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Abstract18

We expand on a recent determination of the first global energy spectrum of the ocean’s19

surface geostrophic circulation (Storer et al., 2022) using a coarse-graining (CG) method.20

We compare spectra from CG to those from spherical harmonics by treating land in a21

manner consistent with the boundary conditions. While the two methods yield qualitatively22

consistent domain-averaged results, spherical harmonics spectra are too noisy at gyre-scales23

(> 1000 km). More importantly, spherical harmonics are inherently global and cannot24

provide local information connecting scales with currents geographically. CG shows that the25

extra-tropics mesoscales (100–500 km) have a root-mean-square (rms) velocity of ∼ 15 cm/s,26

which increases to ∼ 30–40 cm/s locally in the Gulf Stream and Kuroshio and to ∼ 16–27

28 cm/s in the ACC. There is notable hemispheric asymmetry in mesoscale energy-per-area,28

which is higher in the north due to continental boundaries. We estimate that ≈ 25–50% of29

total geostrophic energy is at scales smaller than 100 km, and is un(der)-resolved by pre-30

SWOT satellite products. Spectra of the time-mean component show that most of its energy31

(up to 70%) resides in stationary mesoscales (< 500 km), highlighting the preponderance32

of ‘standing’ small-scale structures in the global ocean. By coarse-graining in space and33

time, we compute the first spatio-temporal global spectrum of geostrophic circulation from34

AVISO and NEMO. These spectra show that every length-scale evolves over a wide range35

of time-scales with a consistent peak at ≈ 200 km and ≈ 2–3 weeks.36

Plain Language Summary37

Traditionally, ‘eddies’ are identified as time-varying features relative to a background38

time-mean flow. As such, ‘mean’ does not imply large length-scale. Standing eddies or39

meanders due to topography have little time-variation, but can have significant energy40

at small length-scales that are unresolved and need to be parameterized in coarse climate41

simulations. Similarly, ‘eddy’ or ‘time-varying’ do not imply small length-scale, such as large-42

scale motions from Rossby waves or fluctuations of the Kuroshio. Another common method43

is Fourier analysis in ‘representative’ ocean boxes that cannot capture the circulation’s44

planetary scales. We overcome these limitations thanks to recent advances: (i) a method45

for calculating spectra by coarse-graining, (ii) properly defining convolutions on the sphere,46

which ‘blur’ oceanic flow in a way that preserves its underlying symmetries, opening the door47

for global ‘wavelet’ analysis and, more generally, spatial coarse-graining, and (iii) FlowSieve:48

an efficient parallel code. We employ coarse-graining in space-time to gain new insights into49

the global oceanic circulation, including how much energy resides in its different spatial50

structures and how they vary in time.51

1 Introduction52

Ocean circulation emerges from a suite of linear and nonlinear dynamical processes53

that act over a broad range of spatial and temporal scales. The flow field is markedly54

inhomogeneous and characterized by waves, instabilities, and turbulent eddies, each of which55

are subject to a variety of energetic sources and sinks. The mesoscale defines a key band56

of spatial scales where ocean flows are largely geostrophic and where kinetic energy peaks57

(Wunsch, 2007; Storer et al., 2022). Correspondingly, it is widely recognized that flow at58

the ocean mesoscales, and its response to changes in atmospheric forcing, are fundamental59

to the large-scale circulation and central for regional and global transport of heat and60

biogeochemical tracers (Ferrari & Wunsch, 2009).61

However, significant gaps remain in our understanding of the mesoscale flows and their62

role in ocean circulation and climate. In particular, from a numerical modeling perspective,63

despite the ever-increasing ability to conduct simulations with mesoscale eddy-rich OGCM,64

accurately resolving these scales in routine climate-scale (order centuries and longer) sim-65

ulations remains the exception rather than the norm (e.g. see Griffies et al., 2015). We66
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are thus confronted with the need for mesoscale eddy parameterizations for the foreseeable67

future (Pearson et al., 2017).68

A central question of physical oceanography, and in particular the eddy parameteriza-69

tion problem, concerns a characterization of flow features according to length-scale. This70

question motivates the goal of this paper, which is to provide a length-scale decomposi-71

tion of the global ocean geostrophic kinetic energy, and to study the seasonal variations of72

this decomposition. This goal has previously been out of reach due to limitations of the73

commonly used Fourier spectral methods, which are unsuited to global ocean analysis due74

to the complex geometry of ocean basins. We thus make use of a Coarse-Graining (CG)75

method that does not share the limitations of Fourier analysis. This paper serves to detail76

the use of coarse-graining for the purpose of decomposing ocean kinetic energy, and in so77

doing we uncover novel features of the ocean surface circulation as a function of length and78

time scales.79

1.1 Fourier methods for the ocean80

It is common to quantify the spectral distribution of ocean kinetic energy via Fourier81

transforms computed either along transects or within regions; e.g., Fu and Smith (1996);82

Chen et al. (2015); Rocha et al. (2016); Khatri et al. (2018); O’Rourke et al. (2018); Callies83

and Wu (2019). This approach has rendered great insights into the length scales of oceanic84

motion and the cascade of energy through these scales (Scott & Wang, 2005; Scott & Arbic,85

2007; Arbic et al., 2012, 2013, 2014). However, it has notable limitations for the ocean86

where the spatial domain is generally not periodic, thus necessitating adjustments to the87

data (e.g., by tapering) before applying Fourier transforms.88

Methods to produce an artificially periodic dataset can introduce spurious gradients,89

length-scales, and flow features not present in the original data (Sadek & Aluie, 2018). A90

related limitation concerns the chosen region size, with this size introducing an artificial91

upper length scale cutoff. In this manner, no scales are included that are larger than the92

region size even if larger structures exist in the ocean. Furthermore, the data is typically93

assumed to lie on a flat tangent plane to enable the use of Cartesian coordinates. However,94

if the region becomes large enough to sample the earth’s curvature, then that puts into95

question the use of the familiar Cartesian Fourier analysis of sines and cosines.96

We have previously compared coarse-graining methods with traditional Fourier meth-97

ods, and shown that where Fourier methods are valid, both methods agree (Storer et al.,98

2022). An important advantage of coarse-graining is that it is not limited to an ocean box99

and allows us to probe length-scales extending to the planet’s circumference. Moreover,100

unlike Fourier analysis in box regions, which cannot account for the global energy in the101

ocean, coarse-graining satisfies energy conservation (Sadek & Aluie, 2018) as we discuss102

more below.103

Spherical harmonics transform is another Fourier (or spectral) method over the entire104

globe, often used in atmospheric modeling (Satoh, 2004). It is seldom applied to the ocean105

due to continental boundaries. Spherical harmonics are basis functions that are defined106

over the entire sphere and are not restricted to the ocean domain. During early days of107

satellite altimetry, there were attempts at utilising the method to characterize the frequency-108

wavenumber spectrum of the ocean’s global circulation (Wunsch, 1991; Wunsch & Stammer,109

1995). These studies analyzed sea surface height (SSH) anomalies and chose nominal SSH110

values over land. SSH over land was set to the time average of the zonal mean absolute111

topography. However, the authors were aware that their choice for land treatment was112

somewhat ad hoc, without dynamical justification, as stated in Wunsch and Stammer (1995):113

“. . . we make no claim that we have made the best possible choice.” It seems that usage114

of spherical harmonics was largely abandoned after these attempts during the early days of115

satellite altimetry. In this paper, we revisit spherical harmonics transform in section 3.5 and116
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show that despite its important limitations, the method can yield meaningful results if land117

is treated in a manner that is consistent with boundary conditions of the ocean’s dynamics.118

1.2 Eddy and mean flow decomposition: Reynolds averages119

A traditional approach to extract ‘eddies’ from a flow uses time or ensemble averaging.120

This approach is relatively simple operationally and is in accord with the common practice121

in atmospheric and oceanic sciences of studying long-term climate means and fluctuations122

relative to that mean. As part of this decomposition for turbulent flow, we typically utilize123

the time averaging operator as a Reynolds averaging (RA) operator, whereby the average124

of a fluctuating quantity vanishes (Vallis, 2017). The choice of Reynolds decomposition by125

time averaging is largely based on practical considerations, with ensemble averages being126

unavailable for most applications (although see (Uchida et al., 2021) for a recent example127

with fine resolution regional ocean simulations).128

Within the traditional decomposition, time-mean or ensemble-mean do not necessarily129

imply a large length-scale flow as we shall discuss in this paper. For example, standing eddies130

or stationary meanders due to topography (Youngs et al., 2017) have little temporal or131

statistical fluctuations but can have spatial structure at length-scales O(100) km or smaller.132

Similarly, within a Reynolds decomposition, ‘eddy’ does not necessarily imply small length-133

scale. For example, a time averaging based decomposition would ascribe eddying motion134

to large-scale Rossby waves (Kessler, 1990) or variations in the Kuroshio Current’s path135

(Kawabe, 1995).136

By construction, a Reynolds decomposition into a mean and an ‘eddy’ limits our ability137

to analyze temporal variability, from intra-annual to inter-annual (Bryan et al., 2014; Griffies138

et al., 2015), of the multiscale coupling and evolution of different length-scales, including139

those that need to be resolved/predicted in global climate (coarse-grid) models. Therefore,140

it offers limited guidance for coarse-resolution models and no control over the specific phys-141

ical length which partitions oceanic flow into ‘large’ and ‘small’. In other words, the set of142

length-scales constituting the large-scale flow cannot be varied/controlled to be consistent143

with those length-scales resolved in a coarse climate simulation. In this sense, the tradi-144

tional mean-eddy decomposition cannot help with on-going efforts to develop ‘scale-aware’145

parameterizations (Ringler et al., 2013; Zanna et al., 2017; Pearson et al., 2017; Jansen et146

al., 2019), including those using data-driven or machine learning approaches (Ryzhov et al.,147

