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Key Points:8

• Crevasses on the Greenland Ice Sheet are observed to be water-filled when the mean9

normal stress is compressive and empty when extensional.10

• Water-filled crevasses deliver water to the bed via episodic hydrofracture. Empty11

crevasses discharge water englacially and inefficiently.12

• These two states, controlled by the surface stress regime, have distinct dynamic13

and thermal influences on ice sheets.14
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Abstract15

Surface crevasses on the Greenland Ice Sheet deliver significant volumes of meltwater to16

the englacial and subglacial environment, but the topic has received little attention com-17

pared to supraglacial lake and moulin drainage. Here, we explore relationships between18

crevasse hydrology and the surface stress regime at a fast-flowing, marine-terminating19

sector of the Greenland ice sheet. Regional-scale observations of surface water, crevasses,20

and stress were made across a 3,000 km2 region using satellite data. Contemporaneous21

high spatio-temporal resolution observations were obtained from uncrewed aerial vehi-22

cle surveys on Store Glacier using a supervised classifier and feature-tracked velocities.23

While previous studies have identified crevasses using von Mises stress thresholds, we find24

these are insufficient for predicting crevasse hydrology. We found that dry crevasse fields,25

where no ponded meltwater was observed through the entire melt season, were more likely26

to exist in tensile mean stress regimes, which we interpret to be due to meltwater drain-27

ing continuously into the englacial system. Conversely, wet crevasse fields, hosting ponded28

meltwater, were more likely to exist in compressive mean stress regimes, which we in-29

terpret to be a result of closed englacial conduits. We show that these ponded crevasses30

drain through episodic rapid drainage events (i.e. hydrofracture). Mean stress regime31

can therefore inform spatially heterogeneous styles of meltwater delivery through crevasses32

to the bed of ice sheets, with distinct consequences for basal processes such as subglacial33

drainage efficiency and cryo-hydrologic warming. Thus, we recommend simple guidelines34

for improving the representation of crevasse hydrology in regional hydrological models.35

1 Introduction36

Surface crevasses are open fractures in glaciers and ice sheets, ranging in width from37

millimetres to tens of metres. As a visible expression of glacier stress regimes, the size38

and orientation of crevasses are closely linked to glacier dynamics, associated with ex-39

tensional flow and deformation of ice through compression or shear along margins (Colgan40

et al., 2016). Motivations for detecting crevasses and understanding their formation in-41

clude morphological insights into glacier flow (E. Phillips et al., 2013; Dell et al., 2019),42

the development of fracturing criteria for supraglacial lake drainage (Das et al., 2008;43

Arnold et al., 2014) and ice calving (Benn et al., 2017; Todd et al., 2019), and quanti-44

fying the dynamic influence of water transmitted to the bed of glaciers (McGrath et al.,45

2011; Koziol & Arnold, 2018).46

In regions of high advection, such as fast-flowing outlet glaciers of the Greenland47

Ice Sheet (GrIS), crevasses form in upstream zones where extensional tensile stress regimes48

favour crevasse opening, and then advect downstream into regions where compressive49

stress regimes result in crevasse closure, forming healed crevasses. The fracture process50

is generally understood in terms of simple 1-D numerical models, such as the ‘zero stress’51

model in which crevasses penetrate to the depth at which ice creep closure (due to ice52

overburden pressure) equals tensile stress (Nye, 1957), or the linear elastic fracture me-53

chanics (LEFM) approach, which further accounts for factors such as stress concentra-54

tions at fracture tips, fracture toughness, geometry, and water level (van der Veen, 1998;55

Krawczynski et al., 2009). There is a growing recognition of the need to understand more56

complex multidimensional and mixed-mode crevasse formation (Colgan et al., 2016), but57

transferring mechanical understanding to higher dimensions is nontrivial (van der Veen,58

1999; Colgan et al., 2016). As such, many studies that predict crevasse presence in real-59

world scenarios use simpler methods such as basic thresholds of first principal strain or60

von Mises Stress (Poinar et al., 2015; Clason et al., 2015; Koziol et al., 2017; Williamson,61

Willis, et al., 2018), which have been identified from observational studies to be suitable62

predictors of crevasse presence (Vaughan, 1993; Hambrey & Müller, 1978; Harper et al.,63

1998; van der Veen, 1998).64
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Crevassing is an important mechanism to transfer water to the bed of the GrIS and65

water itself drives the propagation of crevasses via hydrofracture (Weertman, 1973; R. B. Al-66

ley et al., 2005; van der Veen, 2007; Krawczynski et al., 2009). Once full-depth hydrofrac-67

ture has occurred, water flow forms an efficient route for continued meltwater delivery68

to the bed in the form of moulins. To date, this meltwater pathway to the bed has largely69

been focussed on supraglacial lake drainage (Banwell et al., 2016; Hoffman et al., 2018;70

Christoffersen et al., 2018). Crevasse hydrology has been included in only a few recent71

numerical modelling studies (e.g. Clason et al., 2015; Koziol et al., 2017; Koziol & Arnold,72

2018)), but is understood to capture as much as half of seasonal surface runoff (McGrath73

et al., 2011; Koziol et al., 2017). Despite the apparent importance of crevasse hydrology,74

there are few studies of the transfer of water to the bed of ice masses through crevasse75

fields, and the limited number of studies that do exist describe variable - and often con-76

tradictory - processes. Some studies observe discrete drainage of crevasses (Lampkin et77

al., 2013; Cavanagh et al., 2017), which appear to result from episodic full-depth hydrofrac-78

ture and display similarities to supraglacial lake drainages. In contrast, other studies con-79

ceptualise crevasse fields as continuously, but inefficiently, transmitting a low water flux80

to the subglacial system without the need for full-depth hydrofracture (Colgan et al., 2011;81

