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Nearest neighbors bootstrapping (Lall & Sharma, 1996) is a method to generate synthetic time 

series or forecasts using observed time series while preserving important correlations and 

autocorrelations (Yates et al., 2003). The concept is to find a system state in the historical archive, 
which is similar to the current state of the system and then assume that future evolution will be 

similar to the evolution observed in the past. The approach can be divided in three steps: (1) 

Define the feature vector characterizing the current state of the system, (2) Find the nearest 

neighbors (closest past system states) in the observed time series, (3) Sample from the nearest 
neighbors to generate a forecast or a synthetic time series. 

At a given time step (i), we consider here as feature vector (Di), the ensemble of: total runoff (Qi), 

average precipitation (Pi), and average reference evapotranspiration (Ei) in the system.  

Di  =  [Qi, Pi, Ei] 

The ensemble of feature vectors of past occurrences (D) is defined for the ensemble of time steps 

corresponding to the same month as the current time step (𝑇𝑚𝑜𝑛𝑡ℎ(𝑖)). 

D = ([Qt, Pt, Et] |𝑡 ∈ 𝑇𝑚𝑜𝑛𝑡ℎ(𝑖)) 

D = ([Qt , Pt, Et] ∀ 𝑡 ∈ 𝑇 |𝑚𝑜𝑛𝑡ℎ(𝑡) = 𝑚𝑜𝑛𝑡ℎ(𝑖)) 

D = ([Qt, Pt, Et] ∀ 𝑡 ∈ 𝑇𝑚𝑜𝑛𝑡ℎ(𝑖)) 

The distance (rt) of a past state (Dt) to the current system state (Di) is calculated using the 

Euclidian norm between feature vectors: 

rt  =  √∑ w𝑗 ∙ (Di
j

− Dt
j
)

2

𝑗

 

where wj are the weights of the elements of the feature vector (runoff, precipitation, and 

evapotranspiration here). We define the weights as the inverse of the standard deviation of the 

elements of the feature vector. For example, the runoff weight takes the form: 

𝑤𝑄  =  1
𝑠𝑡𝑑(Qt | 𝑡 ∈ 𝑇𝑚𝑜𝑛𝑡ℎ(𝑖))⁄  

The k nearest neighbors are the k past system states with the lowest distance to the current state. 

The choice of k can be optimized, Lall and Sharma (1996) suggest the square root of the total 

amount of samples. Because we use 40 years or 360 months length time series, we choose k=20. 

The nearest neighbors are ranked from lowest to highest Euclidian distance. To sample among the 
nearest neighbors, we define the sampling Kernel based on the rank of the neighbors, as in Yates 

et al. (2003). 

Kl =  1 𝑙⁄
∑ 1 𝑛⁄𝑛=1..𝑘

⁄  

where 𝑙 is the rank of the neighbors. This approach assumes that only the rank affects the 
probability; Akbari et al. (2011) describe alternative sampling Kernels. 

To generate an ensemble forecast, the desired number of neighbors are sampled with probability 

K. To generate an average forecast, the nearest neighbors are weighted according to their 

probability to generate a single weighted forecast (D̂i+m): 

D̂i+m = ∑ 𝐾𝑙 ∙ 𝐷𝑡(𝑙)+𝑚

𝑙=1..𝑘

  

Where m is the forecast lead time (in time steps) and 𝑡(𝑙) is the time step corresponding to the l-

th ranked neighbor. We also generate weighted ensemble forecasts, by classifying the k-nearest 

neighbors in different categories based on the total predicted runoff (e.g. 50% lowest and highest 
predictions) and then computing the weighted average forecast within the categories. The 

likelihood of the categories is then the sum of the neighbor's likelihoods belonging to this 

category. This last method enables to generate an ensemble forecast with less members that still 
contains information from the k-nearest neighbors. 
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Loucks and Van Beek (2005) describe the development of the SDP method. The code 
implementing the SDP framework is https://github.com/RaphaelPB/WHAT-IF under the "Nile 

synthetic case" branch in the file "Nile_SDP_water_value.py". The SDP framework is not part of 

the WHAT-IF tool and was only implemented on this specific study case to compare results with 

the Model Predictive Control framework. Figure S1 shows example of the reservoir storage value 
for three scenarios obtained from backwards runs in the SDP framework. When comparing the 

full range of scenarios exploring total runoff and water demand, the reservoir storage value is 

calculated individually for each scenario. 

 

This section provides two additional figures to the paper: Figure S2 shows the differences 
between the frameworks on key indicators not restricted to total system benefits (Allocation 

value, Hydropower value, Spills and Storage), Figure S3 shows the impact on total system 

benefits and cost-benefit analysis when evaluating the project development as in the Paper, but 
displays the results in terms of relative value (percentage). 
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