2020; Ross et al., 2023).148

1.3 Empirical Orthogonal Functions149

Empirical Orthogonal Functions (EOFs) offer yet another approach for decomposing150

the oceanic flow by projecting onto orthogonal basis functions or ‘empirical modes’ that are151

derived from the data itself. EOF is also known as Karhunen-Loeve decomposition, Principal152

Component Analysis (PCA) or Proper Orthogonal Decomposition (POD) in other fields153

(Kac & Siegert, 1947; Karhunen, 1947; Loeve, 1948), and was introduced to meteorology154

by Lorenz (1956).155

EOF analysis is commonly used as a data reduction technique since it offers the most156

efficient statistical compression of the data field (Thomson & Emery, 2001). This is because157

the basis functions are derived from the statistical analysis of the data and do not necessarily158

correspond to true dynamical modes, although they have yielded valuable insight into the159

oceanic dynamics on climate scales (e.g. Trenberth, 1975; Di Lorenzo et al., 2008). The160

limitation of EOFs stems from our lack in understanding of the dynamics governing the161

basis functions. Moreover, it is difficult to associate EOFs with lengthscales or timescales162

since each empirical mode lumps together variations over all frequency and wavenumber163

bands. This approach muddles the interpretation of EOF spectra and their connection to164

spectral slopes predicted by theory (Uchida et al., 2021).165
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1.4 Coarse-graining166

In order to understand the multiscale nature of oceanic flows, while simultaneously167

resolving them in space and in time, we use a ‘coarse-graining’ framework that is relatively168

new in physical oceanography (Aluie et al., 2018; Busecke & Abernathey, 2019; Srinivasan et169

al., 2019; Schubert et al., 2020; Rai et al., 2021; Barkan et al., 2021; Haigh et al., 2021; Khani170

& Dawson, 2023; Loose et al., 2023). It is a very general approach to decompose complex171

flows, with rigorous foundations initially developed to model (Germano, 1992; Meneveau,172

1994) and analyze (Eyink, 1995, 2005) turbulence. Aluie (2017) provides a theoretical173

discussion of coarse-graining and its connection to other methods in physics. The approach174

has been recently generalized to account for the spherical geometry of flow on Earth (Aluie,175

2019), and applied to study the nonlinear cascade in the North Atlantic from an eddying176

simulation (Aluie et al., 2018).177

The coarse-graining framework is very useful from the standpoint of ocean subgrid scale178

parameterizations (Fox-Kemper et al., 2011; Zanna et al., 2017; Khani et al., 2019; Jansen et179

al., 2019; Haigh et al., 2020; Stanley et al., 2020; Grooms et al., 2021). Namely, it provides180

a theoretical basis for constructing subgrid closures that faithfully reflect the dynamics at181

unresolved scales. A primary objective in ocean modeling is practical: an accurate subgrid182

parameterization that is numerically stable. Significant advances have been achieved in this183

regard in the fluid dynamics and turbulence community (Piomelli et al., 1991; Buzzicotti184

et al., 2018; Linkmann et al., 2018; Biferale et al., 2019; Di Leoni et al., 2020; Buzzicotti185

& Clark Di Leoni, 2020), and the field of large-eddy simulation (LES) is well-established186

(Meneveau & Katz, 2000).187

Our use of coarse-graining supports the needs of parameterization, but our primary188

objective is to characterize the fundamental dynamics of the flow at all length scales. Even189

within the wider fluid dynamics community, much less work has been done in this regard, i.e.190

using coarse-graining as a ‘probe’ of the fundamental scale-physics. For example, LES sub-191

grid parameterization studies are seldom concerned with using coarse-graining to probe the192

energy pathways across the entire range of scales, such as the cascade (Eyink, 1995; Eyink193

& Aluie, 2009; Kelley & Ouellette, 2011; Aluie et al., 2012; Rivera et al., 2014; Buzzicotti194

et al., 2018; Buzzicotti & Tauzin, 2021), forcing (Aluie, 2013; Rai et al., 2021), dissipation195

(Zhao & Aluie, 2018), or the range of coupling between different scales (Eyink, 2005; Aluie196

& Eyink, 2009).197

As an important case in point, despite LES being a well established field in fluid dy-198

namics since the seminal works of Leonard (1974) and Germano (1992), the idea of using199

coarse-graining in physical space to extract the energy content at different scales; i.e., the200

spectrum, was only recently established and demonstrated by Sadek and Aluie (2018). This201

method is central to our calculation here of the spectrum for the oceanic general circulation.202

A main advantage of coarse-graining is that it allows us to decompose different length scales203

in a flow, at any geographic location and any instant of time, without relying on assumptions204

of homogeneity, isotropy or domain periodicity. This generality makes it ideally suited for205

studying oceanic flows with complex continental boundaries over the entire globe or in any206

particular regions of interest and at any time.207

1.5 Key results and outline of this paper208

In this paper we make use of the coarse-graining method on a satellite sea surface209

product and an Ocean General Circulation Model (OGCM) simulation. To directly compare210

the two products, we focus on geostrophic components of the horizontal surface velocity as211

diagnosed from sea level. Here, we highlight key novel results from this analysis. First, we212

show that spectra from coarse-graining and spherical harmonics of the global circulation are213

consistent but the latter cannot yield spatially local information. We show that the typical214

velocity of mesoscales is of the order of 15 cm/s, but reaches 30–40 cm/s in western boundary215

currents (WBCs) and 16–28 cm/s in the ACC. We find notable hemispheric asymmetry in216
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mesoscale energy-per-area, which is higher in the north. This asymmtery is compensated by217

the south having more energy-per-area at gyre-scales, such that across all (resolved) scales,218

the two hemispheres have comparable energy-per-area. From our spectra, we can estimate219

that ≈ 25–50% of total geostrophic energy is at scales smaller than 100 km, and is un(der)-220

resolved by pre-SWOT satellite products. Spectra of the time-mean velocity show that most221

(up to 70%) energy resides in ‘standing’ mesoscale eddies < 500 km. By coarse-graining222

in space and time, we compute the first spatio-temporal global spectrum of geostrophic223

circulation from AVISO and NEMO. These spectra show that every length-scale evolves224

over a wide range of time-scales with a consistent peak at ≈ 200 km and ≈ 3 weeks.225

The paper is organized as follows. In Section 2, we present the data products used in226

our analysis. In Section 3 we give details on the coarse-graining and the Reynolds averag-227

ing methods used in this work and we present the comparison between CG and spherical228

harmonics energy spectra. In Section 4 we discuss the main results from the CG analysis;229

the 2D spatio-temporal energy spectrum of ocean surface circulation and spectra of the230

time-mean and fluctuating (or ‘eddy’) components from Reynolds averaging. At the end231

of Section 4 we compare the surface dynamics spatio-temporal decomposition from satellite232

and numerical model data. In Section 5 we present our conclusions. Appendix A discusses233

some technical choices we used when coarse-graining.234

2 Satellite and numerical model data235

We examine the horizontal geostrophic velocity of surface ocean currents from a global236

numerical model simulation and from an analysis of satellite sea surface altimetry, focusing237

on regions to the north and south of the tropics, [15◦N − 90◦N] and [15◦S − 90◦S]. We238

avoid the tropics since our interest is with the geostrophic flows in the higher latitudes, and239

only the surface geostrophic current is available from satellite altimetry. Details of the two240

products are given in the following paragraphs, and both were publicly accessed through the241

Copernicus Marine Environment Monitoring Service (CMEMS) webpage, https://marine242

.copernicus.eu/services-portfolio/access-to-products/.243

AVISO analysis of satellite altimetry Geostrophic currents are obtained from the244

AVISO+ analysis of multi-mission satellite altimetry measurements for sea surface height245

(SSH) (Pujol et al., 2016). We used the Level 4 (L4) post-processed dataset of daily-246

averaged geostrophic velocity, gridded at a resolution of 0.25◦ × 0.25◦ and spanning from247

January 2010 to October 2018. Post processing was performed by the Sea Level The-248

matic Center (SL TAC) data processing system, which processes data from eleven al-249

timeter missions. The product identifier of the AVISO dataset used in this work is250

“SEALEVEL GLO PHY L4 MY 008 047” (https://doi.org/10.48670/moi-00148).251

Numerical simulation We analyze 1-day averaged surface geostrophic currents from252

the NEMO numerical modeling framework, which is coupled to the Met Office Unified253

Model atmosphere component, and the Los Alamos sea ice model (CICE). The NEMO254

dataset consists of weakly coupled ocean-atmosphere data assimilation and forecast sys-255

tem, with data then published on a uniform 1/12
◦
grid. We use daily-averaged data that256

spans the four years from 2016 to 2019. More details about the coupled data assimila-257

tion system used for the production of the NEMO dataset can be found in (Hewitt et al.,258

2011; Lea et al., 2015). The specific product identifier of the NEMO dataset used here is259

“GLOBAL MULTIYEAR PHY 001 030” (https://doi.org/10.48670/moi-00021).260

3 Coarse-graining for the ocean261

In this section, we discuss the coarse-graining framework and how it is used to partition262

energy across length scales. We also discuss the traditional approach of decomposition263

in spherical harmonics and the temporal-based Reynolds averaging, in which the flow is264

decomposed into time-mean and fluctuating components.265
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3.1 Basics of coarse-graining on the sphere266

