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Key Points:

e A new model that couples a dynamical subseasonal-to-seasonal atmo-
spheric prediction system and machine learning algorithms is proposed.

e The proposed model significantly improves the accuracy of winter wheat
yield forecasting compared to traditional statistical-based modeling.

e The proposed prediction model achieves a skilled prediction one season
before harvest.

Abstract

Subseasonal-to-seasonal (S2S) prediction of winter wheat yields is crucial for
farmers and decision-makers to reduce yield losses and ensure food security.
Recently, numerous researchers have utilized machine learning (ML) methods
to predict crop yield using observational climate variables and satellite data.
Meanwhile, some studies also illustrate the potential of state-of-the-art dynam-
ical atmospheric prediction in crop yield forecasting. However, the potential of
coupling both methods has not been fully exploited. Herein, we aim to establish
a skilled ML-dynamical hybrid model for crop yield forecasting (MHCF v1.0),
which hybridizes ML and a global dynamical atmospheric prediction system,
and apply it to northern China at the S2S time scale. MHCF v1.0 demon-
strates that crop yield forecasting with S2S dynamical predictions generally
outperforms that with observational climate data. The coupling of ML and
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S2S dynamical atmospheric prediction provides a useful tool for yield forecast-
ing, which could guide agricultural practices, policy-making and agricultural
insurance.

Plain Language Summary

More cushioning time can be provided for the insurance industry and policy-
makers in China by timely and accurate prediction of winter wheat yields.
Subseasonal-to-seasonal (S2S) atmospheric prediction and machine learning
(ML) algorithms are emerging and advanced technologies that have both been
proven to boost crop yield forecasting, but coupling them together into one,
hybrid approach has not been fully exploited, and their joint contribution
to crop yield prediction needs to be quantified. In this study, we evaluate
the contribution of using S2S atmospheric prediction and ML algorithms to
improve winter wheat yield prediction in northern China. To this end, we
establish an ML—dynamical hybrid ensemble prediction model for winter wheat
by incorporating skilled S2S atmospheric prediction outputs and advanced ML
algorithms. We find that the ML algorithms demonstrate superior prediction
performance compared to traditional statistical models, and S2S atmospheric
prediction also achieves better prediction accuracy compared to models based
on historical observed climate data or remote sensing data. This study proves
that combining S2S atmospheric prediction and ML is a novel and promising
technique for regional yield prediction and is expected to be extended to
forecasting crop yields in other regions and even at the global scale.

1 Introduction

Growing populations and an increasing frequency of extreme weather events
are together bringing great challenges to global food security (Cole et al., 2018;
Prosekov & Ivanova, 2018; Ray et al., 2012; Tilman et al., 2011). Besides, timely
crop yield forecasting on subseasonal-to-seasonal (S2S) time scales (2 weeks to 3
months) is of great interest to agricultural production, decision-making, market
futures, and the insurance industry (Chipanshi et al., 2015; Tizumi et al., 2018;
Jiang et al., 2020). Wheat is the world’s most widely distributed cereal with
the largest planting area (FAO et al., 2021)—especially for China, the world’s
largest producer and consumer of wheat, where the planting area and yield of
winter wheat account for about 94% and 95% of the total planting area and
wheat yield, respectively (Huang et al., 2017). Hence, this study examples the
winter wheat planting regions of northern China.

Numerous studies have been carried out on crop yield prediction, based on either
crop growth modeling or statistical regression. Crop growth modeling aims to
reproduce the key processes of plant growth and development in detail from daily
meteorological data, cultivar features, soil properties, and agro-management in-
formation (Pagani et al., 2017).As such, crop growth models are crucial for pro-
viding farmers or specialists with real-time information about their crops, giving
risk-assessment information and monitoring decision-making relevant to agricul-
tural management by quantifying the impact of weather, soil, and management