McGrath et al., 2011). However, no studies have attempted to account for this spectrum82

of observations and the assumptions surrounding crevasse hydrology, nor attempted to83

explain where and why these types of drainage occur. Given this lack of information, pre-84

vious modelling studies have assumed that crevasse drainage occurs in a uniform man-85

ner, and use existing thresholds intended to predict crevasse presence to instead predict86

crevasse hydrology (Clason et al., 2015; Everett et al., 2016; Koziol et al., 2017). To date,87

no observational studies exist to guide such choices.88

This study aims to better understand crevasse hydrological behaviour by relating89

the presence of crevasses and water to stress regimes in the ablation zone of the GrIS90

at two different spatial scales. The first utilises large-scale, satellite-derived data to ex-91

amine crevasses in a ∼3000 km2 sector of west Greenland, including five major marine-92

terminating outlet glaciers . The second uses high-resolution photogrammetric datasets93

collected by uncrewed aerial vehicles (UAVs) to closely examine crevasses in a 7 km2 area94

of fast glacier flow within this sector, allowing us to validate large-scale data and record95

processes occurring at the scale of individual crevasses. Our goal is to understand how96

glacier dynamics relate to the spectrum of observed crevasse hydrology, and thereby de-97

velop guidelines to allow hydrological models to account for the heterogeneity of crevasse98

hydrological behaviour.99

2 Methods100

2.1 Study area101

We assess satellite-derived data over a ∼3000 km2 sector of the western GrIS (Fig-102

ure 1), extending ∼90 km from Sermeq Kujalleq (Danish/English: Store Glacier; 70.4◦N103

50.6◦W) in the south to Perlerfiup Sermia (71.0◦N, -50.9◦W) in the north. Within this104

large-scale region of interest (the ‘satellite ROI’), we use UAV surveys and Structure-105

from-Motion with Multi-View Stereo (SfM-MVS) photogrammetry to assess, at high res-106

olution, a crevasse field in the Store Glacier drainage basin, 25 km from the calving front107

(the ‘UAV ROI’). The UAV ROI is 1.5 km wide and 5 km long, and was chosen based108

on its coverage of an initiating crevasse field, ranging from areas with no visible crevasses109

to areas with crevasses greater than 50 m wide.110
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Figure 1. Map of study region. Small red box outline indicates the extent of UAV surveys.
Large red box outlines the extent of satellite image analysis. Marine-terminating outlet glaciers
are labelled, with the Danish/English name in brackets where applicable. Surface elevation shown
in colour is from ArcticDEM v3 (Porter et al., 2018).

2.2 Satellite data111

2.2.1 Crevasse classification112

A binary crevasse mask (Figure 2) of the satellite ROI was produced from Arctic-113

DEM v3 mosaic data at 2 m resolution (Porter et al., 2018). Crevasse identification from114

digital elevation models can be approached in a variety of ways (Florinsky & Bliakharskii,115

2019), but we use a simple method identifying crevasses from the residuals between the116

original and a smoothed elevation model. As a result, we limit our analysis to the outer117

40 km of the ablation zone (Figure 1), where snow-filled crevasses are rare, in order to118

reduce the number of false negatives in the final dataset. We performed these operations119

in Google Earth Engine (GEE; Gorelick et al., 2017), which allows for efficient compu-120

tation and rapid evaluation over a large study area. We first cropped the ArcticDEM121

to the GIMP ice mask (Howat et al., 2014), before smoothing the elevation model by con-122

volving the raster with a circular kernel of 50 m radius. Residuals greater than 1 m be-123

tween the smoothed and raw elevation values were identified as crevasses. To compare124

with stress estimates, the 2 m dataset was aggregated into grid cells to match the res-125

olution (200 m) and projection (NSIDC sea ice polar stereographic north) of the veloc-126

ity grid. Aggregated values ranged from 0–1, representing the fraction of grid cell area127

classified as crevasses.128

Because relict crevasses can advect through a variety of stress regimes (Mottram129

& Benn, 2009), we further identified crevasse initiation zones. We manually identified130

the upstream boundary between crevasse fields and bare ice from the 2 m crevasse dataset.131

Then, we used a 200 m buffer to identify pixels in the 200 m dataset that should be clas-132

sified as being in crevasse initiation zones.133
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Figure 2. Flow diagram visualising the production of crevasse fraction data from ArcticDEM
(left) and water fraction data from Sentinel-2 optical imagery (right). Red box outlined in maps
marks the extent of the UAV ROI.
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2.2.2 Water classification134

We produced a binary map of water presence across the satellite ROI through the135

2018 melt season (Figure 2) using Sentinel-2 imagery in GEE. The ablation season of136

2018 was chosen for analysis to match the timing of the UAV surveys on Store Glacier.137

We first identified all Sentinel-2 scenes with < 40% cloud cover and < 70◦solar zenith138

angle between May-October 2018, selecting a total of 360 images. We clipped the im-139

ages to the GIMP ice mask (Howat et al., 2014) and converted digital number values to140

top of atmosphere (TOA) reflectance. TOA reflectance values have been shown to be141

suitable for identifying surface water in Greenland with Landsat 8 OLI imagery (Pope,142

2016), and have been used for surface water classification in Sentinel-2 data (Williamson,143

Banwell, et al., 2018). We then calculate the normalised difference water index (NDWI)144

from bands 2 (blue) and 4 (red) for all images: following Williamson, Banwell, et al. (2018)145

for the Store Glacier region, we use an NDWI threshold of 0.25 to create binary water146

classification maps for each Sentinel-2 image. In order to avoid false positive identifica-147

tion of shaded regions, we mask areas in topographic shadow with the GEE hillShadow148

function, using the ArcticDEM for topography and the solar zenith angle from Sentinel-149

2 image metadata. Finally, we sum the image stack to count the number of times through150

the 2018 melt season that a pixel was identified as water. In order to reduce the chance151

of false positive classification (e.g. cloud shadow, ephemeral slush zones at the beginning152

of the melt season) we classify as water any pixel that was identified as water in ≥ 2 im-153

ages through the melt season. As for crevasse maps, we aggregate this data onto the ve-154

locity grid with a unit of fractional coverage of water within each grid cell.155

2.2.3 Stress classification156

Although some previous studies have used strain rate thresholds to predict crevasse157

location (Poinar et al., 2015; Williamson, Willis, et al., 2018), we follow the recommen-158

dations of Colgan et al. (2016) to use estimated stress thresholds as a robust and gen-159

eralisable criterion across glaciers of widely varying thermal regimes. Studies exploring160

relationships between crevassing, hydrology, and surface dynamics have used a multitude161

of 2-D stress measures. In order to test this variation, we calculate: (i) the first and sec-162

ond principal stresses (σ1 and σ2 as applied by Poinar et al. (2015) and Williamson, Willis,163

et al. (2018); (ii) the longitudinal stress (σl; as used by Clason et al. 2015); and (iii) the164

von Mises yield stress (σv; as used by Clason et al., 2015; Koziol et al., 2017; Everett et165

al., 2016). We were also motivated to test further measures of stress, as σ1, σ2, and σl166

consider stress in only one axis, whilst σv considers only the deviatoric component of the167

stress tensor. Hence, we calculated the mean stress (σm, also referred to as the hydro-168

static stress), and the signed von Mises Stress (σsv). Both of these measures account for169

the normal components of the stress tensor.170

Stresses were estimated using surface strain derived from MEaSUREs (Making Earth171