For any scalar field, F (x), we can calculate its coarse-grained (or low-pass filtered)267

version, F ℓ(x), by convolving F (x) with a normalized filter kernel Gℓ(r),268

F ℓ(x) = Gℓ ∗ F (x) (1)269

where ∗, in the context of this work, is convolution on the sphere (Aluie, 2019), x is geo-270

graphic location on the globe, and the kernel Gℓ(x) can be any non-negative function that271

is spatially localized (i.e. it goes to zero fairly rapidly as x → ±∞). The parameter ℓ272

is a length-scale related to the kernel’s ‘width’. We use the notation (· · · )ℓ to denote a273

coarse-grained field. The kernel is area normalized for all ℓ, so that274 ∫
Gℓ(x) dS = 1, (2)275

where dS is the area element on the sphere. Correspondingly, the convolution (1) may276

be interpreted as an average of the function F within a region of diameter ℓ centered at277

location x. By construction, at each point in space, x, the coarse-grained field, F ℓ(x),278

contains information about the scale ℓ.279

The above formalism holds for coarse-graining scalar fields. To coarse-grain a vector280

field on a sphere generally requires more work (Aluie, 2019). However, since we are con-281

cerned only with the surface geostrophic velocity, u(x, t), in this work, it greatly simplifies282

our analysis. We assume the geostrophic velocity is non-divergent on the two-dimensional283

spherical surface, so that it is related to the geostrophic stream-function ψ via284

u = êr×∇ψ, (3)285

with êr the radial unit vector in spherical coordinates, ψ = η g/f , g is the gravitational286

acceleration, η the free sea surface height (SSH), and the Coriolis parameter, f = 2Ω sin(ϕ),287

is a function of latitude ϕ, where Ω is Earth’s spin rate.288

Aluie (2019) showed that for non-divergent vector fields such as in eq. (3), coarse-289

graining u is equivalent to coarse-graining each of its Cartesian components. We there-290

fore transform the vector from spherical (ur, uλ, uϕ) to planetary Cartesian coordinates291

(ux, uy, uz) via:292

ux = ur cos(λ) cos(ϕ)− uλ sin(λ)− uϕ cos(λ) sin(ϕ)293

uy = ur sin(λ) cos(ϕ) + uλ cos(λ)− uϕ sin(λ) sin(ϕ) (4)294

uz = ur sin(ϕ) + uϕ cos(ϕ)295
296

where λ, ϕ are longitude and latitude, respectively, and uλ, uϕ are the zonal and meridional297

velocity components, respectively. The radial velocity component, ur = 0 for the geostrophic298

flow. The conversion to Cartesian velocity components is necessary since the basis vectors for299

spherical velocities depend on space, while the Cartesian velocity basis vectors are spatially300

independent. Figure 1, illustrates the spatial dependence of the velocity basis vectors. We301

apply the spherical convolution operation in eq. (1) to each of ux, uy, uz as scalar fields to302

obtain the corresponding coarse-grained fields ux, uy, uz, then retrieve the coarse-grained303

velocity, uℓ in spherical coordinates via304

coarse radial flow = ux cos(λ) cos(ϕ) + uy sin(λ) cos(ϕ) + uz sin(ϕ) = 0305

coarse zonal flow = −ux sin(λ) + uy cos(λ) (5)306

coarse meridional flow = −ux cos(λ) sin(ϕ)− uy sin(λ) sin(ϕ) + uz cos(ϕ).307
308

That the ‘coarse-grained radial flow’ (i.e. vertical flow, parallel to gravity) vanishes is309

not obvious and was proved in Aluie (2019) and demonstrated numerically in Aluie and310

Teeraratkul (2023). We emphasize that the coarse-graining algorithm we just described is311
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ûλ

ûφ

ûx ûy

ûz

x y

z

Spherical Cartesian

Figure 1. Illustration of [blue arrows] Cartesian velocity basis vectors and [red arrows]

Spherical velocity basis vectors at selected latitude/longitude points. While the spherical basis

vectors point in different directions at each location, the Cartesian vectors always point in the same

direction.

valid only for non-divergent vectors such as u in eq. (3). Significant errors can arise for a312

general flow field (Aluie & Teeraratkul, 2023), where the complete coarse-graining formalism313

of Aluie (2019) is necessary.314

We use the coarse-graining kernel315

Gℓ(x) =
A

2

(
1− tanh

(
10

(
γ(x)

ℓ/2
− 1

)))
, (6)316

which is essentially a top-hat kernel (Pope, 2001) with graded edges. We use geodesic dis-317

tance, γ(x), between any location x = (λ, ϕ) on Earth’s surface relative to location (λ0, ϕ0)318

where coarse-graining is being performed, which we calculate using319

γ(x) = REarth arccos
[
sin(ϕ) sin(ϕ0) + cos(ϕ) cos(ϕ0) cos(λ− λ0)

]
. (7)320

with REarth = 6371 km for Earth’s radius. In eq. (6), A is a normalization factor, evaluated321

numerically, to ensure Gℓ area integrates to unity as per equation (2). In general, we are not322

restricted to this choice of kernel; however, we use it because of its well-defined characteristic323

width ℓ. Indeed, a convolution with Gℓ in equation (6) is a spatial analogue to an ℓ-day324

running time-average (e.g., see Section 4.4).325

3.1.1 Reflected hemispheres326

A basic complication that can arise when considering very large filter scales is that the327

filter may become incongruous with studying a smaller sub-domain. In this work, we are328

primarily concerned with the extra-tropical hemispheres: [−90◦N,−15◦N] and [15◦N, 90◦N].329

However, at very large length scales information from the equatorial band and opposing330

hemisphere can become introduced through an expanded filter kernel. To resolve this issue,331

a ‘reflected hemispheres’ approach is used, wherein one hemisphere is reflected and copied332

onto the other hemisphere, essentially producing a world with two north, or two south333

hemispheres. This is the same methodology used in our previous work (Storer et al., 2022).334

It is worth noting that the reflected hemispheres and equatorial masking would not be335

necessary in a context where non-geostrophic velocities are considered and a global power336

spectrum is desired. They are used here because we wish to disentangle the power spectra337

of the geostrophic flow in the North and South.338
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3.2 Partitioning the geostrophic kinetic energy339

From the coarse-grained horizontal geostrophic velocity field, uℓ(x, t), following equa-340

tion (1) as prescribed in (Aluie, 2019), we partition kinetic energy (KE) into different sets341

of length-scales:342

E =
1

2
|u(x, t)|2 (bare KE) (8)343

Eℓ =
1

2
|uℓ(x, t)|2 (coarse KE) (9)344

E<ℓ =
1

2

(
|u(x, t)|2ℓ − |uℓ(x, t)|2

)
(fine KE). (10)345

346

The “bare KE” in equation (8) is the KE per unit mass (m2/s2) of the original geostrophic347

flow that includes all scales; “coarse KE” in equation (9) represents energy of the coarse-348

grained geostrophic flow at length-scales larger than ℓ; and “fine KE” in equation (10)349

accounts for geostrophic energy at scales smaller than ℓ, which we discuss more in the350

following two paragraphs. Partitioning geostrophic energy across scales is not trivial since351

one needs to ensure that such quantities are physically valid in the sense described by352

Germano (1992) and Vreman et al. (1994). In particular, it is important to ensure that the353

partitioned kinetic energy is (i) positive semi-definite (≥ 0) at every x and every time, and354

(ii) that summing the partitions yields the total energy.355

While it is clear that Eℓ ≥ 0 in equation (9), this property is not obvious for E<ℓ in356

equation (10). Moreover, it may not be obvious why E<ℓ should represent energy at scales357

smaller than ℓ. Vreman et al. (1994) showed that E<ℓ ≥ 0 if Gℓ ≥ 0, whereas E<ℓ can358

be negative if the coarse-graining kernel Gℓ is not positive semi-definite. A proof using359

convexity of the square function, (. . . )2, illustrates why the first term |u(x, t)|2ℓ in eq.360

(10) has an overbar rather than defining fine KE as (|u(x, t)|2 − |uℓ(x, t)|2)/2. The proof361

from Sadek and Aluie (2018) is as follows. When using Gℓ ≥ 0, coarse-graining (. . . )ℓ362

is a local averaging operation. From Jensen’s inequality (Lieb & Loss, 2001), we know363

that [F(u)]ℓ ≥ F(uℓ) for any convex operation, F . Since F(u) = |u|2 is convex, we are364

guaranteed that |u(x, t)|2ℓ ≥ |uℓ(x, t)|2 and, therefore, E<ℓ ≥ 0 if the kernel Gℓ(r) ≥ 0, which365

is the case for our study (see equation (6)).366

Regarding condition (ii) on the sum of energy partitions, Aluie (2019) proved that (for367

a normalized Gℓ) the coarse-graining operation on the sphere in equation (1) preserves the368

spatial average of any field, {F ℓ(x)} = {F (x)}, where {. . . } = (Area)−1
∫
dS(. . . ). There-369

fore, we have
{
|u|2ℓ

}
=

{
|u|2

}
. This property guarantees that the sum of coarse KE and370

fine KE yields the total kinetic energy after integrating in space and in the absence of land,371

{E} = {Eℓ}+ {E<ℓ} . (11)372

Eq. (11) justifies our interpretation of E<ℓ as energy at scales smaller than ℓ, since it is373

the difference between bare and coarse kinetic energy, on average, while also being positive374

locally.375

3.3 Treatment of land-sea boundaries376

In the above decomposition of energy, a choice has to be made in the presence of land.377

Storer et al. (2022) provides some discussion on the subject, while here we discuss three378

possibilities, along with their pros and cons, in more detail.379

Deformed kernel380

The ‘deformed kernel’ approach is realized by coarse-graining ocean points near land381

with a kernel that is deformed or masked to avoid overlapping with land points. Such a382

deformed kernel must be renormalized to yield an average over just ocean points rather than383
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the whole sphere. The main advantage of this approach is that it treats land as a well-defined384

boundary that is separate from the ocean regardless of the coarse-graining length-scale. It385

is also familiar to ocean modelers who routinely mask values over land and do not include386

such masked values when performing area averages.387

However, the deformed kernel has disadvantages that motivate against its use for coarse-388

graining ocean flows. First, a kernel that is inhomogeneous (i.e. changes shape depending389

on geographic location) does not conserve domain averages, including the kinetic energy of390

the flow. The reason for this failed conservation is detailed in Appendix A and demonstrated391

in Figure 2 (blue plot). This figure shows how a kernel that is deformed (via masking) to392

exclude land does not yield 100% of the total energy, i.e., it does not satisfy equation (11).393