interaction on crops (Benami et al., 2021). However, the high computational
costs and data requirements involved hinder scaling the approach to multiple
crops and regions (Kostkova et al., 2021; Li et al., 2020). Traditional linear
regression models are based on the empirical relationships between historical
yields and other factors, such as climate variables, agrometeorological factors,
and/or remote sensing data. However, as this method is unable to consider dy-
namical meteorological factors with the changing of growth stages, it has limited
ability to disentangle the complex nonlinear relationships between independent
variables and yields (Feng et al., 2020; Bolton & Friedl, 2013; Pan et al., 2012;
Wang et al., 2014; Zhang et al., 2014). By contrast, machine learning (ML)
algorithms—more advanced regression methods and more popular in agricul-
tural production—use data or experience to improve the performance of specific
algorithms (Goldberg et al., 1988), particularly by explaining a higher-order and
nonlinear relationship. Increasingly, ML has been used for agricultural applica-
tions, such as crop type classification and crop yield prediction (Klompenburg
et al., 2020), and is becoming an indispensable and mainstream tool in precision
agriculture.

Climate variables, such as temperature and precipitation, have been confirmed
to have significant impacts on crop production, and explain approximately one
third of global crop yield variability (Ray et al., 2015; Cai et al., 2019; Guo et
al., 2021; Liu et al., 2020). Remote sensing data enable the rapid monitoring
and forecasting of agricultural information such as crop growth and grain yield
(Liagat et al., 2017; Rembold et al., 2015; Wu et al., 2014) to be achieved on a
large scale. Therefore, the majority of previous studies have used observational
climate data and remote sensing data. Recently, some studies have illustrated
that dynamical atmospheric prediction is more advantageous than observational
climate data in predicting crop yields, which raises the idea that seasonal agricul-
tural production forecasting could benefit directly from dynamical atmospheric
prediction (Brown et al., 2018 ; Tizumi et al., 2018; Peng et al., 2018).

S2S dynamical atmospheric prediction, which aims to bridge the gap between
medium-range weather forecasts and seasonal prediction, is an emerging and
fast-developing field. The science community has rallied under the World
Weather Research Programme—World Climate Research Programme S2S Pre-
diction Project, dedicated to improving the forecasting skill and understanding
of the sources of S2S predictability. Substantial progress has been made re-
cently on predicting the onset, evolution and decay of some large-scale extreme
events, such as heat waves and tropical cyclones (Vitart & Robertson, 2018).
Considering the potential significant advantages of S2S atmospheric prediction
paired with ML, to the best of our knowledge, no study has combined these
two methods in a hybrid approach to predict crop yields. In the present study,
we seek to address this knowledge gap.

Specifically, we use S2S dynamical prediction system outputs and a variety of
algorithms to build an ML-dynamical hybrid model for crop yield forecasting
(MHCF v1.0). The motivations behind this study are to (1) compare the perfor-



mance in crop yield forecasting based on observed meteorological data/remote
sensing data and S2S atmospheric prediction system outputs; (2) investigate
the potential of various algorithms for S2S crop yield forecasting; and (3) eval-
uate how early MHCF v1.0 can forecast winter wheat yield with reasonable
accuracy. Section 2 and Section 3 describe the data and methods used in this
study, respectively. Section 4 presents results from a multi-model comparison
and leave-one-year-out cross-validation, and reports findings on the spatial dis-
tribution of yield forecasting and the optimum lead time. Sections 5 and 6
provide some further discussion and conclusions, respectively.

2 Data
2.1 Cropland and winter wheat yield data

We collected county-level winter wheat yield data (t/ha) in the winter wheat
producing regions of northern China from 2004 to 2014, which were gathered by
the Agricultural Statistical Yearbook of the Ministry of Agriculture of China.
The winter wheat planting areas are used to mask the winter wheat yields with
a resolution of 1 km in China (Luo et al., 2020). To match the spatial scale
of other variables, the county-level winter wheat yields were assigned to a 0.5°
grid through weighted averaging.

2.2 Satellite data

Enhanced Vegetation Index (EVI) has been proven to be superior in crop yield
prediction than Normalized Difference Vegetation Index, which is more sensitive
to higher canopy Leaf Area Index (Bolton & Friedl, 2013; Franch et al., 2015;
Tilman et al., 2011; Zhou et al., 2019; Cao et al., 2021; Ma et al., 2021). Thus,
we chose EVI as the satellite indicator, which was derived from the MOD13C1
(Collection 6) product with a 16-day repeat and 0.05° spatial resolution (Text
S1).