System Data Records for Use in Research Environments) gridded GrIS velocity data for172

2018 (Joughin et al., 2010), with Glen’s flow law as the constitutive equation following173

Clason et al. (2015). We first calculated the surface strain rate tensor ε̇ij from the hor-174

izontal components of velocity u and v (in grid directions x and y):175

ε̇ij =

[
δu
δx

1
2 (
δv
δx + δu

δy )
1
2 (
δv
δx + δu

δy )
δv
δy

]
=

[
ε̇x ε̇xy
ε̇xy ε̇y

]
(1)176

We approximated the derivatives using the finite difference of the velocity field (K. E. Al-177

ley et al., 2018). We calculated longitudinal strain rate (ε̇l) by resolving strain-rate com-178

ponents relative to the local flow direction according to Bindschadler et al. (1996):179

ε̇l = ε̇x cos
2 α+ 2ε̇xy sinα+ ε̇y sin

2 α (2)180
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where α is the flow angle defined anti-clockwise from the x axis. Stresses approx-181

imated from strain rates following Nye (1957):182

σij = Bε̇(1−n)/ne ε̇ij (3)183

Where ε̇e is effective strain, calculated following Cuffey and Paterson (2010):184

ε̇e =

√
1

2
[ε̇xx + ε̇yy] + ε̇xy (4)185

and n is the flow law exponent with value 3. B is a viscosity parameter, which we186

follow Clason et al. (2015) in assigning a value of 324 kPa a1/3 (based on an assumed187

ice temperature of -5 ◦C).188

The first principal stress (σ1) was calculated as the highest eigenvalue of the stress189

tensor σij , and second principal stress (σ2) as the lowest eigenvalue (Jouvet et al., 2017).190

We calculate the von Mises yield criterion (σv) according to Vaughan (1993):191

σv =
√
(σ1σ1) + (σ2σ2)− (σ1σ2) (5)192

We calculate the mean stress (σm) as follows:193

σm =
1

2
[σ1 + σ2] (6)194

Finally, the signed von Mises stress (σsv) is a simple modification of the von Mises195

stress, calculated as the magnitude of σv with the sign of σm:196

σsv = sgn(σM ) · σV (7)197

2.3 UAV data198

2.3.1 UAV photogrammetry and velocity199

We acquired aerial imagery across a 13-day period in July 2018 (Table S1) utilis-200

ing a custom-built, fixed-wing UAV with 2.1 m wing span. Imagery was collected using201

a Sony alpha6000 24 MP camera with a fixed 16-mm lens, processed using Structure-202

from-Motion with Multi-View Stereo (SfM-MVS) photogrammetry, and used to derive203

velocity fields within the UAV ROI as described by Chudley, Christoffersen, Doyle, Abel-204

lan, and Snooke (2019). In brief, photogrammetry was performed using AgiSoft Metashape205

v.1.4.3 software, and geolocated by using an on-board L1 carrier-phase GPS unit (post-206

processed against an on-ice ground station) to locate the position of aerial photos. Out-207

puts from the photogrammetric process were 0.15 m resolution orthophotos and 0.2 m208

DEMs. Horizontal velocity fields were derived by feature-tracking topographic hillshades209

using OpenPIV (Taylor et al., 2010). Stress fields were derived as outlined in Section 2.2.3,210

with a 5 x 5 pixel median-filter on the input velocity fields introduced as an additional211

preprocessing step to reduce noise.212

2.3.2 Surface classification213

To date, UAV-based crevasse detection has been based on DEM-based topographic214

analysis (Ryan et al., 2015; Florinsky & Bliakharskii, 2019). Whilst these methods have215

been shown to be useful from a hazard assessment perspective (Florinsky & Bliakharskii,216
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Figure 3. Flowchart of method used to classify UAV imagery. Variables appended with an
asterisk were calculated from input data within GEE, while those appended with a cross were
calculated separately in Matlab. Inset shows examples of OBIA input data for regions domi-
nated by small (a-f) and (g-l) large crevasses. (a and g) RGB orthophotos. (b and h) Brightness.
(c and i) Standard deviation of RGB values. (d and j) NDWI. (e and k) Slope, with hillshade
overlaid. (f and l) Black-top-hat filtered DEM, with hillshade overlaid.
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2019), DEM-based methods alone cannot be used to identify features such as water-filled217

or healed crevasses, and crevasse detection is sensitive to threshold choice and ultimately218

the resolution of the DEM (Jones et al., 2018; Florinsky & Bliakharskii, 2019). To take219

advantage of the high spatial resolution and multi-dimensional outputs of UAV surveys,220

we used a combination of object-based image analysis (OBIA) and supervised classifi-221

cation. OBIA is based not on the numerical characteristics of individual pixels but of222

objects (i.e. groups of meaningfully similar pixels segmented based upon spectral homo-223

geneity) (Blaschke, 2010)). This has been used successfully in a glaciological context by224

Kraaijenbrink et al. (2016, 2018) for mapping cliff/pond systems and emissivity on a debris-225

covered glacier. We again used GEE to perform the full segmentation and supervised226

classification workflow (Figure 3).227

We identified a number of variables that could be used as inputs for a supervised228

classification algorithm to identify crevasse field surface features. This included: the red,229

blue, and green values of the orthophoto (Figure 3a;g); the ‘brightness’ (mean RGB val-230

ues; Fig 3b;h) as per Kraaijenbrink et al. (2016); the standard deviation of the RGB val-231

ues, which appeared to highlight water, small crevasses, and healed crevasses (Figure 3c;i);232

the NDWI, from blue and red pixel values (Figure 3d;j); the DEM slope, which effectively233

highlighted small crevasses on the order of a few metres (Figure 3e;k); and DEM values234

black-top-hat filtered with a 30 m structuring element (Kodde et al., 2007), which were235

useful in identifying large crevasses on the order of tens of metres (Figure 3f;l). A black236

top-hat filter morphologically closes the glacier surface at scales smaller than the struc-237

turing element, before subtracting the closed surface from the original data. This pro-238