As a result, it can yield total energy that is either less than 100% (e.g., over scales larger394

than 500 km in Figure 2) or greater than 100% (e.g., between 100 km and 400 km in Figure395

2).396

For some purposes, the total energy values in Figure 2 are fairly close to 100% (devi-397

ations less than 1%) so one might argue that the deformed kernel is suitable in practice.398

Nonetheless, a more basic reason to avoid deformed kernels is that such inhomogeneous399

kernels (which also include averaging values at adjacent grid-cells or block-averaging on the400

sphere) do not commute with spatial derivatives. Consequently, the coarse-grained field401

resulting from a deformed kernel is not guaranteed to satisfy fundamental flow properties402

exhibited by the unaveraged flow, such as non-divergence, geostrophy, and the vorticity403

present at various scales. These considerations are further detailed in Aluie et al. (2018)404

and Aluie (2019).405

Fixed kernel406

The ‘fixed kernel’, also used in Figure 2, is homogeneous so that it preserves its shape407

at all locations. When coarse-graining ocean points near land such that the kernel overlaps408

land points, we treat land points in a manner consistent with the boundary conditions409

between land and ocean. For example, if we are coarse-graining the velocity, we treat land410

as water with zero velocity, which is consistent with the formulation of OGCM where land411

is often treated as a region of zero velocity. Furthermore, we include these zero land values412

as part of the coarse-graining operation.413

This choice may seem unnatural since we are including unphysical values within the414

coarse-graining operation. However, it is helpful to think of coarse-graining as an opera-415

tion analogous to removing one’s eyeglasses, rendering an image fuzzy and boundaries less416

well-defined. When coarse-graining at a scale ℓ, the precise boundary between land and417

ocean becomes blurred at that scale and its precise location becomes less certain. The418

coarse-grained velocity, uℓ, can be nonzero within a distance ℓ/2 beyond the continental419

boundary over land. Forfeiting exact spatial localization in order to gain scale information420

is theoretically inevitable due to the uncertainty principle, which prevents the simultane-421

ous localization of data in physical-space and in scale-space (Stein & Weiss, 1971; Sogge,422

2008). The main advantage of the “Fixed Kernel” choice is ensuring that coarse-graining423

and spatial derivatives commute so that it preserves the fundamental physical properties424

(symmetries) of the flow. Further discussion of these issues can be found in Aluie et al.425

(2018) and Aluie (2019).426

Fixed kernel with or without land427

After coarse-graining the velocity field with a fixed kernel, we show in Figure 2 the level428

of energy conservation if we include or exclude land points from the final tally of kinetic429

energy. We call these, respectively, the ‘fixed kernel w/ land’ and ‘fixed kernel w/o land’.430

The latter (orange line) highlights how coarse-graining smears energy onto land (within ℓ/2431

distance inland) such that if we exclude land from the final tally, we find some leakage of432
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energy onto land, which increases as the coarse-graining scale ℓ increases. We find energy433

leakage of the order of 1% at coarse-graining scales < 100 km, ≈ 4% for scales ≲ 500 km,434

and up to 12% at scales of order 2000 km. However, if we choose to include land in our final435

tally, we are guaranteed to conserve 100% of the energy by satisfying equation (11), thus436

ensuring that the energy budget is fully closed. After all, in an ocean model on a discrete437

grid, the land boundary is only expected to be accurate within a ∆x distance from any438

estimate of the truth, where ∆x is analogous to our coarse-graining scale ℓ.439
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Figure 2. Percentage of total energy recovered by summing the fine and coarse KE terms

in equation (11) obtained by coarse-graining over the full ocean surface as a function of the filter

scale, kℓ = 1/ℓ. The three lines correspond to the three approaches described in section 3.3, namely,

filtering with a fixed kernel shape and excluding/including land (orange/green lines) when tallying

the total energy. We also coarse-grain with a deformable filter kernel to exclude the filter overlapping

land regions (blue line).

What we use here440

While we have implemented all three approaches to coarse-graining, unless otherwise441

stated in this work, we choose the fixed kernel w/ land by including land regions that have442

non-zero velocity (again, as realized through leakage from nearby ocean values). Storer et443

al. (2022) showed that deformed and fixed kernels yield qualitatively consistent results for444

spectra. We avoid coarse-graining with a deformed kernel to remain consistent with previous445

work (Aluie et al., 2018) and with forthcoming studies where we apply coarse-graining to446

the dynamical equations where commuting with spatial derivatives is essential.447

3.4 The filtering spectrum448

Sadek and Aluie (2018) showed how coarse-graining can be used to extract the energy449

content at different length scales. They do so by partitioning the velocity into discrete length450

scale bands rather than the two sets (coarse KE and fine KE) in equations (9) and (10). The451

resulting quantity is called the filtering spectrum. The filtering spectrum is distinct from452

the traditional Fourier spectrum, with coarse-graining offering a way to measure energy453

distributions without relying on a Fourier transform, thus avoiding the limitations noted in454

Section 1.1.455

The filtering spectrum is obtained by differentiating in scale the coarse KE456

E(kℓ) =
d

dkℓ
{Eℓ} = −ℓ2 d

dℓ
{Eℓ} , (12)457
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where kℓ = 1/ℓ is the ‘filtering wavenumber’. Sadek and Aluie (2018) showed that the458

filtering spectrum satisfies energy conservation and that E(kℓ, t) ≥ 0 when using certain459

types of kernels (e.g., concave) of which the top-hat kernel is an example. Moreover, Sadek460

and Aluie (2018) identified the conditions on Gℓ for E(kℓ, t) to be meaningful in the sense461

that its scaling agrees with that of the traditional Fourier spectrum (when a Fourier analysis462

is possible, such as in periodic domains). Below, we shall sometimes refer to Eℓ as the463

‘cumulative spectrum’ following Sadek and Aluie (2018) since it accounts for all energy at464

scales larger than ℓ. In contrast, E(kℓ, t), is the spectral energy density at a specific scale ℓ.465

3.5 Comparison with Spherical Harmonics466

Our previous results on spectra using CG in Storer et al. (2022) provide justification for467

using spherical harmonics on the global ocean and a guide for treating land in a manner that468

is consistent with boundary conditions. For the ocean velocity, the boundary conditions are469

zero normal velocity (no flow through) and zero tangential velocity (no-slip). Therefore,470

when using spherical harmonics, we set land to have zero velocity values, similar to what471

we do with the CG method.472

Figure 3 compares spectra from CG to those from spherical harmonics. It uses a sin-473

gle daily mean of AVISO data using spherical harmonics, coarse-graining with a deforming474

kernel, and coarse-graining with a fixed kernel. The spherical harmonic analysis was per-475

formed using PySHTools (Wieczorek & Meschede, 2018) on the AVISO data with reflected476

hemispheres.477

The two methods yield qualitatively consistent domain-averaged results, such as the478

broad mesoscale peak, the NH gyre peak, and the ACC peak. Both spectra (spherical479

harmonics and CG) integrate to the same total energy. However, the spherical harmonics480

spectra are too noisy at gyre-scales (> 1000 km). At these large length-scales (low modes),481

spherical harmonics spectra have poor scale resolution because the eigenmodes are spaced482

far apart; in integer multiples of the fundamental mode. It is particularly noticeable around483

the ACC peak at ℓ ≈ 104 km. This limitation is shared by Fourier methods in a Cartesian484

box. This is not a limitation for the CG method of computing spectra since it conserves485

energy without relying on the orthogonality structure of an eigenbasis in the strict sense486

(Sadek & Aluie, 2018).487

A main disadvantage of spherical harmonics is that they are inherently global and can-488

not provide local information connecting scales with currents geographically. This becomes489

apparent in spatial maps, such as those in Figure 4. In coarse-graining, non-zero current490

velocities only intrude a distance of ℓ/2 inland from the coast, as evidenced by the thin491

band of dark colours inside the yellow contour lines (coastlines). Moreover, the band within492

the yellow contour is dark, which reinforces that very little energy is distributed over land.493

Even at a 1000 km filter scale, the majority of land retains identically zero velocity, indi-494

cated by white. In contrast, even at a small filter scale, spherical harmonics generate beams495

of spectral ringing that extend deep into land regions, with non-trivial magnitudes. Worse496

still, at a 1000 km filter, the spherical harmonic filtering fills the global ocean with zonal497

bands, even in the more quiescent open oceans. These ringing features are not present under498

a coarse-graining approach with an appropriately chosen kernel.499

In addition, there are practical considerations in regards to comparing coarse-graining500

with spherical harmonics. Like traditional Fourier methods, spherical harmonics require501

the input data to conform to fairly strict structures: uniform lat/lon grids, specific res-502

olution aspect ratios, etc. In contrast, coarse-graining is grid agnostic. That is, while503

the implementation details are different, coarse-graining applies just as well to a uni-504

form lat/lon grid as to a generalized non-uniform triangularization grid. While FlowSieve505

(https://github.com/husseinaluie/FlowSieve), the coarse-graining package used in this506

work, at present only accepts rectangular (but non-uniform) lat/lon grids, that is a limita-507

tion imposed by the current implementation, and not by the underlying methodology.508
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Figure 3. Power Spectra with Spherical Harmonics and Coarse-Graining Power

spectra computed using spherical harmonics (solid lines), coarse-graining with a deforming kernel

(dashed lines), and coarse-graining with a fixed kernel (dotted lines). Reflected hemispheres were

used to obtain spectra for NH and SH separately. Note that these spectra were obtained by masking

out only a thin strip [2◦S, 2◦N] and integrating over the domain to allow for the application of

spherical harmonic transforms, unlike those of Figure 8 and (Storer et al., 2022) that only integrated

over latitudes outside of [15◦S, 15◦N], explaining the discrepancy in peak locations.