2.3 Observational climate data,

Observational climate variables were obtained from the Climatic Research
Unit (CRU), including monthly maximum temperature, minimum temperature,
mean temperature, precipitation, vapor pressure deficit (VPD), and growing
degree day (GDD). One another variable was Standardized Precipitation—
Evapotranspiration Index (Beguerfa et al., 2014). VPD and GDD were
calculated from the CRU variables (Text S1) (Cai et al., 2019).

2.4 FGOALS-f2 S2S climate prediction data

The S2S atmospheric prediction outputs were obtained from the FGOALS-f2
dynamical forecasting system, which has been applied at China National Cli-
mate Center for real-time S2S prediction (Li et al., 2021(a), 2021(b); Vitart et
al., 2017). Studies have shown that FGOALS-{2 is skilled in predicting extreme
events, such as summer drought and tropical cyclones genesis, which inevitably
affect crop growth and factual yield (Feng et al., 2020; Ren et al., 2019). In this
study, we used the monthly atmospheric prediction outputs of FGOALS-f2 with



a 0.5° spatial resolution for the next whole month to forecast the winter wheat
yield, including 925-hPa air temperature in K, 925-hPa eastward wind in m/s,
925-hPa northward wind in m/s, 925-hPa specific humidity in kg/kg, ground
temperature in K, surface (2-m) air temperature in K, total precipitation rate
in mm/h, and surface net shortwave radiation in W/m?. A summary of the
datasets and detailed information on these variables are given in Table S1 and
S2.

3 Methods
3.1. Model development

Four ML methods (MLR, SVR, RF, XGBoost) were adopted to establish predic-
tion models between input variables and winter wheat yield. More information
about the selected algorithms can be found in Text S2.

3.2 Model evaluation

Data preprocessing was carried out by dividing the dataset into training data
and testing data, and then preprocessing the training data and testing data
separately. We randomly divided the whole dataset into 70% training data and
30% testing data. To have a mean of 0 and a standard deviation of 1, the
training data and testing data were normalized respectively by the Z-score (Cai
et al., 2019). Additionally, the ten-fold cross-validation technique was adopted
to evaluate the performance of the developed models. That is, the entire dataset
was randomly divided into 10 subsets, each subset being a testing set, and the
rest were used as a training set. Next, the best hyper-parameters for each model
were determined by five-fold cross-validation using the GridSearchCV package
(Cawley & Talbot, 2010; Molinaro et al., 2005).

Finally, we conducted a “leave-one-year-out” prediction to assess the practicality
of the models, i.e., using all years’ data during 2004 to 2014 except the target
year to train the model and then make a prediction for the target year (Peng et
al., 2018). This approach is an extensively used cross-validation method because
of its simplicity, universality, and superiority in avoiding the issue of over-fitting
(Cao et al., 2021; Han et al., 2020; Peng et al., 2018).

To evaluate the model performance, the coefficient of determination (R?), root-
mean-square error (RMSE), and percent error (PE) were selected as the evalu-
ation metrics in this paper (Text S1).

3.3 Experimental design

Three experiments were designed to address the aims of our study as outlined
in the introduction. Firstly, we trained crop yield models with observational
climate data and S2S atmospheric prediction outputs separately in order to
identify which data source is superior for crop yield forecasting. Secondly, we
compared several yield prediction models with different algorithms to find the
model with the highest accuracy. And thirdly, we performed in-season prediction
to assess the lead time that can reasonably predict the winter wheat yield. The



in-season prediction started at the beginning of the growing season and ended
one month before harvest.

