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Keypoints: 15 

 Increased temperature stress strongly reduces future crop yields. 16 

 Lowered plant productivity due to heat stress markedly reduces plant water demand. 17 

 Intensified irrigation to increase future crop yields is not a viable climate change adaptation 18 

measure.  19 



Abstract 20 

Climate change and variability threatens the sustainability of future food productions, especially in 21 

semi-arid regions where water resources are limited, and irrigated agriculture is widespread. 22 

Increasing temperatures will exacerbate evaporative losses and increase plant water needs. 23 

Consequently, higher irrigation intensities would be a logical measure to mitigate climate change 24 

impacts in these regions.  Using an ensemble of well-parameterized crop model simulations, we 25 

show that this mitigation measure is oversimplified and that besides water resources availability, 26 

strong temperature increases play a crucial role in crop developments and resulting plant water 27 

needs.  Our analysis encompasses agricultural areas of the Lower Chenab Canal System in Pakistan 28 

(15 000 km2), which is part of the Indus River irrigation system, the largest irrigation system in the 29 

world; and covers economically important crop growing areas (e.g., of cotton, rice and maize crops). 30 

Climate models project an above average increase in temperature over the study region, and the 31 

agro-hydrological and biophysical crops models respond with a strong decline of up to -24% (±12%) 32 

in future crop productions. Our modeling results further suggest that evaporative and irrigation 33 

demands do not align with increasing future temperature trends. The resulting decline in crop 34 

productions is consistent among model projections despite an intensification of irrigation measures 35 

and the positive effect of future CO2 enrichments. Overall, our study emphasizes the role of elevated 36 

temperature stress, its effects on agricultural production as well as water demand, and its 37 

implications for climate change adaption strategies to mitigate adverse impacts in an intensively 38 

irrigated region. 39 
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1. Introduction 42 

In recent years, climate change and its impact on the environment have become one of the main 43 

concerns worldwide. Especially, its effect on agricultural systems has become a major problem, 44 

considering the alarming global developments regarding water and food security (Hanjra and 45 

Qureshi, 2010; Schewe et al., 2014). The latest special report of the UN Intergovernmental Panel on 46 

Climate Change (IPCC 2019) predicts, with high confidence, that future changes in climatic conditions 47 

will exacerbate existing water and food shortages for billions of people. One of the main reasons 48 

considered responsible for the expected food shortage is the inability to meet future agricultural 49 

water demands (Fader et al., 2016). Globally, irrigation volumes have more than doubled since the 50 

1960s (IPCC 2019) and are likely to increase further due to climate change in regions with already 51 

limited water supply (Wada et al., 2013; Wang et al., 2016).  52 

In semi-arid and developing regions like Pakistan, agriculture is the most important economic sector, 53 

employing nearly half of the population (Qureshi, 2011). A large part of agricultural workers are small 54 

scale farmers, highly dependent on maintaining their productivity levels and becoming increasingly 55 

vulnerable to climate change impacts and potential losses of income (Oxfam, 2009). The projected 56 

increase in water scarcity, due to climate change along with the increasing demand of the fast-57 

growing population, poses a severe threat to the national food supply and to the productivity of 58 

economically important cash crops such cotton, maize and rice (Khan et al., 2016; Qureshi, 2011; 59 

Schewe et al., 2014). 60 

Especially the Indus Basin in Pakistan’s Punjab province is a hot spot for the impact of climate change 61 

on water availability and agricultural productivity, as it constitutes one of the world’s largest closed 62 

irrigation areas (Mekonnen and Hoekstra, 2011). Currently irrigation water in the region accounts for 63 

over 90% of the total water demand (Fischer et al., 2007). Significant climate induced changes in the 64 

upstream glacio-hydrology – the major water source for the Indus Basin - are threatening future 65 

water availability in the basin (Immerzeel et al., 2010); along with the rising temperatures that are 66 

generally projected to increase faster than on global average in the region (Saeed and Athar, 2018). 67 



Under such conditions, water related adaptation strategies, such as increased irrigation amounts, 68 

and enhanced irrigation efficiency are possible solutions to cope with these challenges. The benefits 69 

of such adaptation measures have been studied for agricultural systems experiencing similar climate 70 

change pressures and have been suggested as possible actions (Elliott et al., 2014; Fader et al., 2016; 71 