3.6 Reynolds averaging509

We close this section by reviewing basic properties of Reynolds averaging (RA) as510

realized by time averages.511

Basics of Reynolds averaging512

Time averaging separates the flow into a time-average/‘mean’ and a fluctuating/‘eddy’513

as given by (Pope, 2001)514

⟨u⟩(x) = 1

T

∫ t0+T

t0

u(x, t)dt, (13)515

516

u′(x, t) = u(x, t)− ⟨u⟩(x), (14)517

where ⟨u⟩ is the mean component, u′ the eddy component, and T represents the entire time
record and not just a time window. Two key properties of the Reynolds decomposition are

⟨⟨u⟩⟩ = ⟨u⟩ and ⟨u′⟩ = 0, (15)

so that the mean of a mean returns the mean (idempotent property) while the mean of the518

eddy is zero. The resulting mean and eddy kinetic energy components are respectively given519

by520

MKE(x) =
1

2
|⟨u⟩|2(x), (16)521

522

EKE(x, t) =
1

2
|u′|2(x, t). (17)523

Notice that the sum of mean and eddy kinetic energy is not equal to the total kinetic energy.524

Rather, there is an extra cross term, u′ · ⟨u⟩, needed to close the budget. However, the cross525

term is not positive definite and it has a zero time average, ⟨u′ · u⟩ = 0. Following a RA526

decomposition, the total energy can be written as527

E(x, t) = EKE(x, t) +MKE(x) +
1

2
(u′ · ⟨u⟩) (x, t). (18)528
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Figure 4. Filtering Maps with Spherical Harmonics and Coarse-Graining Speed

of the large-scale AVISO surface currents obtained by [left, AC] spherical harmonics and [right,

BD] coarse-graining. Velocity fields are filtered at [top, AB] 250 km and [bottom, CD] 1000 km.

Colour maps show velocity magnitude on a logarithmic scale, with white indicating identically

zero values. Yellow contours indicate land boundaries in the unfiltered data. Note how filtering

with spherical harmonics, even at 250 km, yields non-zero flow over all continents and prominent

ringing patterns. This is due to the inherently global nature of spherical harmonics, which makes

it challenging to infer spatially local information at different scales.
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Key differences between Reynolds averaging and coarse-graining529

A key difference between coarse-graining and Reynolds-averaging is that within RA,530

applying the averaging operation twice on any field yields the same result whereas that531

property does not hold for coarse-graining with non-projector kernels (Buzzicotti et al.,532

2018):533

⟨⟨F ⟩⟩ = ⟨F ⟩ whereas F ̸= F , (19)534

where < · > denotes time averaging and · denotes coarse-graining. Another important535

difference is that a Reynolds average does not provide a control to adjust the partition536

between the ‘mean’ and ‘eddy’ components. That is, a Reynolds decomposition is not537

a length-scale decomposition and this point is illustrated in section 4.4. Consequently,538

the time-mean or ensemble-mean flow is not synonymous with large-scale flow, nor does a539

Reynolds eddy fluctuation directly correspond to a characteristic fine-scale.540

To help understand the above points, we emphasize the distinction between time-scale541

and decorrelation-time for a particular flow feature. While it is generally true that larger542

(smaller) scales have slower (faster) time-scale dynamics, it is not always true that their543

decorrelation-time follows this relation. As an example, consider stationary eddies, such as544

the Mann eddy in the North Atlantic. Such eddies have a small spatial-scale (relative to545

the gyre or basin) but are persistent in time. As a result, even if the timescale (∼ ℓ/u) for a546

structure is small when it is associated with the relatively fast dynamics of eddying flows, it547

can be highly correlated (or even stationary) in time, so that its contribution to the MKE548

is not completely removed by a time-average. We show this behavior in sections 4.4 and549

4.5.550

4 Analysis results551

In this section we present results of the coarse-graining analysis along with a comparison552

with Reynolds averaging based on time averages. In the second part of this section we553

present results from coarse-graining in both space and time as a means to characterize the554

time-scales associated with different length-scales.555

4.1 Coarse-graining the surface geostrophic flow from AVISO556

We split the geostrophic kinetic energy from AVISO into its fine and coarse-grained557

components following equations (9) and (10). For a qualitative appreciation of this de-558

composition, Figure 5 displays maps of the kinetic energy just over the Atlantic using two559

different filter scales, ℓ = 100 km in the top row and ℓ = 400 km in the bottom row. From560

left to right, panels in Figure 5 show the total kinetic energy, E , the coarse energy, Eℓ, and561

the fine energy, E<ℓ. The fine scale kinetic energy, E<ℓ, represents kinetic energy at scales562

less than ℓ, as represented (or projected) on a grid of resolution ∆x ∼ ℓ. Notably, as seen in563

Figure 5, E<ℓ does not have small scale features, which results since there is a filter applied564

to both terms in equation (10) defining E<ℓ. This definition ensures that E<ℓ is positive565

semi-definite at each point in space and time.566

Visualization of fine kinetic energy, E<ℓ, is still useful to identify the regions where567

structures smaller than the filter scale are dominant in the ocean. Even so, one may wish568

to view the alternative quantity569

E − Eℓ =
1

2

(
|u(x, t)|2 − |uℓ(x, t)|2

)
, (20)570

which is shown in the right-most column of Figure 5. This quantity reveals more fine scale571

features since only the second term on the right hand side is filtered. However, as discussed572

in Section 3.1, the energy difference, E − Eℓ, can be negative locally in space, and so it does573

not serve our purposes for decomposing the energy into non-negative terms.574
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Figure 5. Maps of the coarse-grained decomposition of kinetic energy from a single day of the

AVISO analysis at two different filter scales, ℓ = 100 km (top) and ℓ = 400 km (bottom). Here

the bare KE, E(x, t), is compared with coarse KE, Eℓ(x, t), and fine KE, E<ℓ(x, t). The right-most

column shows the fine scale term defined by equation (20), which can yield negative values.

4.2 Reynolds averaging decomposition575

Here, and in subsequent subsections, we show that the time-mean flow consists of an576

entire range of length scales with substantial contributions from the mesoscale. Figure 6577

shows the mean-fluctuation decomposition following the Reynolds averaging approach. The578

maps are focused on the Atlantic region to help reveal details and we show just those579

obtained from AVISO. The time mean is obtained by averaging the velocity over the whole580

time series available, spanning nine years. From left to right we show the total energy at581

a single day, the time mean energy, MKE(x), the fluctuating eddy term, EKE(x, t), and582

the cross term, (u′ · ⟨u⟩)/2.583

Having used a relatively long time series for averaging, the mean energy in Figure 6 is584

rather depleted away from major current systems, so that the Gulf Stream and the Antarctic585

Circumpolar Current are quite pronounced relative to the gyre interiors. We appreciate586

from this figure that the mean flow retains a substantial contribution from structures with587

a variety of sizes. In the same way, the ‘eddy’ (or temporally fluctuating) flow in Figure 6588

contains most of the small scale fluctuations but also a substantial contribution from large-589

scale structures. The cross term shown on the right panel of Figure 6 has strong fluctuations590

around zero, which make its contribution almost (but not exactly) zero after a spatial-591

average. The blending of length scales revealed by these figures reflects the inability of time592

averaging to decompose the kinetic energy according to length-scales.593

To further investigate the role of the three Reynolds average energy terms, Figure 7594

shows their temporal variability in both hemispheres. In the first row, we see that EKE595
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Figure 6. Decomposition of geostrophic kinetic energy from AVISO for the Atlantic basin

from a time averaging (Reynolds) decomposition. Left panel: total energy, E(x, t) at a single

day. Left middle panel: 9-year time mean, MKE(x). Right middle panel: fluctuating eddy term,

EKE(x, t). Right panel: the cross term required to recover the total geostrophic energy as defined

in equation (18).

constitutes a substantial portion of the total energy E (80%) and their temporal evolution596

is almost indistinguishable. Both EKE and E tend to peak during the spring-summer. The597

bottom row of Figure 7 shows MKE, which is independent of time, and the cross term,598

which has a zero average. These two quantities are much less energetic, with the mean term599

≈ 20% of the total and the cross term fluctuates about its zero average without a clear600

seasonal signal.601

4.3 The filtering spectrum602

In Figure 8 we show the cumulative large-scale energy for the north and south hemi-603

spheres as obtained from equation (12) for AVISO and NEMO, as well as the filtering604

spectra for the Reynolds-decomposed components of NEMO: full time signal, E(x, t), time605

mean, MKE(x), and time varying, EKE(x, t). In the top panel we show the cumulative606

area-averaged energy spectra, Eℓ, as a function of coarse-graining scale. In the centre and607

bottom panels, we show the filtering spectrum (c.f. equation (12)), in lin-log and log-log608

scale respectively.609

Cumulative Energy Spectra At the large kℓ (small ℓ) end of the cumulative spectra, we610

see that all four datasets converge. That is, for both NEMO and AVISO, the area-averaged611

energy density is ≈ 2× 10−2m2/s2 (corresponding to an RMS velocity of ≈ 20 cm/s), for612

either hemisphere. At gyre-scales, SH has noticeably higher energy density than NH. This613

asymmetry is balanced by an opposing asymmetry over the mesoscales, where NH has614

higher KE density, which is more readily detectable in the filtering spectra. The NH-SH615

asymmetry can be attributed to basin geometry and continental boundaries. The NH ocean616

basins are land-constrained relative to the SH, which has more room for a larger-scale flow,617

namely the ACC, to develop and intensify. We shall see in Table 1 below that most of the618

hemispheric asymmetry resides in the stationary time-mean flow. The stronger (energy-per-619

area) mesoscale flow in the NH is stationary and is most probably due to the time-invariant620

forcing exerted by continental boundaries. This can explain our observation in Fig. 8 (middle621

panel) that NH mesoscales are more intense than in the SH.622
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Figure 7. Top panel: Time-series of total geostrophic kinetic energy, {E(x)} (t) (blue), and the

fluctuating component, {EKE(x)} (t) (orange), in the North (solid line) and South (dashed line)

from the AVISO analysis. Vertical grid lines indicate the start of each quarter-year (01Jan, 01Apr,

01Jul, 01Oct). Bottom panel: Time-series of the cross term (blue) and kinetic energy of the 9-year

mean, {MKE(x)} (orange), in the North (solid line) and South (dashed line). EKE constitutes

a substantial portion of the total energy and with an almost indistinguishable temporal variation.