4 Results
4.1 Model evaluation and multi-model comparison

In order to compare the performance of observational climate data with S2S dy-
namical atmospheric prediction outputs in yield forecasting, three groups of data
were integrated into the selected models—namely, S2S dynamical atmospheric
prediction outputs (S2S), observational climate data, and the combination of
the two. We found that the performance of the S2S dynamical atmospheric pre-
diction outputs was better than the observational climate data in all selected
ML models, but not for MLR (Figure 1). S2S atmospheric prediction outputs
alone outperformed the observational climate data, as well as the combination
of both, among the ML-based models, with an R? of 0.85, 0.84 and 076 in
XGBoost, RF and SVR (RMSEs of 0.78 t/ha, 0.82 t/ha and 0.99 t/ha), re-
spectively. Meanwhile, the prediction R? values of the observational climate
variable-based models were 0.81, 0.8 and 0.65 in XGBoost, RF and SVR (RM-
SEs were 0.89 t/ha, 0.92 t/ha and 1.21 t/ha), respectively. Additionally, we
noticed that S2S+observation performed almost equivalently to S2S alone for
XGBoost and RF, and worse for SVR, indicating that S2S atmospheric predic-
tion outputs plus observational climate variables as model inputs do not add
extra contributions. This phenomenon may be largely because the S2S atmo-
spheric prediction outputs are generated based on a coupled prediction system
of the atmosphere, ocean, land and sea ice, which is different from the observa-
tional climate data that are collected based on the conditions of the historical
atmosphere. Therefore, the overlapping of variables from different systems will
result in them restricting each other and will ultimately worsen the model per-
formance for the ML methods. For MLR, the performance of S2S atmospheric
prediction outputs was the worst among the three groups of input variables, fol-
lowed by observational climate, and then S2S+-observation, which had the most
input data, achieved the highest R?, which was completely different to the re-
sults obtained by the ML-based models. One possible explanation for this is that
the MLR method essentially captures the correlation between input variables
and yield (Bouras et al., 2021), and the correlation between historical climate
observations and yield is much greater than that between S2S atmospheric pre-
diction and yield (Figure S1). In addition, the ML models (i.e. XGBoost, RF
and SVR) outperformed the linear method (i.e. MLR) due to the fact that most
relationships between yield and different variables are nonlinear, and ensemble
learning methods are better able to capture these relationships than the linear
method (Cai et al., 2019). We also evaluated the contribution of EVI to the
candidate models (Figure S2), the results of which show that EVI contributed
little to the predictive capability because climate variables act on the whole
growing season scale while EVI is only present in specific months, such as the
jointing stage and heading stage (Cao et al., 2021). The performance of EVI
for yield prediction was insignificant for predictions based on the whole growing



season (Figure S3).
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Figure 1. Model performance of the three groups of variables. The lines
represent the prediction R? of the four models (XGBoost, RF, SVR and MLR),
while the bars denote the RMSE (unit: t/ha) of the predicted yield.

4.2 Leave-one-year-out cross-validation

We conducted leave-one-year-out cross-validation, only using XGBoost and RF,
to further validate the model performance with S2S atmospheric prediction
outputs and observational climate data, respectively, as they showed the best
prediction skill among the four candidate models. All R? (Table S3 and Table S4)
and RMSE (Table S5 and Table S6) values for each testing year were averaged
by 10 repeated predictions. In general, both XGBoost and RF demonstrated
good forecasting capability, with an average R? greater than 0.8 and RMSE less
than or equal to 0.91 (t/ha). The S2S atmospheric prediction outputs exhibited
a consistently higher R? and lower RMSE (mean R? and RMSE ranging from
0.836 to 0.853 and from 0.784 to 0.823 t/ha, respectively) than the observational
climate data (mean R? and RMSE ranging from 0.802 to 0.815 and from 0.881
to 0.91 t/ha, respectively) in predicting winter wheat yield. Overall, the S2S
atmospheric prediction outputs were superior to the observational climate data
in yield forecasting, which could explain about 84% of yield variations for winter
wheat using ML methods (average R? of 0.836-0.853).

4.3 Spatial patterns of yield estimation at grid level

The spatial distributions of predicted yields are also provided (Figure 2 and
Figures S4-S6). As in section 4.2, we only evaluate the predictions made by
XGBoost and RF, using the S2S atmospheric prediction and observational cli-
mate data as training inputs, respectively. Figure 2 and Figure S4 show the
spatial patterns of predicted yield by XGBoost, and Figure S5 and Figure S6
show the results predicted by RF. In general, the spatial patterns of the pre-
dicted yield were consistent with the recorded yield. The high-yield grids were
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mainly concentrated in the east of the planting area, while the grids with low
yield were mainly distributed in the west. As shown in Figure 2, some high-yield
grids in the east were slightly underestimated or overestimated, while some high-
yield grids in the west were also underestimated, especially for the years 2013
and 2010. The prediction yields obtained by RF in Figure S5 and Figure S6 are
roughly similar to those of XGBoost.

