com/mzelinka/cmip56 forcing feedback ecs
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et al. (2020) and Fig. 4 suggest very negative extratropical cloud feedbacks are unlikely.347

However, Fig. 4 infers the most likely value of SWFB to be negative because it does not348

neglect non-boundary layer cloud, or cloud poleward of 70°, for which GCMs consistently349

predict a negative SWFB (Zelinka et al., 2016; Terai et al., 2016; Ceppi, McCoy, & Hart-350

mann, 2016).351

The latitude range used in the WCRP assessment algorithm for the extratropical352

region (oceans 60°-90°in both hemispheres) differs slightly from our analysis of the uni-353

form moistening in the Southern Ocean (50-85°S). To use the existing WCRP code we354

need to offer a prediction for the 60-90°oceans. Using the predictor in Fig. 4 for 60-90° yields355

a similar prediction (Fig. S6) to those shown in Fig. 4a. Combining this value with the356

constraint provided by Myers et al. (2021) results in a global constraint on marine cloud357

feedback. This is used to update the likelihood of ECS from Sherwood et al. (2020) of358

3.11K (95% confidence: 2.26-4.70K) to 2.86K (95% confidence: 2.13 - 4.12K). The prob-359

ability of ECS above the 4.5K upper end of the AR5 likely range becomes increasingly360

unlikely falling from 6.6% (Sherwood et al., 2020), to 2.3% when using constraints on361

global marine cloud feedback.362

Our analysis points to enhanced moisture convergence in the extratropics as a key363

driver of enhanced cloud condensate and negative feedback in this region. The control364

on where moistening occurs exerted by Hadley cell expansion is found to be an impor-365

tant modulator of extratropical SWFB . The response of cloud to moisture convergence366

is presented in a source-sink framework (Fig. 1). Because strong sources push the ex-367

tratropics to be very cloudy, this results in compensation between the effects of increased368

moisture on cloud and increased cloud on radiation (Fig. 3). The terms in Fig 3 can pro-369

vide a useful process constraint for GCMs and observations of both radiative efficiency370

and cloud response to meteorology suggest that extratropical SWFB in regions of moist-371

ening is negative, albeit not as negative as predicted by many GCMs (Fig. 4a). Over-372

all, extreme ECS is not consistent with observationally-constrained extratropical SWFB373

when combined with other lines of evidence (Sherwood et al., 2020; Myers et al., 2021)374

(Fig. 4bc).375
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Mülmenstädt, J., Salzmann, M., Kay, J. E., Zelinka, M. D., Ma, P.-L., Nam, C.,546

. . . Quaas, J. (2021). An underestimated negative cloud feedback from cloud547

lifetime changes. Nature Climate Change, 11 (6), 508–513. (Publisher: Nature548

Publishing Group)549

Qu, X., Hall, A., Klein, S. A., DeAngelis, & Anthony, M. (2015). Positive tropical550

marine low-cloud cover feedback inferred from cloud-controlling factors. Geo-551

physical Research Letters, n/a–n/a. doi: 10.1002/2015GL065627552

Quaas, J. (2012). Evaluating the “critical relative humidity” as a measure of553

subgrid-scale variability of humidity in general circulation model cloud cover554

parameterizations using satellite data. Journal of Geophysical Research: Atmo-555

spheres, 117 (D9), n/a–n/a. doi: 10.1029/2012JD017495556

Seager, R., & Henderson, N. (2013). Diagnostic Computation of Moisture Budgets557

in the ERA-Interim Reanalysis with Reference to Analysis of CMIP-Archived558

Atmospheric Model Data*. Journal of Climate, 26 (20), 7876–7901. doi:559

10.1175/JCLI-D-13-00018.1560

Senior, C. A., & Mitchell, J. F. B. (1993, March). Carbon-dioxide and Climate - The561