cess was performed in Matlab prior to ingestion into GEE.239

We performed image segmentation using Simple Non-Iterative Clustering (SNIC)240

(Achanta & Susstrunk, 2017), a computationally efficient implementation of superpixel-241

based clustering. Rather than segmenting an image into semantically-meaningful objects,242

superpixel-based segmentation simplifies the image into small, uniform, and compact clus-243

ters of similar pixels (‘superpixels’), with a focus on boundary adherence. The variables244

described above are used as the input to the segmentation algorithm. We manually se-245

lected a seed spacing of 15 pixels (2.25 m) and a high compactness factor of 200. This246

resulted in superpixels small enough to display strong boundary adherence to small and247

healed crevasses at the scale of metres, whilst still clearly delineating the margins of larger248

features such as water bodies. As an input to the supervised classification, we calculated249

the average and standard deviation of values in each superpixel from the variables de-250

scribed above, as well as the perimeter-to-area ratio of the superpixel, and normalised251

the results.252

We adopted a supervised classification approach to surface classification (Kraaijenbrink253

et al., 2016, 2018; Ryan et al., 2018) by training a random forest classifier in GEE. In254

order to reduce the amount of redundant information used to train the random forest255

classifier, we performed a non-parametric mutual information (MI) test on our training256

data as a proxy for the predictive power of each input variable. Rejecting input variables257

beneath the median MI value (Figure S1) did not notably reduce the accuracy of the out-258

put data (Figure S2). Therefore, we used only the nine most significant variables as in-259

put to the random forest classifier. We constructed training datasets of 90 points each260

for six distinct surface types: bare ice, snow, healed crevasses, ‘small’ crevasses, ‘large’261

crevasses, and water. We seperated ‘small’ and ‘large’ crevasses (those with a diameter262

of metres vs. tens of metres) into two training datasets as they displayed distinctly dif-263

ferent values for properties such as brightness, slope, and the top hat filtered DEM (Fig-264

ure 3). We trained the random forest classifier on two-thirds of the dataset (60 points265

per classification) and retained one-third (30 points per classification) for validation. Out-266

put classification performed well visually (Figure S3) and validation data showed that267

a > 95% accuracy was observed for all surface types (Figure S2), apart from for snow268

and bare ice, which for our purposes was not important. Although we identified six sur-269

–9–



manuscript submitted to JGR: Earth Surface

face types, for this analysis we were only interested in three distinctions: crevasses (com-270

bining ‘small’ and ‘large’ crevasses), ice (combining bare ice, snow, and healed crevasses),271

and water.272

3 Results273

3.1 Satellite results274

From ArcticDEM elevation, Sentinel-2 optical imagery, and MEaSUREs surface ve-275

locity (Figure 4a), we created maps of crevasse fraction values (Figure 4b), water frac-276

tion values (Figure 4c), and stress estimates (Figure 4d–i) respectively.277

Despite an intuitive relationship between first principal stress (σ1) (Figure 4d; 5a)278

and crevasse formation, the measure is not a good predictor of crevasse state, i.e. whether279

a crevasse is initiating, dry, or wet. An analysis of the distribution of stresses shows that280

although all crevasse types occur at higher values of σ1 than non-crevassed regions (Fig-281

ure 6a), the three states display similar median values (wet 47 kPa; dry 48 kP; initiat-282

ing 50 kPa), suggesting that σ1 alone is not a strong control on crevasse hydrology. In283

contrast, second principal stress (σ2; Figure 4e) displays a clearer relationship with crevasse284

state, with crevasses initiating in areas of highest σ2 and ponding in areas of lowest σ2285

(Figure 5b). Initiating crevasses have the highest median σ2 (-13 kPa) and are the most286

common crevasse state in regions of positive σ2 (Figure 6b). In contrast, wet crevasses287

have the lowest median σ2 (-58 kPa), and dry crevasses are intermediate between the two288

(-38 kPa). Longitudinal stress (σl; Figure 4f), is more successful at distinguishing crevasse289

state (Fig 5C; median wet 6 kPa; dry 18 kPa; initiating 33 kPa) than σ1, but not as suc-290

cessful as σ2 as it displays a narrower spread of median values, and dry and wet crevasse291

states display very similar distributions (Figure 4c). The effective performance of σ2, and292

less effective performance of σ1 and σl, suggest that structural controls on crevasse hy-293

drology are distinct from those traditionally understood to control crevasse formation.294

Stress criteria that encompass both σ1 and σ2 provide further insights into crevasse295

hydrology. Von Mises (σv; Figure 4g; 5d) has different median values for crevasse states296

(wet 88 kPa, dry 67 kPa, initiating 57 kPa), but with a counter-intuitive relationship given297

that the highest stresses appear to be the most likely to be water-filled. Additionally,298

dry and wet crevasses display a strong positive skew (Figure 6d), making it difficult to299

differentiate the two based on a single threshold. In contrast, σm values (Figure 4h; 5e)300

capture a distribution for each of the crevasse states: crevasse initiation is most likely301

to occur at the highest σm values (median +20 kPa), whilst water-filled crevasses are the302

only surface type to occur with a median negative σm (-4 kPa). Qualitative assessment303

(Figure 4e) shows that saturated crevasse zones align with regions of negative σm and304

crevasse initiation zones align with strongly positive σm. However, σm is still not con-305

venient for predicting crevasse state as the distributions of crevasse states display high306

overlap (Figure 6e) such that simple thresholding based on σm alone would not delin-307

eate crevasse state successfully.308

In order to combine the relative strengths of σv and σm approaches, we use σsv which309

is derived as the magnitude of σv but with the sign of σm (Figure 4i). This measure al-310

lows for a more refined differentiation for whether a stress regime is compressive or ex-311

tensional. Crevasse initiation zones display a particularly narrow distribution (Figure312