To further compare the performances of different sources of input data, we
present the mean prediction PE of winter wheat yield predicted by XGBoost. It
was found that grids with low yield tended to have larger PE ( 25%) (Figures
3a and 3b). The PE differences between S2S and observation were obtained by
the result trained with observational climate data to minus that trained with
S2S atmospheric prediction outputs (Figure 3c). The model performance from
integrating different sources of meteorological data also corresponded with crop
yield. In other words, the high-yield grids using the S2S-trained model achieved
a satisfactory R? compared to the low-yield grids; whereas, in contrast, the
combination of low-yield grids and model trained with observational climate
data achieved better predictive precision.
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Figure 2. Spatial patterns of the yield predicted with XGBoost (2010-2014).
The first column is the recorded yield, the second column is the simulated yield
using the XGBoost model trained with S2S atmospheric prediction, and the
third column is the simulated yield using the XGBoost model trained with
observational climate data.
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Figure 3. Spatial patterns of the mean PE for XGBoost: (a) PE calculated
by XGBoost trained with observational climate; (b) PE calculated by XGBoost
trained with S2S atmospheric prediction; (c¢) PE difference between (a) and (b)
(former minus the latter). Positive values indicate that the model trained with
observational climate data has greater error, while negative values indicate that
the model trained with S2S has greater error.

4.4 Optimum lead time of yield forecasting

In order to investigate the limit of making a trustworthy early yield prediction,
we conducted an in-season prediction experiment on winter wheat yield using
XGBoost and RF. The in-season predictions were made in monthly intervals,
which means we added the climate information for a more recent month at each
time step. In general, better performance of the model was achieved with more
input data, i.e., as the prediction period approached the end of the growing
season, the R? increased and the RMSE decreased (Li et al., 2021). As shown
in Figure 4, XGBoost and RF performed comparably in terms of predictive
capability for yield forecasting, sharing the same trend. Although RF achieved a
stable R? and RMSE earlier than XGBoost, XGBoost had a higher R? and lower
RMSE than RF. Overall, the performance of both XGBoost and RF increased
with the accumulation of data. In terms of XGBoost, the R? ranged from 0.77
to 0.85 and 0.75 to 0.81 (RMSE from 0.97 to 0.78 t/ha and 1.01 to 0.89 t/ha)
when S2S-trained and climate-observational-data-trained, respectively (Figure
4); while for RF, the R? ranged from 0.78 to 0.84 and 0.75 to 0.8 (RMSE from
0.94 to 0.82 t/ha and 1.03 to 0.9 t/ha) for the two models, respectively (Figure
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4). The results confirmed that the S2S atmospheric predictions were superior to
the observational climate variables as model inputs, and XGBoost was slightly
superior to RF in predicting winter wheat yield.

Regarding the optimum forecasting time, the models trained by S2S atmospheric
prediction (XGBoost and RF) reached a stable R? of 0.85 and 0.84 in February
and January, respectively, with a lead time of about four months before harvest-
ing of winter wheat (Figure 4a). By contrast, the models using observational
climate data resulted in the highest R? of 0.81 and 0.8 in March and January
for XGBoost and RF, respectively, with a lead time of three months (Figure 4b).
Our work achieves a more satisfactory lead time prior to harvest compared with
previous studies (Cai et al., 2019; Guo et al., 2021; Li et al., 2021). The findings
demonstrate that S2S atmospheric predictions have the potential to achieve an
earlier optimum yield forecast than observational climate data as model inputs.
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Figure 4. Temporal progression of model performance (R? and RMSE) based
on the four models: (a, ¢) models trained with S2S atmospheric predictions; (b,
d) models trained with observational climate variables.
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5 Discussion
5.1 Model performance