Molden et al., 2010). Yet, sensitivities of crops to changes in temperature can be higher than those 72 

due to water availability changes (Lobell and Burke, 2008). Temperature induced stress on crop 73 

growth and productivity could counteract the potential of optimized water management for 74 

increased productivity (Lobell et al., 2015; Zaveri and Lobell, 2019). It is therefore imperative to 75 

understand the role of temperature stress on crop growth and resulting plant water demand, in 76 

connection to water (availability) stress. Furthermore, improved knowledge about possible impacts 77 

of temperature and water stress as well as their interlinkages on future crop growth will help 78 

defining adequate adaptation strategies. In terms of adequate water availability for crop growths, 79 

especially in semi-arid regions, previous studies highlight that there is still very limited understanding 80 

of the potentials and limits of irrigation related climate change adaptation (Tack et al., 2017; Taraz, 81 

2018); and that more research is needed to disentangle the effects of temperature and water stress 82 

related climate change impacts on agricultural yields (Carter et al 2016).  83 

This study elaborates on how temperature stress controls agricultural productivity and plant water 84 

requirements in an intensively irrigated agricultural system in Pakistan’s Punjab province. It suggests 85 

that the intuitive assumption, that increasing temperatures will inevitably lead to higher 86 

transpiration and thus to increasing irrigation demands, might not be a universal principle. This is 87 

shown by the application of two models from two different scientific disciplines. In order to tackle 88 

diversity in crop model parameterization, we consider the hydrological SWAT model (Arnold et al., 89 

2012) and the biophysical-crop modelling framework APSIM (Holzworth et al., 2014) to analyze 90 

climate change impacts on yield and water demand. Numerous modeling studies regarding negative 91 

climate change impacts on yields and the potential of irrigation to mitigate these impacts exist. These 92 

studies, however, have been conducted using either hydrological models or crop models (Elliott et 93 



al., 2014). The combination of both model types is expected to allow a more detailed understanding 94 

of strengths and weaknesses of either model and thus, might result in a more reliable assessments of 95 

changes in future yield and water demand dynamics. Both models are used in an ensemble 96 

framework to analyse the climate change impacts on resulting crop growth over the study area. To 97 

this end, we use 9 climate model realizations; bias-corrected and downscaled to force both crop 98 

models under moderate (Representative Concentration Pathways (RCP) 4.5) and high-end (RCP 8.5) 99 

future carbon emission scenarios. We design a careful modelling experiment to analyse the impacts 100 

of increased temperature stress on future crop yields in connection to potential water stress. 101 

Through these analyses, we aim to provide a better understanding on the interlinkages between 102 

temperature and water stress and to detect dominant drivers of declining (future) agricultural 103 

productivity - which could then aid in defining effective adaptation measures. 104 

 105 

2. Methods and Materials 106 

2.1 Study Area 107 

The study area is part of the Lower Chenab Canal System Area (LCC) in Pakistan, which comprises 108 

about 15 000 km2 of agricultural land on the floodplains between the Rivers Chenab and Ravi (Fig. 1A 109 

and 1B). The LCC region is part of the Indus Basin Irrigation System (IBIS), the world largest irrigation 110 

system, feeding more than 200 million people (Immerzeel et al., 2010). The area is characterized by 111 

small-scale and highly fragmented agricultural cropping patterns. During dry winter season (Rabi) the 112 

dominating crop type is winter wheat while during the wetter and hot summer (Kharif) the crop 113 

pattern diversifies and mainly cotton, maize, rice and fodder are grown on small scale farm plots. 114 

Annual potential evaporation (1800 mm/a) is more than three times larger than annual precipitation 115 