Here, we show only 6.5 years of the full 9-year record. Plots shown use a 4-day sampling frequency,

but averages are based on a 1-day sampling of the 9-year record.

Filtering Spectra The full time filtering spectra in Fig. 8 have been previously reported623

in Storer et al. (2022). Here, we extend previous results by incorporating CG spectra of624

the time-mean and time-varying Reynolds averaging components. As might be expected,625

the time-mean velocity peaks spectrally at large scales (ℓ > 103 km), while the time-varying626

component peaks over the mesoscales. This may misleadingly suggest that time-averaging627

produces a scale separation to a good approximation. However, as will be shown later in this628

subsection, the mesoscale energy (area under the spectrum plot) accounts for a majority of629

the time-mean energy. Therefore, as we are going to show, the time-mean flow is dominated630

by stationary mesoscale structures < 500 km in size. The length-scale at which spectra of631

the time-varying and time-mean velocity cross is slightly larger than 500 km.632

Proportion of Energy in Mesoscales In Table 1 we present the kinetic energy of the633

Reynolds averaging components partitioned at 500 km for the NEMO dataset. There are634

three primary conclusions that can be drawn from Table 1. 1) While mesoscales are domi-635

nated by time-varying flow, the majority of the time-mean energy is also in the mesoscales.636

2) The geostrophic time-varying flow is nearly entirely mesoscale, with only a few percent-637

age points in larger scales. It is important to recall, however, that this analysis excludes638

ageostrophic motions, such as the Ekman flow. 3) While the full and time-varying velocities639

are generally consistent between hemispheres, the time-mean velocity shows strong asym-640

metry. Specifically, time-mean mesoscles are stronger in NH, while time-mean gyre-scales641

are stronger in SH. A likely contributor to the latter is the ACC, which contains large-scale642

time-mean currents. In the NH, there is stronger stationary forcing at the mesoscales rela-643

tive to the SH due to more restrictive continental boundaries. Nearly identical results are644

found from the Reynolds averaging decomposition applied over the 9-year AVISO dataset,645

shown in Appendix B.646
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Figure 8. Power Spectra [Top]: Cumulative surface geostrophic kinetic energy spectra, Eℓ,

as a function of scale ℓ, obtained from both the AVISO and NEMO products in the North and

South. [Middle and bottom]: Filtering spectra obtained following eq. (12) for the full (solid

lines), time mean (dashed times), and time-varying (dotted liens) ssh-derived geostrophic velocity

from the NEMO dataset. Note that both middle and bottom panels show the same data, but using

lin-log and log-log scales respectively.
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Full Velocity Time-Mean Time-Varying

ℓ < 500 km [10−2m2/s2]
NH 2.1 0.36 1.7

SH 2.0 0.25 1.8

ℓ > 500 km [10−2m2/s2]
NH 0.20 0.15 0.06

SH 0.22 0.19 0.04

ℓ < 500 km [% of Total]
NH 91 71 97

SH 90 57 98
Table 1. Mesoscale Energy for Reynolds’ Components The area-mean kinetic energy

partitioned at 500 km for each hemisphere (equivalent to the top panel of Fig. 8), for the three

Reynolds’ components: full E(x, t), time-mean MKE(x), and time-varying velocity EKE(x, t).

Presented values are the median (50th percentile) in time from the NEMO dataset.

RMS Velocity in Major Currents By integrating the filtering spectrum over a scale647

band, we can obtain the total KE for the chosen scale band and, subsequently, the RMS648

velocity for that range of spatial scales. Table 2 presents these RMS velocity magnitudes649

from NEMO for a selection of geographic regions: NH, SH, ACC, Gulf Stream, and Kuroshio,650

both within the mesoscale (100–500 km) and gyre-scale (> 103 km) scale-bands. The region651

definitions are included in Appendix C. Note that mesoscales are stronger in NH than SH,652

while gyre-scales are stronger in SH.653

Region
Mesoscales (100–500 km) Gyre-scales (> 103 km)

Block Region KE Masked Block Region KE Masked

South of Tropics 15.0 — 5.3 —

ACC 16.4 28.1 7.0 9.7

North of Tropics 15.5 — 4.3 —

Gulf Stream 32.7 42.2 7.8 8.7

Kuroshio 26.5 40.0 8.1 10.1
Table 2. RMS Current Speed [cm/s] in Select Regions The area-mean RMS velocity

magnitude [cm/s] for selected regions using both Block and KE-masked definitions, see Appendix

C. Note that there is no KE-masked variant of the NH and SH regions. Reported values are for the

time median (50th percentile). Presented values are from the NEMO dataset, and are all rounded

to one decimal point.

Extrapolating to Smaller Scales Both NEMO and AVISO datasets agree well on the654

spectral energy density of the mesoscales, down to ≈ 100 km, where resolution effects begin655

to cause deviations (Amores et al., 2018; Ballarotta et al., 2019). Using k−3
ℓ and k

−5/3
ℓ656

power laws, we can extend the power spectrum towards smaller scales. Note that this is657

presented as a thought experiment, and is not intended to suggest that such a power law658

will hold over all smaller scales. If we let S100km denote the spectral energy density for659

ℓ = 100 km, and assume a spectral scaling of k−α spanning all scales smaller than 100 km,660

then we can compute the total amount of energy in scales smaller than 100 km as661

lim
n→∞

∫ 10n

kℓ=10−5

S100km10
−5αk−αdk =

1

α− 1
S100km10

−5, (21)662
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or, alternatively, to only consider the decade spanning 10–100 km,663 ∫ 10−4

kℓ=10−5

S100km10
−5αk−αdk =

1

α− 1
S100km10

−5
[
1− 101−α

]
, (22)664

where we assume that α > 1. Using equations (21) and (22) and the 100 km values presented665

in Fig. 8, we can then compute the amount of energy in scales smaller than 100 km as a666

percentage of energy across all scales. These values are presented in Table 3 and reveal667

that as much as 25–50% of the surface geostrophic kinetic energy is contained in scales668

smaller than 100 km. These scales are un(der)-resolved by pre-SWOT satellite products.669

Our estimates are contingent on a persistent power-law scaling over small scales, but they670

nevertheless illustrate how a substantial proportion of surface geostrophic energy may be671

missed by coarse resolution.

−α AVISO NEMO

NH SH NH SH

−3 24% [24%] 25% [25%] 23% [23%] 25% [25%]

−5/3 43% [49%] 44% [50%] 41% [47%] 44% [50%]
Table 3. Extrapolated Small-scale Energy Percentage of total energy integrating scales in

the decade spanning 10–100 km. Values in brackets ([·]) arise from integrating all scales smaller

than 100 km assuming a constant power-law scaling of k−α.

672

Zonally-Averaged Coarse Energy In Figure 9 we plot the zonally-averaged kinetic673

energy for selected length-scale bands. Scales larger than 103 km (blue plot in Fig. 9) have674

a dominant contribution from latitudes [60◦S, 40◦S], which roughly corresponds with the675

ACC. However, these latitudes are no longer dominant when considering the band of smaller676

scales: 215 km < ℓ < 103 km. These scales (orange plot in Fig. 9) show a distinct signal at677

latitudes [30◦N, 40◦N], which roughly aligns with the Gulf Stream and Kuroshio. There is678

also a weaker signal at latitudes [40◦S, 35◦S], which roughly aligns with the Agulhas and679

the Brazil-Malvinas currents.680
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Figure 9. Time- and zonally-averaged kinetic energy computed from AVISO within selected

length-scale bands (see in-set legend) as a function of latitude. We can see that the Antarctic

Circumpolar Current has significant energy at scales > 103 km, while the North has significant

energy within ≈ 30◦N-40◦N where the Western Boundary Currents are located. Note that the

latitude axis is broken to exclude the band [15◦S, 15◦N].
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4.4 Spatio-temporal decomposition681

In this section, we present results from coarse-graining in both space and time to reveal682

all the length-scales present in the time-averaged currents up to 9-year temporal mean.683

Our analysis demonstrates a way for comparing data from satellite analysis (AVISO) and684

numerical models (NEMO).685

The approach consists of measuring the filtering spectrum of a temporally-smoothed686

version of the original velocity field. The latter is obtained from a running window time687

average,688

⟨u⟩τ (x, t) =
1

τ

∫ t+τ/2

t−τ/2

u(x, t′) dt′, (23)689

with τ the size of the time window. Note that a running window time-average in equation690