6f) almost exclusively in positive σsv regimes (median +57 kPa). Wet and dry crevasses313

can also be differentiated, even though these data exhibit a similarly skewed distribu-314

tion in σv. When σsv is highly compressional (i.e., less than -50 kPa), wet crevasses are315

more likely than dry crevasses; above this value, the probability of crevasse state is ap-316

proximately equal. Conversely, dry crevasses are more likely than wet crevasses to ex-317

ist in extensional σsv regimes from low to high stress (up to 120 kPa). In very high pos-318
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Figure 4. (a) Map of MEaSUREs 2018 velocity data over the study region; (b) observed 2018
water fraction; (c) observed crevasse coverage, with manually identified crevasse initiation zones
marked in red; (d) first principal stress, (e) second principal stress, (f) longitudinal stress; (g)
von Mises Stress, (h) mean stress, and (i) signed von Mises Stress. Black box in (b) shows the
location of Figure 5.
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Figure 5. Close-up of stress fields overlaid with observed crevasses (left) and water (right):
(a) first principal stress, (b) second principal stress, (c) longitudinal stress; (d) von Mises Stress,
(e) mean stress, and (f) signed von Mises Stress.
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Figure 6. Kernel density estimate distribution plots of different surface classifications for (a)
first principal stress, (b) second principal stress, (c) longitudinal stress, (d) von Mises stress, (e)
mean stress, and (f) signed von Mises Stress. Median values for different surface classifications
are shown as dashed vertical lines. A crevassed grid cell is defined by > 1% crevasse fraction, and
a wet crevassed grid cell is a crevassed grid cell with any water observed (> 0%).
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Flow	Direction

(b)
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Figure 7. Output of (a) UAV random forest classification, with insets (shaded in red and
blue) showing (i) an area with large (50-60 m) crevasses, and (ii) small (2-3 m) crevasses.
Satellite-derived data, shown for comparison, include (b) ArcticDEM-derived crevasse classifi-
cation, and (c) Sentinel-2 derived water classification. Black boxes in (a) mark extents of Figure
9.

itive σsv regimes (greater than 120 kPa), wet crevasses are once again more likely to ex-319

ist.320

3.2 UAV results321

3.2.1 Analysis and comparison to satellite data322

UAV surface classification (Figure 7a), based on high resolution orthophotos (0.15323

m) and DEMs (0.2 m), was able to differentiate crevasses, water, and ice surfaces to a324

level of accuracy exceeding 90% (Figure S2). This suggests that the UAV SfM-MVS is325

highly suitable as ground verification for the coarser satellite-derived data, especially given326

the logistical difficulties of ground-based verification within hazardous crevasse fields. Com-327

parison with satellite-derived crevasse classification (Figure 7b) and water classification328

(Figure 7c) shows that the datasets agree closely in terms of the distribution of surface329

features. Manual comparison between the two datasets suggests the cutoff width below330

which crevasses are unable to be identified from ArcticDEM v3 data is approximately331

10 m , corresponding to 5 pixels. Although this means the satellite data do not capture332

the smallest crevasse fields, the resolvable size of a crevasse is approximately equal to the333

resolution of the Sentinel-2 bands used for NDWI calculation (10 m), which gives con-334

fidence that the two datasets are comparable. While our ArcticDEM mosaic is derived335

from multitemporal data (individual tiles across the study area range from 2009-2017),336

crevasse sizes and patterning observed in 2018 UAV surveys were consistent with the 2009-337

2017 ArcticDEM (Figure 7a cf. 6b). This suggests that, even though individual crevasses338
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Figure 8. UAV-derived stress outputs for mean stress (left column) and signed von Mises
stress (right column). (a–b) shows raw output, (c–d) shows 200 m mean average, and (e–f) shows
MEaSUREs-derived output for comparison. Triangles in (c–d) show the locations of crevasse
systems that were observed to fill (blue) or drain (red) across the UAV survey period.

advect, interannual variation in crevasse fields is relatively small, and that the assump-339

tion that 2009-2017 crevasse distribution can be compared to 2018 surface water distri-340

bution is valid. Sentinel-2 water and UAV-derived water also agree (Figure 7a cf. 6c).341

Individual water-filled crevasses are able to be co-located between the satellite and UAV342

datasets. Sentinel-2 data additionally identifies additional crevasses that are water-filled343

across the span of the season yet not filled on the date of the UAV survey.344

Stress components evaluated from UAV velocity data, including σm (Figure 8a) and345

σsv (Figure 8b), reveal a highly heterogeneous stress regime, where changes can be seen346

even between neighbouring crevasses. However, in general, an extensional regime dom-347

inates in the northeast (right-hand side of Figures 6 and 7) and a compressive regime348

in the southwest. As with satellite-derived data, there are clear relationships between349

the nature of the positive/negative mean stress regime and that of crevasse initiation and350

water distribution. Crevasses tend to initiate - or at least become identifiable in the decime-351

tre resolution data - in the upstream kilometre of the study zone (Figure 7a). In the next352

kilometre down-glacier, crevasses open from < 3 m wide to full size (∼10–60 m wide)353

by the centre of the study zone (Figure 7a insets). Crevasse initiation and opening is co-354

incident with a zone of highly positive mean stress, consistent with satellite-derived ob-355

servations (Section 3.1). In the southwestern sector of the study zone, crevasse size re-356

mains relatively stable, but crevasses transition from dry to water-filled in the down-glacier357

direction (Figure 7a). This region of water-filled crevasses is seen where the mean stress358

regime is negative (Figure 8a–b), which is again consistent with satellite datasets.359

The stress regime as estimated from UAV-derived velocity fields is highly variable360

on the scale of tens of metres, making it difficult to compare to the stress regime esti-361

mated from MEaSUREs data. To address this, we apply a 31 pixel (198.4 m) mean fil-362

ter across the UAV stress fields (Figure 8c–d) to approximate the 200 m resolution of363

the MEaSUREs stress field (Figure 8e–f). The results show that the UAV and MEaSUREs364

data are in close general agreement, despite the different spatial resolution (6.4 m vs 200365
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Figure 9. Examples of crevasse drainage when (a–b) a draining crevasse is supraglacially
and/or englacially connected to adjacent crevasses and (c–d) when no connections are present.
Interpretations are marked where crevasses underwent direct drainage (D), drained via
supraglacial connection to a draining crevasse (S), drained via englacial connection to a drain-
ing crevasse (E), or remained unconnected to a draining system (U).

m) and timescales over which velocity was captured (10 days vs 1 year composite). This366

reveals that crevasse fields exhibit high local variability in surface stresses (on the scale367

of 10s of metres) that cannot be captured by satellite observations. For instance, in the368

southwestern sector of the study zone, there are many localised areas of positive stress,369

despite the fact that MEaSUREs data is consistently negative. This suggests that one370

source of uncertainty in the satellite analysis is the degree to which localised variabil-371

ity occurs within its 200 m grid cells.372

3.2.2 Water routing in ponded crevasse fields373

Satellite-derived analysis (Section 3.1) identified regions of wet crevasses in com-374

pressive mean stress regimes, but did not provide information as to whether or how wa-375

ter is routed to the bed in these areas. Over the 13-day period in July 2018 over which376

repeat UAV surveys were undertaken (Table S1), three crevasse systems in the UAV ROI377

were observed to drain, and six underwent significant filling. The locations of these events378

are correlated with mean stress regime (Figure 8c–d). For instance, crevasse water fill-379

ing was observed in a region that had recently advected from a net extensional into a380

net compressive zone. Elsewhere, crevasse drainage was observed in a region that had381

recently advected from a net compressive area (where σm < 0) into a net extensional area382