(500 mm/a), resulting in a strong demand for additional irrigation. Knowing about potential negative 116 

impacts on agricultural productivity and defining possible adaptation strategies is therefore of 117 

paramount importance for water and food security in this region.  118 



In this study we focus on analyzing the impacts of future climate change on summer crops, namely 119 

cotton, maize and rice, grown between May and October. The impact is evaluated based on changes 120 

in crop yield and relevant hydrologic and biophysical variables including evapotranspiration, 121 

irrigation demand, leaf-area growth, and biomass production (Fig. 2A). Due to high summer 122 

temperatures in our study region (mean daily Temperature > 30 °C), evaporative loss is highest 123 

during this time and changes in irrigation needs have a particularly strong impact on basin wide 124 

water demand. The selected crops represent high value crops with a wide distribution in the study 125 

area (Fig. 1A) and changes in yield will have significant economic impacts.  126 

 127 

 128 

Figure 1: LCC study area and spatial distribution of cotton, maize and rice growing regions (A, Land-use data from Awan et 129 
al., 2016). Lower Chenab Canal (LCC) study area, Pakistan, and the Indus River Basin (B). Mean annual temperature (C) and 130 
precipitation trends (D) of historical data (black line) and future climate projection of 9 CORDEX models (red and blue line – 131 
ensemble mean; colored uncertainty band span between 25th and 75th percentiles). Shaded grey areas (C and D) show the 132 
historical period (1996-2005) and future time periods of 2021-2030 and 2041-2050, examined in this study.  133 

 134 

2.2 Models: SWAT and APSIM 135 

The hydrological model SWAT (Soil & Water Assessment Tool) simulates the quantity and quality of 136 

water flow within catchments, incorporates detailed management strategies (e.g. irrigation schedule, 137 



planting schedule) and basic plant physiognomic stages, e.g. root development, leaf area 138 

development, biomass change (Arnold et al., 2012; Gassman et al., 2014). The main underlying 139 

principle for the simulation of water fluxes is the water balance equation (Neitsch et al., 2009). By 140 

accounting for spatially distributed environmental changes, it simulates their effects on individual 141 

water balance components. Its strengths are therefore the closing of the hydrological cycle and the 142 

detection of spatially distributed changes in water availability and demand. Impacts of changing 143 

atmospheric CO2 concentrations are accounted for in the estimation of potential evapotranspiration, 144 

affecting (i.e., reducing) plant water demand as well as in the estimation of plant radiation use 145 

efficiency, affecting (i.e., enhancing) the biomass production. To ensure correct and spatially 146 

differentiated parameterization, the model is calibrated following an automated and spatially 147 

distributed calibration approach (Becker et al. 2019). In this study the model is run on a daily 148 

timescale, with daily climate input data. Yield levels are taken at the end of each growing period. 149 

The Agricultural Production System Simulator (APSIM; Holzworth et al., 2014) is a biophysical crop 150 

modelling framework which simulates agricultural crop dynamics with respect to varying climatic and 151 

environmental conditions. It has been used extensively to assess climate change impacts on 152 

agricultural productivity (e.g. Deihimfard et al., 2018; Liu et al., 2013; Williams et al., 2015). Model 153 

performance and applications are studied in depths within the scope of the Agricultural Modelling 154 

Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2014), in which the APSIM 155 

model was applied in the same study region of southern Punjab to assess climate change impact on 156 

crop production. Focus and strength of the APSIM framework is the plant-specific simulation of 157 

biophysical dynamics with respect to changes in the environment. Due to its modular approach, with 158 

individual sub-models for each crop type, it can account for plant specific reactions to climate 159 

change. For example, with individual models for cotton, rice, and maize it accounts for plant type 160 

specific carbon assimilation processes (C3 vs. C4-plants) and hence, differentiates between plant type 161 

reactions to increased atmospheric CO2 levels. The APSIM model parameterization for the study area 162 

was established (calibrated) following the guidelines given for the APSIM classic model (APSIM model 163 



documentation, 2021) for three crop specific modules for cotton, maize and rice. Like the SWAT 164 

model the APSIM model is run on a daily time scale, with daily climate input data. Yield estimates are 165 

taken at the time of harvest at the end of the growing season. 166 

To allow comparison between the SWAT and the APSIM models, we adopted the soil and 167 

management parameter configurations from the calibrated SWAT model. Soil parameters were 168 

furthermore verified through laboratory analysis of soil samples collected during a field campaign in 169 

the study region (Schulz et al., 2021 and Supplementary Section 2.3). We also conducted a sensitivity 170 

analysis to analyze the effect of varying soil parameters on the APSIM simulated crop yields that 171 

further allowed to constrain appropriate parameters for the APSIM soil module. Details of the 172 

employed parameters and underlying estimation procedure for both crop models are described in 173 

the Supplementary Information S2 and Tables S1-S3.  174 

Finally we compared and contrasted the modeled crop yields with observed data provided by the 175 