(23) is similar to spatial coarse-graining (equation (1)) since691

⟨⟨F ⟩τ ⟩τ ̸= ⟨F ⟩τ . (24)692

Combining equation (12) with equation (23) allows us to measure the filtering energy spec-693

trum of the time-smoothed field694

E(kℓ, τ) =

〈
d

dkℓ

{
1

2
|⟨uℓ⟩τ |2

}〉
=

〈
d

dkℓ
{Eℓ,τ}

〉
, (25)695

where we introduced696

Eℓ,τ (x, t) =
1

2
|⟨uℓ⟩τ |

2
, (26)697

which is the cumulative spectrum of the temporally-smoothed field. As indicated, Eℓ,τ (x, t)698

is a function of both the size of the time window, τ , and the spatial kernel, ℓ.699

Time-Averaged Spatial Maps We show the time-smoothed energy map, Eℓ=0,τ , in700

Figure 10 from AVISO. Here, the two columns compare results from the North and the701

South regions, while different rows compare results with different time windows, τ . From702

these maps we can see that increasing τ from one day to 1093 days reduces the energy703

down to ≈ 21% (≈ 25%) of the original total energy in the North (South). Hence, averaging704

over three years brings the energy down to values comparable to those over the full nine705

years obtained in the previous section by the Reynolds averaging decomposition, where we706

found that MKE accounts for ≈ 20% of the total energy in the extra-tropics. This result707

indicates that temporal averaging converges quickly for the geostrophic kinetic energy, and708

using longer time records does not significantly alter the partitioning between the temporal709

mean and fluctuating components of the surface geostrophic ocean flow.710

4.5 Spatio-temporal comparison of AVISO and NEMO711

We now demonstrate using a spatio-temporal coarse-graining, which may complement712

current efforts to disentangle balanced from unbalanced motions in SSH-derived flows. Fig-713

ure 11 presents space-time 2-D spectra, −⟨ d
dτ

d
dkℓ

{Eℓ,τ}⟩, which decomposes the energy as714

measured from AVISO and NEMO. In the left (right) column of Figure 11 we show the715

isolevels of space-time spectra from NEMO (AVISO). Note that the NEMO spectra extend716

to smaller length scales due to having higher spatial resolution, but that the panels have717

consistent spacing / aspect ratios. The most pronounced difference is that the AVISO iso-718

contours are more circular, while NEMO isocontours or more elongated and tilted, hinting719

at an ℓ− τ relationship. In both datasets, energy peaks at approximately ℓ = 200 km and720

τ = 2− 3 weeks.721

Time-averaging to Align Spectra Remember that for the entire analysis in this paper,722

we are using 1-day averages of SSH to derive velocity from the NEMO data. While the723

SSH from AVISO is also available daily, it is effectively averaged over longer periods of724

time to produce gridded SSH maps from along-track altimeter data. We propose that725
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Figure 10. The surface geostrophic kinetic energy from the temporally coarse-grained flow,

Eℓ=0,τ , in the North (left column) and South (right column) from AVISO. The top row shows the

original 1-day averaged flow. The middle and bottom rows show the kinetic energy from the flow

when averaged with a ≈ 6 months time window and a ≈ 3 years time window, respectively, with

the kinetic energy decreasing with an increasing time window. Each panel indicates the % of kinetic

energy remaining relative to the 1-day top row.

the difference between isocontours from AVISO and NEMO in Figure 11 comes from the726

optimal interpolation used to produce the gridded AVISO product (Pujol et al., 2016),727

which is necessary to construct the global maps from satellite altimeters’ along-track data.728

To support this hypothesis, in Figure 12 we show the spectra as a function of τ measured729

from AVISO and NEMO. In this plot, we have repeated the analysis of the NEMO spectra730

after passing the data through a 7-day running time average (green line), which reproduces731

the time average over the satellite orbits. We can see that the green curve overlaps the732

AVISO measurement (blue) very closely, supporting our hypothesis. This is similar to what733

was done in Arbic et al. (2014); Khatri et al. (2018) who were comparing the cascade from734

AVISO and model data and determined that AVISO’s spectral fluxes can be reproduced735

from model data after filtering the latter in both space and time.736

Possible Role of Unbalanced Motions What component of the flow could be yielding737

the discrepancy between NEMO and AVISO? The most obvious possibility is unbalanced738

motion present in the 1-day mean SSH fields of NEMO that is absent from AVISO due to739

the effective weekly averaging required for gridding the satellite measurements. However,740

unbalanced motion had been believed to be important mostly over length-scales ≲ 100 km741

and time-scales ≲ 2 days (e.g. Richman et al. (2012); Qiu et al. (2018)). If our conjecture742

is correct, it would imply that unbalanced motion is present at all scales between 200 km to743

103 km, with significant differences even between 1-2× 103 km and τ ≈ 1-10 days as shown744

in Fig. 11, requiring averaging over a few days to be removed. Isolating balanced from745

unbalanced motions (e.g. Bühler et al. (2014)) is an active research topic that is beyond746

the scope of this work. Another possible explanation can be found in the time-smoothing747

of balanced motions, which is inherent in the construction of the AVISO dataset. Indeed748

in (Arbic et al., 2013, 2014) they removed high-frequency motions with a 3-day low-pass749

filter before applying spectral analysis and they obtained similar results as the ones we750

observed here.751
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Figure 11. Combined spatio-temporal coarse-graining producing 2D spectra, −∂τ∂kℓEℓ,τ from

[left] 1/12◦ NEMO and [right] AVISO, averaged over the [top] NH and [bottom] SH. Mesoscale

energy predominantly peaks on length-scales of 100-200 km and time-scales of 1-3 weeks. Green

diamonds indicate, for each ℓ, the τ at which spectral power is maximized (c. f. Fig 13).

4.5.1 Relating Time-scale to Length-scale752

As discussed, Fig. 11 shows a clear mesoscale spectral structure centered roughly on753

200 km and 14 days. In Figure 13 we present for each spatial scale ℓ, the time-scale τ for754

which −∂τ∂kℓ
Eℓ,τ is maximized. We use cubic interpolation in the τ -dimension to compen-755

sate for only having data points for an odd integer number of days. These results are broadly756

similar between hemispheres, however, there are noticeable disagreements between NEMO757

and AVISO. The two agree on the time scale of the largest mesoscales (400–500km), with758

AVISO consistently yielding longer time scales than NEMO for smaller ℓ. NEMO presents759

τ ∼ ℓ over the mesoscale band, while AVISO gives τ ∼ ℓ0.4.760

4.5.2 Connection to Space-Time Spectra in the Literature761

Figure 11 shows the importance of performing a combined spatio-temporal decomposi-762

tion to access all information in the data. Our method is similar to frequency-wavenumber763

analysis performed within Fourier boxes by several recent studies: Arbic et al. (2014) were764

interested in mesoscale-driven intrinsic low-frequency variability, while Savage et al. (2017);765

Qiu et al. (2018); Torres et al. (2018) were primarily motivated by isolating the unbalanced766

motions from SSH-derived velocities. Our Figure 11 is analogous, for example, to Figure767

4 in Arbic et al. (2014) and to Figure 3 in Torres et al. (2018), although they analyzed768
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Figure 12. Evidence that the disagreement between AVISO and NEMO over time-scales

≲ 10 days is due to temporal averaging used in generating the gridded AVISO product. Here,

we show temporal spectra from AVISO (blue) and NEMO (red) in the North (solid lines) and

South (dashed lines), which disagree over τ ≲ 10 days as in Figure 11. However, the temporal

spectra from NEMO agree with those from AVISO after applying a 7-day temporal smoothing to

the original NEMO velocities (green). This result supports our hypothesis that AVISO is missing

dynamical information at time-scales less than 10 days due to temporal smoothing over all length-

scales.

higher frequencies than those that are available in the datasets that we study here. It is769

important to stress that high-frequency forcing was not employed in the production of the770

NEMO model data used in our work and high-frequency motions are not our current focus771

of interest, while the latter works employed models with simultaneous atmospheric and tidal772

forcing which entails the formation of an internal gravity wave continuum spectrum as first773

described in (Muller & Bony, 2015). However, as we mentioned in the introduction, the774

coarse-graining approach gives us access to the global energy budget and, moreover, frees us775

from the limitations of Fourier boxes and the required tapering and detrending. As such,776

the approach here complements previous frequency-wavenumber analysis by allowing us to777

access much larger length-scales.778

A common feature between our Figure 11 and those in previous studies is a slight779

elongation of isocontours along the diagonal from small to large spatio-temporal scales in780

the main panel of our Figure 11. Such elongation is most prominent in Figure 3 of Torres781

et al. (2018), who were probing scales < 100 km and from roughly 3 hours to 40 days. The782

diagonal elongation of isocontours represents a slight tendency for larger length-scales to783

have longer time-scales.784

However, we emphasize that unlike in Torres et al. (2018), such tendency is only slight785

over the larger scales we analyze here. In fact, an important take-away from Figure 11786

is that all length-scales evolve over a wide range of time-scales. Consider, for example,787

ℓ ≈ 500 km in the left column of Figure 11 at different τ values. We see that the isoline is788

almost vertical over τ ≈ 5 days to τ ≈ 50 days, indicating that flow at 500 km has an equal789

contribution from all these time-scales. We also see that both AVISO and NEMO isolines790

get flatter (stretched horizontally) as τ increases, such that at τ ≈ 300 days, there is almost791

equal energy at all scales between ≈ 100 km and ≈ 103 km.792
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5 Conclusions793

5.1 Summary of the main results794

In this paper we expanded on a recent calculation of the first global energy spectrum795

of the ocean’s surface geostrophic circulation (Storer et al., 2022) using the coarse-graining796

(CG) method. Our analysis here gives new insights into the oceanic circulation. The797

method is implemented in an open-source software, FlowSieve, that can be accessed at798

https://github.com/husseinaluie/FlowSieve.799

In this work, we compare quantitatively the CG and the spherical harmonics decom-800

positions. While the two methods yield qualitatively consistent domain-averaged results,801

spherical harmonics spectra are too noisy at gyre scales. More importantly, spherical har-802

monics are inherently global and cannot provide local information connecting scales with803

currents geographically.804

Similarly, we have estimated that the RMS velocity of the mesoscales is globally around805