In this work, we have further developed the four most commonly used models
(XGBoost, RF, SVR, MLR) for winter wheat yield forecasting. Factors affecting
crop yield are complex and diverse, so the combination of multi-source variables
can be considered in further studies (Cao et al., 2021; Liu et al., 2022). Lin-
ear regression generally explains the linear relationship between yield and input
variables. In this study, the MLR method performed the worst for simulating
yield among the developed models, which simply confirmed this point. ML algo-
rithms have shown strong predictive capability, especially for XGBoost and RF.
Thus, ML methods can clearly achieve superior performance in capturing the
complex relationships between S2S atmospheric predictions and yield, and they
provide a window of opportunity to predict crop yield at regional or even global
scales. Here, we built yield prediction models for winter wheat within the frame-
work of ML, due to its simplicity and efficiency. However, deep learning, with
its higher accuracy at the cost of computational intensity and model complex-
ity, may have great potential for improving global grain yield forecasting, and
it is essential to find a balance between complexity and efficiency (Reichstein et
al., 2019). The hybridization of process-based crop growth models and/or ML
with deep learning as well multi-source data (Cao et al., 2021) has the potential
to offer an improved and optimized technique for yield forecasting (Feng et al.,
2020; Shahhosseini et al., 2021).

5.2 Potential of S2S atmospheric prediction systems

Our findings demonstrate that the S2S atmospheric predictions outperformed
those based on observational climate data. This may be largely due to S2S
dynamical atmospheric predictions being able to provide more information over
the simple use of observational climate data to simulate possible future scenar-
ios, confronted with the climate change together with climate teleconnections
between a region of interest and other parts of the globe (Brown et al., 2018;
Ogutu et al., 2018). Compared with previous studies, the in-season prediction
showed that the winter wheat yield can be forecasted with a 3—4-month lead
time, and that has increased as the S2S atmospheric prediction outputs can nor-
mally be available. These findings show that the inclusion of S2S atmospheric
predictions improve the yield prediction performance. More S2S dynamic pre-
diction models from various institutions (e.g., FGOALS-f2, ECMWF, NECP-
CFSv2 etc.) could be used for comparison to improve yield forecasting (Feng et
al., 2020; Ren et al., 2019). Thus, the potential of S2S atmospheric prediction
should be extensively exploited. In further research, deep learning methods
should be considered to improve the accuracy of S2S atmospheric prediction
(Ham et al., 2019; Yu & Ma, 2021). Besides, the horizontal resolution of S2S
atmospheric prediction systems should be increased to a convection-permitting
resolution (< 10 km) in order to provide crop yield predictions at finer spatial
scales.
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6 Conclusions

The aim of this study was to establish a forecasting model (MHCF v1.0) for the
major production areas of winter wheat in northern China using ML driven by
an 528 atmospheric prediction system. To this end, we designed several exper-
iments to test the model performance and compare the predictive performance
of S2S atmospheric predictions, observational climate data, and the combina-
tion of meteorological and remote sensing data. Ultimately, a skilled prediction
one season before harvest was achieved. These experiments illustrate that S2S
atmospheric predictions are superior in their forecasting performance in terms
of crop yield, as compared with observational climate data. Moreover, the study
demonstrates that ML methods, especially ensemble learning models, perform
significantly better than linear regression—based methods. This research proves
that MHCF v1.0 is a novel and promising technique for regional yield prediction,
and it is our hope that it can be extended to crop yield forecasts in other regions
and even at the global scale.
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The datasets that support our work are as follows. The FGOALS-f2 S2S dy-
namical atmospheric prediction outputs were provided by the Institute of At-
mospheric Physics, Chinese Academy of Sciences (https://apps.ecmwf.int/d
atasets/data/s2s-realtime-daily-averaged-anso/levtype=sfc/type=cf/).
The winter wheat yield data were obtained from the Ministry of Agriculture
of China (https://doi.org/10.6084/m9.figshare.18093674). The winter wheat
planting areas were used to mask the winter wheat yields (https://data.men
deley.com/datasets/jbs44b2hrk/2). EVI data were derived from MOD13C1
(Collection 6) records (https://ladsweb.modaps.eosdis.nasa.gov/missions-and-
measurements/products/MOD13C1). Historical observational climate variables
were obtained from the CRU (https://crudata.uea.ac.uk/cru/data/hrg/).
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