Agricultural Statistics of Pakistan, published by the Ministry of National Food Security & Research 176 

(MNFSR, 2021) (Fig. 2B). Yield data for cotton, rice, and maize from the province of Punjab was taken 177 

for the years 2009-2013 and compared to simulated yield levels by SWAT and APSIM for the same 178 

period (mean of all years is shown in Fig. 2B). Details of the model validation can be found in the 179 

Supplementary Information S2.5.  180 

 181 

Figure 2: (A) Schematics of the main processes simulated by SWAT and APSIM models and analyzed in this study (bold italic). 182 
(B) Evaluation results of simulated yield simulations compared to observations; with the latter based on the AGRIStats = 183 
Agricultural Statistics of Pakistan. Bar heights show the mean of the years 2009-2013 and uncertainty bars show +/- one 184 
standard deviation. 185 

 186 



2.3 Climate data sets 187 

Daily Climate Forecast System Reanalysis data (CFSR; Saha et al 2010) are taken as historical 188 

reference climate data for a baseline period (1996-2005). The used data set encompasses 189 

temperature, precipitation, relative humidity, solar radiation and wind speed. To ensure the accuracy 190 

of the baseline data set, the CFSR data is bias-corrected using climate records of three available local 191 

climate stations (Supplementary Section 1.1).  192 

Climate projection datasets are taken from the Coordinated Regional Downscaling Experiment 193 

(CORDEX), which provides a suite of regional climate projections based on the Global Climate Models 194 

of the Coupled Model Intercomparison Project, Phase 5 (CMIP5; Taylor et al 2012). We consider 195 

medium (RCP 4.5) and high (RCP 8.5) greenhouse gas emission scenarios from the IPCC - Fifth 196 

Assessment Record (AR5); and analyze the impacts in the near future (short; until 2030) and the mid 197 

future (medium; until 2050). The short-term time frame is selected to show the potential changes 198 

expected to occur in the coming next decade, and to show the necessity for immediate actions. The 199 

medium-term scenario is chosen to show the consequences of climate change at a time scale still 200 

relevant for today’s population. Due to the capabilities of management and plants to adapt to 201 

changes in climate as well as long-term reactions of farming community to adapt to new 202 

environmental conditions, we do not include a long-term impact assessment. For the short- and 203 

medium-term scenarios, we assume that factors such as plant genetics and management strategies 204 

remain constant and at a current level. 205 

The projections of future CO2 concentration are based on van Vuuren et al. (2011) and are assumed 206 

to be 420 ppm and 450ppm CO2 for RCP 4.5 and RCP 8.5, respectively during the time period 2021-207 

2030; and 470 and 520 ppm CO2 for RCP 8.5 are projected for the time period 2041-2050.  208 

 209 

3. Results and Discussions 210 

3.1 Future climate trends in the LCC study area 211 



The climate models project a strong increase in temperature over the study region, under the high-212 

emission scenario RCP 8.5 as well as under the moderate emission scenario RCP 4.5 (Fig. 1C). For the 213 

summer season (May-October), the ensemble means predict an increase of 1.0 °C (±0.4°C) for RCP 214 

4.5 and 1.0 °C (±0.3°C) for RCP 8.5 until 2030, compared to the historical period of 1996-2005. A 215 

warming of 1.6 °C (±0.5°C) and 1.8 °C (±0.5°C) is projected for RCP 4.5 and 8.5, respectively, until 216 

2050 (Fig. 3A). Strong increases in temperature under both scenarios points towards higher pressure 217 

on agricultural production resulting from increased temperature stress on crop growth, especially 218 

during summer months (Fig. 3B). A high agreement between the climate model ensemble members 219 

regarding consistent increase in future temperature indicates that the future summer season 220 

warming in the LCC area can be projected with high confidence (Fig. 1C; Fig. 3A and 3B).  221 