(σm > 0), and also in locations where the 200 m-resolution stresses were observed to be383

negative but local stresses displayed high heterogeneity (cf. Figure 8a–b; c–d). This sug-384

gests that, in general, crevasses fill with water when advecting into a negative mean stress385

regime, and display a higher propensity to drain when advecting into a region of pos-386

itive mean stresses.387

Closer analysis of these draining crevasses revealed two key observations regard-388

ing water routing. First, there was little evidence to suggest that surface water was routed389
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for significant distances between crevasses in crevasse fields. Where supraglacial streams390

existed, connecting larger crevasses, they were easily identified in the imagery (Figure391

S4a), but this is not common across the survey zone. In one case, a crevasse system that392

was overflowing with water (Figure 9a) formed local supraglacial networks, and upon one393

crevasse draining, water levels across the entire network dropped (Figure 9b). This event394

appeared to result in the formation of incised channels in the days following drainage395

(Figure S4b–c). It was less common for adjacent crevasses to drain when no surface rout-396

ing was visible (Figure 9b), and indeed individual crevasses were able to drain without397

affecting water levels in the surrounding crevasses at all (Figure 9c–d). This suggests that398

supraglacial and englacial hydrological connections between crevasses may be rare. Sec-399

ond, crevasse drainages appear to be rapid. Of the three drainages we identified, two rep-400

resent crevasses that were stable or filling in sequential imagery prior to drainage, be-401

fore losing a majority of water between two adjacent images (e.g. Figure 9c–d). One crevasse402

system lost a substantial volume of water in less than 24 hours (Figure 9a–b), and wa-403

ter levels continued to drop for the rest of the survey period (Figure S4b–c). This sug-404

gests that either a moulin had formed, and that water therefore continued to drain into405

the subglacial system, or that small open fractures continued to transfer water inefficiently406

into the englacial system.407

4 Discussion408

4.1 Relationships between surface stress and observed crevasse hydrol-409

ogy410

Our findings show that stress measures previously used to predict water drainage411

through crevasses - including the first principal stress (Poinar et al., 2015; Williamson,412

Willis, et al., 2018), longitudinal stress (Clason et al., 2015), and von Mises stress (Koziol413

et al., 2017; Everett et al., 2016) – are not good at estimating the hydrological state of414

crevasses. Longitudinal stress (σl) is effective at predicting where crevasses initiate, which415

aligns with the assertion that crevasses can be considered as Mode I fractures that open416

up perpendicular to the direction of flow when stress in this direction exceeds a certain417

threshold. However, the fact that both first principal stress (σ1) and σl are poor at pre-418

dicting crevasse hydrology, whilst second principal stress (σ2) performs better, suggests419

that the full range of normal stress, and not only the stress acting in the direction of flow,420

affect the ability of water to drain englacially. The von Mises (σv) criterion, which ac-421

counts for only the deviatoric stress, does not clearly distinguish crevasse hydrological422

state compared to alternative measures which incorporate the full first invariant stress423

(e.g. mean stress). Additionally, σv displays an inverse relationship to hydrology, whereby424

higher σv values are more likely to see water ponding occur (Figure 6d). This is counter-425

intuitive when considering σv as a planform equivalent to a σxx in an LEFM framework,426

where high positive σxx values (tensile stress) are associated with greater fracture prop-427

agation (van der Veen, 1998). We suggest this is because the von Mises stress does not428

differentiate between a compressive or extensional stress regime. In contrast, stress mea-429

sures that account for the magnitude and direction of the full first invariant stress (i.e.430

mean stress, σm, and signed von Mises stress, σsv) were better at predicting surface crevasse431

hydrology. Surface crevasses that were identified to be water-filled through the 2018 ab-432

lation season were more likely to exist in regions where mean surface stress was nega-433

tive (i.e. compressive). In contrast, surface crevasses where no water was observed were434

more likely to exist in positive (i.e. extensional) mean stress regimes. To explain this link,435

we interpret that in negative mean stress regimes, hydrological pathways between the436

surface and active englacial system will likely be subject to enhanced closure. This will437

be the case regardless of the stress acting in the direction perpendicular to crevasse ori-438

entation (Section 4.2.1).439

There has been limited consideration of the role of the full first invariant stress in440

crevasse hydrology, with most studies focussed on first principal or longitudinal stress.441
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A few studies have considered the role of σ2 in crevasse formation (Hambrey & Müller,442

1978; Cuffey & Paterson, 2010), and indirectly in studies of Mode II (van der Veen, 1999)443

and Mode III (Colgan et al., 2016) shear in mixed-mode crevasse formation. Whilst LEFM444

modelling can, in theory, be extrapolated to two or even three dimensions (van der Veen,445

1999), this is nontrivial (Colgan et al., 2016). As a result, studies modelling water trans-446

mission to the bed have tended to extrapolate from 1-D LEFM models by directly re-447

placing the σxx stress term with pre-existing measures that have been recommended for448

crevasse formation - in particular, the von Mises stress, following Vaughan (1993). Our449

work suggests that this can be improved upon, and that accounting for crevasse hydrol-450

ogy requires a more complete consideration of stresses, i.e. both surface-parallel prin-451

cipal stresses.452

4.2 Crevasse drainage mechanisms453

4.2.1 Wet crevasses454

A number of drainage processes could be consistent with observations of water-filled455

crevasses. For instance, water-filled crevasses in compressive regions can be part of an456

active supraglacial network, with water being routed to a moulin elsewhere in the sys-457

tem (Poinar, 2015). However, the UAV data presented here suggests that, where crevasses458

are large, significant hydrological connections between them are rare and of limited spa-459

tial extent (Figure 9b,d). Even where hydrological connections exist, they appear to form460

as a consequence, rather than a cause, of drainage events (Figure S4b–c). If channels do461

not exist in many cases, the drainage of water in ponded crevasse systems cannot, for462

the most part, be caused by water being routed to moulins via supraglacial networks.463