15cm/s, but it increases up to 30–40 cm/s in the Kuroshio or the Gulf Stream and up to 16–806

28 cm/s in the ACC. We find notable hemispheric asymmetry in mesoscale energy-per-area,807

which is higher in the north due to continental boundaries.808

In this paper, we applied the coarse-graining approach to the Reynolds decomposed809

fields, namely the time-mean and the time-varying terms of the ocean surface currents.810

Results in this direction highlight that while the time-varying term is largely dominated811

by the mesoscales, (∼ 98% of total energy), the time-mean component also has a majority812

(up to 70%) contribution from the mesoscale circulation. This highlights the preponder-813

ance of ‘standing’ small-scale structures in the global ocean. It also shows that Reynolds814

decomposition is an effective method for disentangling eddy structures from the flow.815

By coarse-graining in both space and time, we have shown that every length-scale816

evolves over a wide range of time-scales. This result makes us appreciate the significance817

of temporally coherent (even stationary) forcing mechanisms acting on the mesoscales, such818

as bottom topography and continental boundaries. An important new contribution of this819

work is the spatio-temporal spectra of the geostrophic currents. These 2D spectra highlight820

how the mesoscales while peaking at ≈ (200 km, 2 weeks), are not only diffused over a range821
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of spatial scales, but also vary over a wide range of temporal scales. Further, we extract822

the dominant time-scale, τpeak for each filter scale in the mesoscale band, and find that823

NEMO predicts τ ∼ ℓ, which leads to a length scale-independent advective velocity of 0.15–824

0.2 cm/s. In contrast, AVISO demonstrates consistently longer dominant time-scales, and825

a shallower relationship of τ ∼ ℓ0.4, both of which are likely results of the time averaging826

needed to extract the AVISO velocity maps.827

5.2 Coarse-graining and the filtering spectrum828

The coupling between different length- and time-scales and between different geographic829

regions presents a major difficulty in understanding, modeling, and predicting oceanic cir-830

culation and mixing. Indeed, the oceanic kinetic energy budget is estimated to suffer from831

large uncertainties (Ferrari & Wunsch, 2009). A major reason behind these difficulties is832

a lack of scale-analysis methods that are appropriate in the global ocean. In this paper,833

we have demonstrated the versatility of coarse-graining in serving as a robust scale-analysis834

method for the global ocean circulation that complements existing methods. The approach835

is very general, allows for probing the dynamics simultaneously in scale and in space, and is836

not restricted by assumptions of homogeneity or isotropy commonly required for traditional837

methods such as Fourier or structure-function analysis. Coarse-graining includes wavelet838

analysis as a special case with the proper choice of convolution kernel (Sadek & Aluie,839

2018). Coarse-graining offers a way to probe and quantify the energy budget at different840

length-scales globally while maintaining local information about the heterogeneous oceanic841

regions. We view this work as an important step toward constructing a scale-aware global842

Lorenz Energy Cycle for the ocean circulation (Loose et al., 2023).843

Appendix A Deforming the kernel around land844

As outlined in section 3.1, filtering with a constant kernel while treating land as zero-845

velocity water and including land cells (“Fixed Kernel w/ Land”) in the final tally is guar-846

anteed to conserve 100% of the energy, while excluding land cells and integrating only over847

water cells (“Fixed Kernel w/o Land”) leads to a loss of about 11% of the total kinetic en-848

ergy at a filter scale of 2, 000 km (see Figure 2). This result follows since some of the kinetic849

energy ‘smears’ onto the land cells, which are then excluded from the spatial integrals.850

An alternative approach is to deform the kernel around land (“Deforming Kernel”) so851

that only water cells are incorporated in the filtering operation. This approach has the852

advantage of not needing to treat land as water, yet we have shown in Figure 2 that this853

choice still does not conserve 100% of the energy, sometimes even yielding larger values,854

albeit still within 1% error. Here, we explain why a deforming a kernel cannot be expected855

to yield 100% of the energy, unlike the “Fixed Kernel w/ Land.”856

To illustrate how the loss of energy conservation can happen with the Deforming Kernel857

method, consider a one-dimensional domain with five equally spaced points and a simple858

kernel that has a weight of 2 at the target point, 1 at neighbouring points, and 0 otherwise.859

If the domain were periodic then the filtering operation could be represented as the
matrix

G :=


1/2 1/4 0 0 1/4
1/4 1/2 1/4 0 0

0 1/4 1/2 1/4 0

0 0 1/4 1/2 1/4
1/4 0 0 1/4 1/2


such that KE = G ·KE, where KE is a column vector. Note that the sum of each row of G is860

1, a result of normalizing the kernel (assuming a grid spacing of 1 for simplicity). Domain in-861

tegrating in this scenario is simply left-multiplying by the row vector S := [1, 1, 1, 1, 1], which862
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is equivalent to taking a column-wise sum. Since S ·G = S, S ·KE = S ·G ·KE = S ·KE,863

and so the domain-integrated kinetic energy is conserved.864

However, if the domain is non-periodic (such as if the edges were ‘land’), then the
deforming kernel that excludes anything outside the boundaries would be

G :=


2/3 1/3 0 0 0
1/4 1/2 1/4 0 0

0 1/4 1/2 1/4 0

0 0 1/4 1/2 1/4

0 0 0 1/3 2/3



In this case, S · G = [11/12, 13/12, 1, 13/12, 11/13] ̸= S, and so in general S · KE ̸= S · KE.865

Moreover, there is no guarantee that S · KE ≤ S · KE, and so it may be that the total866

filtered kinetic energy exceeds the total unfiltered kinetic energy.867

As observed, in general, the error arising from deforming the kernel will be much smaller868

than that of treating land as zero-velocity water and only integrating over true water cells,869

especially for large filter kernels. However, again, it is worth recognizing that deforming870

the kernel does not guarantee energy conservation. To fully conserve energy and maintain871

commutativity with differentiation, we choose the “Fixed Kernel w/ Land” option, which872

treats land as zero-velocity water and includes land cells in spatial integrals to compute873

total energy.874

Appendix B Reynolds averaging spectra on AVISO dataset875

Fig B1 reports the energy spectra for the time-mean and time-varying Reynolds av-876

eraging components obtained from the 9-year AVISO dataset. Results are in very good877

agreement with the spectra obtained from NEMO dataset, presented in Fig. 8. The values878

obtained from the two datasets are nearly identical, with the AVISO dataset having less879

small-scale energy owing to having a lower resolution.880

Appendix C Geographic Definitions for Current Regions881

Equations (C2)–(C6) outline the geographic constraints used to define the various re-882

gions used in Table 2. In each definition, λ is longitude in degrees, ranging from −180 to883

180, and ϕ is latitude in degrees, ranging from −90 to 90. Additionally, any overlap with884

land is removed from the region definition, so that only water cells are included. The region885

masks are presented in Figure C1.886

Energy Masking Following Rai et al. (2021), subsets of the regions defined in equa-
tions (C2)–(C6) are produced by further restricting to areas with sufficiently high “masking
KE”. For these purposes, a combination of time-mean and time-varying KE is used such
that

Masking KE =
1

2
ρ0 ⟨u⟩2 +

1

2
ρ0

〈
(u− ⟨u⟩)2

〉
. (C1)

Taking ρ0 = 1025, a cut-off of Masking KE > 50 is applied to the Gulf Stream and Kuroshio,887

and Masking KE > 30 to the ACC. The KE-masked regions are illustrated with dots in888

Figure C1.889
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Figure B1. Power Spectra Filtering spectra obtained following eq. (12) for the full (solid

lines), time mean (dashed times), and time-varying (dotted liens) ssh-derived geostrophic velocity

from the AVISO dataset. Note that both top and bottom panels show the same data, but using

lin-log and log-log scales respectively.

North of Tropics : ϕ > 15◦ (C2)

Kuroshio : {120◦ < λ < 170◦}
and {17◦ < ϕ < 45◦}
and {ϕ ≤ (3/4)λ− 60◦}
and {not (ϕ < 25◦ and λ ≥ 140◦)}
and {not (λ ≤ 140◦ and ϕ < (2/5)λ− 31◦)} (C3)

Gulf Stream : {−80.75◦ < λ < −35◦} and {|ϕ− (2/5)λ− 62◦| ≤ 6◦} (C4)

South of Tropics : ϕ < −15◦ (C5)

ACC : {−70◦ < ϕ < −33◦}
and

{
not (λ < −72◦) and ϕ > −(5/108)λ− 160/3

◦}
and

{
not (λ > 20◦) and ϕ > −(3/40)λ− 63/2

◦}
(C6)

Open Research890

This study has been conducted using E.U. Copernicus Marine Ser-891

vice Information. The product identifier of the AVISO dataset used in892

this work is “SEALEVEL GLO PHY L4 REP OBSERVATIONS 008 047”, and893

can be downloaded at https://marine.copernicus.eu/services-portfolio/894

access-to-products/. The product identifier of the NEMO dataset is895

“GLOBAL ANALYSISFORECAST PHY CPL 001 015”, and is available at896

https://marine.copernicus.eu/services-portfolio/access-to-products/.897
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Figure C1. Illustration of the geographic region definitions (equations (C2)–(C6)), plotted over

a sample velocity field for reference. Note that ‘North of Tropics’ and ‘South of Tropics’ are not

included, but are simply the portions North and South of ‘Tropics’. For ‘Kuroshio’, ‘Gulf Stream’,

and ‘ACC’, the smaller contoured region with dots shows the region definition with an additional

KE mask.

The source code for the coarse-graining software can be freely downloaded from898

https://github.com/husseinaluie/FlowSieve .899
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