Precipitation projections, on the other hand, are highly uncertain and there is no clear trend in 222 

annual or monthly precipitation amounts (Fig. 1D, Fig. 3C and 3D). Future water availability in terms 223 

of precipitation projections over the study area is therefore difficult to predict. In this study, we 224 

assume that due to the constant irrigation activities in the LCC irrigation system, agricultural water 225 

availability is always assured, and plant water demand is met. Thus, impacts of changes in 226 

precipitation on our model results are small and water stress is kept low.  227 

Scenarios that future water availability either by water abstractions from the river Chenab or from 228 

ground water resources can no longer meet irrigation demands are not analyzed in this study, as we 229 

purely focus on the effect of climate change impacts of agricultural productivity given enough water.  230 



 231 

Figure 3: Projected temperature and precipitation change during Kharif (summer) months, for selected time periods 2021-232 
2030 and 2041-2050, with respect to historical data (1996-2005). Absolute seasonal temperature change (A) and absolute 233 
monthly temperature changes (B). Relative seasonal precipitation changes (C) and absolute monthly precipitation changes 234 
(D). Red dots and the displayed percentages show ensemble mean changes. Grey dots represent single ensemble members. 235 
Right panels show model ensemble uncertainty bands of 25th and 75th percentiles. 236 

 237 

3.2 Declining yield levels under climate change 238 

Both models show that climate change will lead to a substantial reduction of future yield levels in the 239 

study area. Under current CO2 concentrations, mean yield levels are projected to decrease by up to -240 

24% (±12%) under the high emission and mid-century scenario (Fig. 4A, light grey bar, RCP 8.5 2041-241 

50). Despite their differences in predicted magnitudes of yield declines (SWAT: -32% (±12%) and 242 

APSIM: -16% (±2%)), the models agree in their trends (sign) and show increasing yield losses with 243 

increasing temperatures for all crop types (Fig. 4B-4D). Considering that water demand is assumed to 244 

be met, these results underline that the increasing temperature stress alone will have a strong 245 

negative effect on crop growth, which is in-line with findings of previous studies (Deryng et al., 2014; 246 

Saddique et al., 2020; Siebert and Ewert, 2014; Zhao et al., 2017). 247 



 248 

Figure 4: Projected changes in future crop yield under the RCP 4.5 and RCP 8.5 scenario, neglecting (light grey bars) and 249 
considering (dark grey bars) the impact of CO2 changes. Results are shown for all crops combined (A) as well as separately 250 
for cotton (B), maize (C) and rice (D). Filled bars show the model ensemble median and black error bars show the respective 251 
25th and 75th percentiles of the model ensemble (SWAT and APSIM with nine climate models). Separate results for SWAT and 252 
APSIM models are shown as colored dots (median) and error lines (25th and 75th percentiles for the model ensemble of nine 253 
climate models). 254 

 255 

Accounting for increasing CO2-concentrations (Fig. 4, dark grey bars) dampens the negative impact of 256 

the temperature increase on yields, revealing the significant positive effect of higher CO2 levels on 257 

agricultural productivity due higher photosynthesis rates, also known as CO2-fertilization. For the 258 

short-term scenario (2021-2030), increasing CO2-concentrations prevent the strong decline in 259 

simulated crop yields. This is generally in-agreement with previous studies showing this strong 260 

positive effect of increasing CO2 concentrations on plant growth and its ability to counteract plant 261 

growth limiting effects (Parry et al., 2004). Yet, the effectiveness of CO2-fertilization is still a large 262 

source of uncertainty (Elliott et al., 2014; McGrath and Lobell, 2013). In the context of our study, 263 

uncertainty arises through the differences in representing CO2-impacts on plant physiology by SWAT 264 

and APSIM. The hydrological SWAT model does not account for plant type specific impacts of CO2 265 

(e.g. different reactions of C3-plant and C4-plant) and might overestimates the positive effects of CO2 266 



(Wu et al., 2012). The APSIM crop models, on the other hand, consider plant specific impacts, e.g. the 267 

maize-model (Fig. 4C) correctly assumes maize-insensitivity to changing CO2 effects (maize = C4-268 

plant). In the case of cotton, which shows a lower yield reduction than rice and maize, the enhanced 269 

productivity under rising CO2 levels even leads to an increasing yield (Fig. 4B). The sensitivities of rice 270 

and SWAT-maize yield to CO2-concentrations are comparable, but their yield reductions due to 271 

temperature stress are too severe for increasing CO2 emissions to compensate (Fig. 4D).  272 