Given that we found little direct evidence for hydrological connections, we consider464

hydrofracture to the subglacial environment to be the most likely mechanism by which465

water-filled crevasses drain (Weertman, 1973; Boon & Sharp, 2003; van der Veen, 2007;466

Krawczynski et al., 2009). In negative mean stress regimes, we assume that englacial con-467

nections undergo what Irvine-Fynn et al. (2011) described as ‘pinch-off’, whereby crevasse468

closure or ice creep can isolate the ponded crevasse from the englacial drainage system.469

In an environment where ablation is ongoing, this will result in the filling of surface crevasses,470

allowing hydrofracture to occur when water depth reaches a critical level. This would471

be consistent with the rapid and heterogenous crevasse drainages observed in UAV data,472

and align with the numerous observations of hydrofracture occurring during rapid lake473

drainages (Das et al., 2008; Doyle et al., 2013; Stevens et al., 2015; Chudley, Christof-474

fersen, Doyle, Bougamont, et al., 2019).475

The state of a subglacial drainage system and subsequent ice dynamic response is476

known to be affected by the variability (Schoof, 2010) and distribution (Banwell et al.,477

2016) of meltwater inputs. Our evidence indicates that episodic crevasse drainage events478

should be expected to deliver distinct, isolated pulses of meltwater to the bed in the same479

fashion as - but likely smaller than - rapid lake drainages. The full hydrological conse-480

quences of rapid lake drainages are explored in detail elsewhere (e.g. Nienow et al., 2017)),481

but it is apparent that similar principles can be applied to crevasse drainages. For in-482

stance, studies focussing on draining crevasse systems at the shear margin of Jakobshavn483

Isbrae have established that water delivery is of sufficient volume to overwhelm the ca-484

pacity of the subglacial system (Lampkin et al., 2013), increasing ice mass flux across485

the shear margin and enhancing glacier discharge (Cavanagh et al., 2017; Lampkin et486

al., 2018). However, there may be several features of crevasse drainages that are distinct487

from better-studied lake drainage events. After hydrofracture, ongoing meltwater deliv-488

ery via the newly open moulin is an important hydrological component of lake drainages489

(Koziol et al., 2017; Hoffman et al., 2018) but, given the smaller catchments that indi-490

vidual crevasses have, this effect is likely less important in crevasse drainage scenarios.491

Unlike lakes, it appears to be relatively common that crevasse systems can drain mul-492
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tiple times through a single ablation season (Cavanagh et al., 2017). However, the net493

effect of this has yet to be properly considered.494

4.2.2 Dry crevasses495

As water is never observed to pond in the crevasses we classify as ‘dry’, surface melt-496

water produced within the crevasse catchment must either (i) drain via moulins to the497

glacier bed, or (ii) drain less efficiently into the englacial system, but still rapidly enough498

that water is never collecting at a rate sufficient to fill the crevasse. We argue that the499

second interpretation is more likely. Whilst it seems unlikely that discharge rates are suf-500

ficient to maintain open moulins, positive mean stress regimes may mean that, unlike501

in compressive environments, creep closure does not close narrow hydrological pathways502

to the englacial system. This is consistent with the view of crevasse systems on temper-503

ate valley glaciers as continually, albeit inefficiently, hydraulically connected to englacial504

and/or subglacial drainage systems through a linked network of small fractures (Fountain505

et al., 2005).506

This conceptual model of inefficient, continuous crevasse drainage has previously507

been applied to the Greenland Ice Sheet by Colgan et al. (2011) and McGrath et al. (2011).508

Both studies assumed that water reaches the bed, albeit slower than through moulins.509

Colgan et al. (2011) suggested the difference may be 200-fold between the two types of510

surface-to-bed connection (∼1 hour for a 1 m2 moulin vs. ∼12 hours for a 0.1 m wide511

crevasse), whilst McGrath et al. (2011) suggested that crevasses may slow englacial drainage512

to such an extent that a diurnal cycle of meltwater input can be damped to a quasi-steady-513

state discharge on the timescale of hours-days. This sustained inefficient delivery of melt-514

water to the glacier bed through crevasses would be less likely to overwhelm the trans-515

mission capacity of the subglacial system. Therefore, they argue that regions of the bed516

subject to continuous inefficient delivery are less likely to exhibit enhanced basal slid-517

ing compared to regions experiencing episodic, efficient meltwater pulses.518

There is no direct evidence, however, that water draining inefficiently through crevasses519

is able to reach the bed of the Greenland Ice Sheet. Another likelihood is that much of520

this water does not make it to the bed, and instead freezes englacially. This has conse-521

quences for the thermal structure of glaciers, as it has been argued that widespread, in-522

efficient meltwater delivery through open crevasses would facilitate cryo-hydrologic warm-523

ing relative to regions fed by discrete moulins (Colgan et al., 2011). This is because a524

dense spacing of hydrological pathways increases the volume of ice warmed by the la-525

tent heat release of englacial freezing, and hence can act to enhance ice velocity via de-526

formation (T. Phillips et al., 2010; Lüthi et al., 2015). In contrast, episodically-draining,527

water-filled crevasses may focus cryo-hydrologic warming into the upper few hundred me-528

tres of the ice column (Poinar, 2015), and open moulins provide little latent heat to the529

surrounding ice (Lüthi et al., 2015). As such, it is likely that crevasses that drain con-530

tinuously into the ice sheet may act to enhance latent heat delivery relative to other hy-531

drological pathways. Colgan et al. (2011) concluded that increased crevasse coverage on532

an accelerating ice sheet would increase the area of the bed experiencing enhanced cryo-533

hydrologic warming. Based on the findings presented here, it might be expected that an534

accelerating ice sheet would result in a transition of some crevassesed regions from episodic535

to continuous drainage if the mean stress were to become positive (extensional). If this536

is the case, some areas of the bed could experience a transition to enhanced cryo-hydrologic537

warming, even in regions where crevasse fields already existed.538

4.3 Implications for large-scale ice sheet modelling539

Neither of the two states of crevasse drainage described above is new, with both540

episodic full-depth hydrofracture and continuous englacial drainage having numerous ex-541

amples of observations and model implementations in literature focusing on the Green-542
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Figure 10. Comparisons of methods of using stress thresholds to identify crevassing. (a)
Predicted distribution of crevassing using a von Mises yield threshold of 67.5 kPa. (b) Observed
distribution of crevasse-filled pixels (crevasse fraction > 1%) , crevasse-filled pixels where water is
observed , and manually identified crevasse initiation zones. (c) Predicted location of water-filled
crevasses and crevasse initiation zones based on signed von Mises thresholds.

