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3. TIME-AVERAGING

Flat bottom channel

1. INTRODUCTION &

Resolving mesoscale eddies is challenging in global scale ocean models because it requires to capture
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4. FILTERING APPRO.

Kinetic energy spectra

2. MOTIVATION & M

e Time-averaged volume transport:

e In the flat bottom channel case, the SGS transport is very similar to
the transient transport and converges when eddy scale is reached.
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u = (u,v) is the velocity and h is the layer thickness. For the meridional geostrophic volume transport,

top o . e The upper ocean SGS transport balances the Ekman transportin the | rveworn= T
pott. (Ugh') = 0, where {-) denotes the zonal averaging. channel part and converges at the eddy scale. o W =g ) 1 o
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pography, there is also a significant net SGS geostrophic transport (i.e. >, (v hsys) # 0).

5. CONCLUSIONS

e In configurations with bottom topography, geostrophic SGS transports are not controlled by transient eddy fluxes.

e Unlike the transient geostrophic transport, the SGS geostrophic transport does not integrate to zero in the presence of topography, contrary to the assumption in GM-based parameterizations.

e Scale-dependent SGS transport converges at the eddy scale in flat bottom channel, but the convergence is slower and more complicated in the presence of topography. o o Contact: skhani@princeton.edu o