Overall, APSIM results show declining yields even for the short-term future, indicating that elevated 273 

CO2 concentrations are not able to compensate for reduced yield due to higher temperature stress. 274 

Under further rising temperatures (2041-2050), both models project decline in crop yields (-8% 275 

(±9%), RCP 4.5 and -7% (±12%), RCP 8.5); and disclose that even with further elevated CO2-276 

concentrations and unlimited water availability climate change induced yield declines cannot be 277 

prevented. All estimated crop productivities show that yields are expected to benefit less from 278 

increasing CO2 levels, as temperatures continue to rise (Fig. 4B). 279 

Previous studies have indicated that increasing CO2 improves water use efficiency by reducing plant 280 

transpiration which facilitates plant growth during dry/drought conditions (Wullschleger et al., 2002; 281 

Yoo et al., 2009). At the same time, it has been also reported that reduced plant transpiration leads 282 

to increased temperature stress, due to a reduced evaporative cooling effect (Siebert et al., 2014; 283 

Vanuytrecht et al., 2012). Both these effects are not covered presently by either of the models. As 284 

the strong increase in future temperature is projected under both RCPs and together with abundance 285 

of water due to irrigation, the positive effect of CO2 on yield levels is most likely overestimated by 286 

both crop models. Recently, Wang et al., 2020 noted the positive effects of CO2 tend to be 287 

overestimated by crop models based on their analysis of a global reduction in CO2 fertilization effect 288 

on vegetation photosynthesis, which most models do not account for. 289 

 290 

3.3 Future irrigation and evaporative demand  291 



 292 

Figure 5: Projections of future irrigation demand (A and B) and future ET rates (C and D). Changes under the baseline CO2-293 
scenario (A and C) and with increased CO2-levels (B and D). 294 

In the following, we discuss the reasons behind the estimated yield declines based on changes in 295 

irrigation demand, evapotranspiration, leaf area index and biomass productivity. Results presented 296 

here are averaged over the selected summer crops cotton, maize and rice. Crop specific results are 297 

presented in the supplementary material (Supplementary Figures S4-S5). 298 

Considering the significant temperature increase one would expect a strong increasing signal in plant 299 

water demand (Döll, 2002; Wada et al., 2013). Examining irrigation and evaporative demands in the 300 

study area, however, reveals that trends in future water demand do not align with projected 301 

temperature trends. Increasing water demands are surprisingly moderate and do not increase by 302 

more than 5% (average of both models; Fig. 5C). Against the expectation of a strong increase in 303 

irrigation needs under rising temperatures, both crop models show that average irrigation demands 304 

increase less under higher temperatures. Under both emission scenarios, a maximum increase is 305 

predicted for the moderate scenario (RCP 4.5, 2021-2030) while a minimum increase is predicted for 306 

the high-end emission scenario (RCP 8.5, 2041-2050). Figure 5 displays the results for APSIM and 307 

SWAT separately to reveal important differences in their simulation results. SWAT projects the 308 



lowest increase in water demand for the RCP 8.5 and mid-term future scenario (1±8%). Under 309 

elevated CO2 concentrations (Fig. 5B), water demand even further reduces (-4±7%), which generally 310 

agrees with the effect of reduced plant water demand due to reduced stomatal conductance (Kimball 311 

et al., 2002).  312 

The APSIM model simulated irrigation demand appears insensitive to CO2 changes, as irrigation 313 

demands remain constant regardless of changes in CO2 levels (Fig. 5A vs. 5B). Yet, the significant 314 

increase in LAI (leaf area index) under elevated CO2 levels (see below, Fig. 6B) and the negligible 315 

change in irrigation demand illustrates that the APSIM model likewise account for the positive CO2 316 

effects on water demand and show decreasing irrigation demands relative to leaf area growth. 317 