land Ice Sheet. Nevertheless, in the past, regional models of ice sheet hydrology and dy-543

namics have rarely included crevasse drainage (Arnold et al., 2014; Banwell et al., 2013,544

2016). Recent 2-D regional hydrological models have begun to include the process, but545

have yet to account for heterogeneous drainage styles. Clason et al. (2015) incorporated546

crevasse drainage in a manner similar to the episodic hydrofracture described above. They547

identified crevassed regions based on a σv threshold, which were then allowed to fill and548

hydrofracture according to an LEFM model (van der Veen, 2007). Once a crevasse frac-549

tured to the full ice thickness, a moulin formed and water was transferred continuously550

to the bed. More recently, Koziol et al. (2017) based their model on the principle of con-551

tinuously draining crevasses, whereby meltwater produced at the surface of crevasse fields552

(again identified according to a σv threshold) drained immediately without requiring hy-553

drofracture. This water was assumed to reach the bed of the ice sheet without freezing554

englacially. These two studies, reflecting a paucity of observations, assumed that all crevasse555

drainage falls into one of the end-members of crevasse hydrology observed and described556

herein.557

Given the above, we are able to use the findings of this study to provide recommen-558

dations as to how future studies may be able to account for a wider diversity of crevasse559

hydrology whilst keeping inputs and classifications as simple as possible. We compare560

our results to the common method of crevasse field prediction via a qualitatively iden-561

tified von Mises stress threshold. A threshold yield strength of 67.5 kPa was determined562

to result in the best visual match between predicted (Figure 10a) and observed (Figure563

10b) crevasse fields. This method provides a reasonable first-order estimate but is (i) poor564

at predicting marginal cases including zones of false negative results in regions of relict565

crevasses, and (ii) cannot distinguish between zones of episodic and continuous drainage566

as identified in this study. Accepting that zero stress models cannot account for relict567

crevasse advection (Mottram & Benn, 2009), we retain the use of our own direct obser-568

vations rather than using stress thresholds to predict crevasse location (Figure 10c). This569

is achievable for future studies as the method we use is simple and relies only on Arc-570

ticDEM data. Then, based upon the stress distribution of surface types (Figure 6f) and571
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visual matching with observed distribution (Figure 10b), we prescribe that water-filled572

crevasses exist in MEaSUREs grid cells where σsv is less than -65 kPa or greater than573

+140 kPa (Figure 10c). On a pixel-by-pixel level, these thresholds are able to predict574

the presence or absence of water in 63% of crevassed grid cells correctly. Visual compar-575

ison shows that this thresholding technique provides a good match with broad trends576

in crevasse ponding. This includes the diagonal band of ponding across the tongue of Store577

Glacier, a bias of ponding towards the shear margins of the northern tributary of Per-578

lerfiup Sermia, and even some of the specific localised patterns further upstream into the579

drainage basin at Store Glacier. This suggests that simple thresholding such as this could580

be used as input to regional hydrological models to investigate the seasonal and long-581

term effects of spatial heterogeneity in crevasse hydrology on the subglacial dynamics582

of the ice sheet (see, for example, Poinar et al., 2019).583

In another example of implementing signed Von Mises stress as an improved sim-584

ple stress threshold, we use the distribution of stresses in manually identified crevasse585

initiation zones (Figure 4e) to prescribe a yield criterion of +55 kPa for crevasse initi-586

ation (Figure 10c). This falls within the 30-90 kPa bounds predicted by (van der Veen,587

1998), but is lower than the 67.5 kPa we prescribed for von Mises stress alone, as well588

as those thresholds used by other studies (e.g. Clason et al., 2015; Koziol et al., 2017).589

By using a directional measure of stress, a relatively low critical yield criterion can be590

prescribed without enhancing regions of false positive identification in compressive stress591

regimes. Initiation zones are clustered where anticipated, at the upstream margins of crevasse592

fields, which gives us confidence in this threshold. There also exist scattered initiation593

zones at the farthest inland regions of the study area, where crevasses are not observed594

in our ArcticDEM-derived dataset. However, examination of higher-resolution Sentinel-595

2 data reveals that there are visible crevasse features here, not identified within the study596

due to either being too small to appear in ArcticDEM data or snow-filled.597

The regional observations presented in this study utilise bulk analysis of annual ve-598

locity and seasonal water presence to identify potential links between crevasse hydrol-599

ogy and stress regime. Future work should explore opportunities to better define this re-600

lationship using time-series datasets. For example, the proliferation of remote sensing601

platforms has allowed for the production of ice velocity datasets at extremely high tem-602

poral resolutions (e.g. Minchew et al., 2017), as well as the ability to track the filling and603

drainage of individual hydrological systems on the surface of ice sheets (Williamson, Ban-604

well, et al., 2018). These advances highlight the possibility of being able to relate the605

behaviour and drainage of crevasses with time-variable stress regimes induced by short-606

term instabilities in ice dynamics - as has been previously proposed from a modelling per-607

spective for supraglacial lake drainage events (Christoffersen et al., 2018) - and hence608

provide new insights into the relationship between crevasses and the delivery of melt-609

water to the bed of ice sheets.610

5 Conclusions611

In order to be able to model and predict the response of GrIS dynamics to increas-612

ing runoff, it is necessary to understand where and how water is transferred to the bed613

of the ice sheet. Our results indicate that surface stresses, and in particular the mean614

normal stress, determines whether crevasses drain episodically via hydrofracture, influ-615

encing basal sliding, or drain inefficiently into the englacial system, enhancing cryo-hydrologic616

warming via refreezing. Our observations suggest that crevasse drainage state exists on617

a spectrum that is controlled by spatially heterogeneous surface stress. We find that these618

behaviours cannot be distinguished based upon the yield criterion previously used to pre-619

dict crevasse distribution, suggesting that controls on crevasse hydrology are distinct from620

controls on crevasse initiation. Simple thresholds obtained from visual analysis remain,621

however, a suitable approach to predict the first-order distribution of crevasse hydrolog-622

ical state. Hence, we can recommend mean stress thresholds as a simple and practical623
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method for improving the representation of crevasse hydrology in regional hydrological624

models, which is necessary to be able to accurately model the spatially variable impact625

of seasonal ice sheet hydrology on the thermal regime and ice dynamic behaviour of the626

Greenland Ice Sheet.627
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