–12–



manuscript submitted to Geophysical Research Letters

Impact of Cloud Parameterization. Journal of Climate, 6 (3), 393–418. doi: 10562

.1175/1520-0442(1993)006⟨0393:cdacti⟩2.0.co;2563

Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Har-564

greaves, J. C., . . . Rohling, E. J. (2020). An assessment of Earth’s climate565

sensitivity using multiple lines of evidence. Reviews of Geophysics, 58 (4),566

e2019RG000678.567

Smith, R. N. B. (1990). A scheme for predicting layer clouds and their water con-568

tent in a general circulation model. Quarterly Journal of the Royal Meteorolog-569

ical Society , 116 (492), 435–460. doi: 10.1002/qj.49711649210570

Sousa, P. M., Blamey, R. C., Reason, C. J. C., Ramos, A. M., & Trigo, R. M. (2018,571

December). The ‘Day Zero’ Cape Town drought and the poleward migration of572

moisture corridors. Environmental Research Letters, 13 (12), 124025. Retrieved573

from http://dx.doi.org/10.1088/1748-9326/aaebc7 (Publisher: IOP Pub-574

lishing) doi: 10.1088/1748-9326/aaebc7575

Stevens, B., & Brenguier, J. L. (2009). Cloud controlling factors: Low clouds. MIT576

Press Cambridge, Mass.577

Tan, I., & Storelvmo, T. (2019, March). Evidence of Strong Contributions578

From Mixed-Phase Clouds to Arctic Climate Change. Geophysical Re-579

search Letters, 46 (5), 2894–2902. Retrieved 2021-03-06, from https://580

doi.org/10.1029/2018GL081871 (Publisher: John Wiley & Sons, Ltd)581

doi: 10.1029/2018GL081871582

Terai, C. R., Klein, S. A., & Zelinka, M. D. (2016). Constraining the low-cloud583

optical depth feedback at middle and high latitudes using satellite obser-584

vations. Journal of Geophysical Research: Atmospheres, n/a–n/a. doi:585

10.1002/2016JD025233586

Terai, C. R., Zhang, Y., Klein, S. A., Zelinka, M. D., Chiu, J. C., & Min, Q. (2019).587

Mechanisms Behind the Extratropical Stratiform Low-Cloud Optical Depth588

Response to Temperature in ARM Site Observations. Journal of Geophysical589

Research: Atmospheres, 124 (4), 2127–2147. doi: 10.1029/2018jd029359590

Tselioudis, G., Lipat, B. R., Konsta, D., Grise, K. M., & Polvani, L. M. (2016,591

May). Midlatitude cloud shifts, their primary link to the Hadley cell, and their592

diverse radiative effects. Geophysical Research Letters, 43 (9), 4594–4601. doi:593

https://doi.org/10.1002/2016GL068242594

Tsushima, Y., Emori, S., Ogura, T., Kimoto, M., Webb, M. J., Williams, K. D., . . .595

Andronova, N. (2006, August). Importance of the mixed-phase cloud distri-596

bution in the control climate for assessing the response of clouds to carbon597

dioxide increase: a multi-model study. Climate Dynamics, 27 (2-3), 113–126.598

doi: 10.1007/s00382-006-0127-7599

Tukey, J. (1958). Bias and confidence in not quite large samples. Ann. Math.600

Statist., 29 , 614.601

Wentz, F. J., & Meissner, T. (2000). AMSR Ocean Algorithm, Version 2. Remote602

Sensing Systems, Santa Rosa, CA., report number 121599A-1 , 66 pp.603

Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., III, R. B. L., Smith, G. L.,604

& Cooper, J. E. (1996). Clouds and the Earth’s Radiant Energy System605

(CERES): An Earth Observing System Experiment. Bulletin of the American606

Meteorological Society , 77 (5), 853–868. doi: 10.1175/1520-0477(1996)077⟨0853:607

catere⟩2.0.co;2608

Wilson, D. R., Bushell, A., Kerr-Munslow, A. M., Price, J. D., Morcrette, C. J., &609

Bodas-Salcedo, A. (2008). PC2: A prognostic cloud fraction and condensa-610

tion scheme. II: Climate model simulations. Quarterly Journal of the Royal611

Meteorological Society , 134 (637), 2109–2125.612

Yettella, V., & Kay, J. E. (2017). How will precipitation change in extratropical613

cyclones as the planet warms? Insights from a large initial condition climate614

model ensemble. Climate Dynamics, 49 (5-6), 1765–1781.615

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,616

–13–



manuscript submitted to Geophysical Research Letters

Ceppi, P., . . . Taylor, K. E. (2020, January). Causes of higher climate sen-617

sitivity in CMIP6 models. Geophysical Research Letters, n/a(n/a). doi:618

10.1029/2019GL085782619

Zelinka, M. D., Zhou, C., & Klein, S. A. (2016). Insights from a refined decomposi-620

tion of cloud feedbacks. Geophysical Research Letters, 43 (17), 9259–9269. doi:621

10.1002/2016GL069917622

Figures623

–14–



manuscript submitted to Geophysical Research Letters

Cloud condensate

Sources

Sinks

ksource=esource*water vapor

ksink=esink*cloud condensate

SW

Moisture 
convergence 
(Present)

Moisture 
convergence 
(Warm)

Cloud condensate

Moisture convergence

80°S

Strong negative 
SW feedback

Weak negative SW 
feedbackLa

rge
 e so

urc
e/

e sin
k

Small e sour
ce/e sink

40°S

a)

b)

c)

Warming driven increase

Figure 1. A schematic representation of the moisture convergence-cloud feedback mechanism

examined in this study. (a) shows a hypothesized steady-state balance between sources and sinks

of cloud. The rate of cloud creation is represented as ksource, which is conceptualized as an ag-

gregate efficiency of cloud creation (esource) multiplied by the reservoir of water vapor. The sink

term ksink is represented as a bulk sink efficiency (esink) multiplied by the reservoir of condensed

water. (b) shows a cartoon of enhanced moisture convergence (approximated as P − E in the

text) in mean-state and warmed climate scenarios due to local and subtropical sources. Finally,

(c) illustrates the resulting cloud condensate response to moisture convergence in the context of

SWFB . In GCMs where source efficiency is high relative to sinks the increase in LWP will be

large resulting in a strongly negative SWFB .
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Figure 2. Prediction of the change in extratropical (40-85°S) LWP during CO2 quadrupling

from Eq. 2. LWP response is normalized by GMT. The best fit line is shown in black with uncer-

tainty in the best fit in grey shading. The 1-1 line is shown in dashes. Grey markers are not used

in the fit (see text for details). The observational constraint is shown as a grey box on the x-axis

and the intersection with the fit line is shown using horizontal dashed lines.

Figure 3. Radiative efficiency (∂α/∂LWP ) and moisture sensitivity (∂LWP/∂P − E) anti-

correlate across GCMs as a function of mean state extratropical LWP . Observations from

CERES, MERRA-2, and MAC-LWP are shown using triangles. Simulations in HadGEM3 per-

turbing source strength (RHcrit is noted in boxes) are shown as circles. A powerlaw is used to fit

∂α/∂LWP and a second order polynomial is used to fit ∂LWP/∂P − E.
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Figure 4. (a) SW cloud feedback (SWFB) as a function of the predicted response of 40-85°S
LWP to GMT (dLWP/dGMT , Fig. 2) scaled by the sensitivity of α to LWP (∂α/∂LWP , Fig.

3). SWFB is weighted by global surface area. The range consistent with observations is shown

as a shaded grey box and the best fit regression and 95% confidence on the fit are shown using a

black line and grey shading. SWFB is shown averaged over three regions: 40-50°S (drying driven

by Hadley cell expansion), 50-85°S (the region of consistent moistening), and 40-85°S. (b) the
distribution of 50-85°S SWFB and 35°S-35°N total marine low cloud feedback in CMIP5 and

CMIP6 GCMs colored by ECS. Observational constraints from this study (y-axis, panel (a)) and

consistent with Myers et al. (2021) (x-axis) are shown as grey shading. (c) the effects on the

distribution of ECS in CMIP5 and CMIP6 of removing GCMs not consistent with the constraints

shown in (b). The effect of constraining the prior distribution of models by subtropical and ex-

tratropical constraints from (b) are shown along with the result of applying both constraints at

once.
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