The reason for the surprisingly low increase in irrigation demand can be explained by the low 318 

increase in actual evapotranspiration (Fig. 5C and 5D), which prevents irrigation demands to 319 

significantly increase. Despite the strong temperature rise, increases in ET are projected by both crop 320 

models to stay on average below 3% (±4%), and do not increase with higher temperatures, even 321 

under the assumption of unchanged CO2 emissions.  322 

Noting that water supply is guaranteed in both crop models, the low ET rates under rising 323 

temperatures cannot be related to water shortages and should be explained by ET controlling plant 324 

parameters, such as LAI and biomass production (as discussed below in the following section). The 325 

limited changes in water demand also reveal that even if more water for intensified irrigation activity 326 

would be available, it would not help to reduce yield losses.  327 

3.4 Future plant growth and agricultural productivity 328 

The SWAT model estimates LAI development based on the influence of the predominant 329 

environmental stress factor (Neitsch et al., 2009), i.e. heat stress in this study. This results in a 330 

significant reduction in LAI by up to -27% (±6%) under the high-emission scenario (RCP 8.5, 2041-331 

2050). The decreasing LAI trend clearly follows the increasing temperature trend, with highest LAI 332 

reductions under the RCP8.5 scenario (Fig. 5A) and confirms the LAI sensitivity towards temperature. 333 



In combination with the reduction of stomatal conductance, a significant decline in LAIs therefore 334 

seems to be one of the main reasons for the overall low ET rates simulated by the SWAT model 335 

under high temperatures (Fig. 5C). LAI calculations in SWAT do not account for CO2 effects (Fig. 6A vs 336 

6B), which leads to strong LAI decreases even under higher CO2 concentrations (Fig. 6B) and to 337 

decreasing ET rates (Fig. 5D).  338 

APSIM on the other hand, which does not account for a specific heat stress factor in parts of its LAI 339 

calculations, shows a clear LAI insensitivity to temperature (Fig. 6A and 6B). Yet, APSIM-LAI 340 

predictions show a notable sensitivity to CO2-concentrations and increasing leaf growth under rising 341 

CO2 levels. APSIM based simulated LAIs are projected to increase by up to 15% (±10%) under the high 342 

emission scenario, which explains why APSIM-ET rates do not decrease despite ET reducing CO2-343 

effects (Fig. 5D). Similar effects were described recently by Singh et al., 2020, revealing a strong 344 

increase in LAI due to CO2 increases which can offset higher water use efficiency.  345 

As the leaf area growth and temperature increase jointly control the evaporative demands and 346 

ultimately irrigation water needs, the differences in LAI projections underline the importance of 347 

model sensitivity with respect to temperature stress. These differences in the underlying model 348 

parameterizations between both models leads to two different conclusions. On the one hand, the 349 

SWAT model projects a decline in future plant growth, which is strong enough to reduce ET and 350 

irrigation demand -- this leads to the conclusion that irrigation intensification cannot help to mitigate 351 

future yield losses. APSIM on the other hand, forecast increasing leaf area growth and indicates that 352 

due to its (even if only moderately) rising irrigation demands, intensified irrigation is necessary to not 353 

further strengthen the predicted yield losses.  354 

The apparent inconsistency in decreasing LAI and at the same time increasing biomass in SWAT 355 

under elevated CO2 concentrations (Fig. 6B and 6D) can be explained by the sensitivity of biomass 356 

production in SWAT to changes in CO2. In SWAT, the biomass production is dependent on radiation 357 

use efficiency and available light for photosynthesis (see Supplementary Material S.2.1.1). While the 358 

availability of light is dependent on LAI development, radiation use efficiency is positively affected by 359 



changes in CO2-concentrations (Neitsch et al., 2009). Increasing CO2 concentrations thus enhance 360 

biomass production. In this study, this biomass enhancing effect is stronger than the negative effect 361 

due to decreasing LAI (SWAT results Fig. 6D, RCP 4.5). Yet, for RCP 8.5 and a further temperature 362 

increase, this effect is dominated by a further reduction in LAI, leading to a reduction in biomass even 363 

under further elevated CO2 concentrations (Fig. 6D). 364 

 365 

Figure 6: Projections of future LAI changes (A and B) and future biomass changes (C and D). Changes under the baseline CO2-366 
scenario (A and C) and with increased atmospheric CO2-levels (B and D). 367 

Despite their differences in LAI estimation procedures, both models show that even if the increased 368 

future water demand is fulfilled, a substantial reduction in plant biomass (and thereafter yields) due 369 

to increasing temperatures is projected in future (Fig. 6C). To this end, both models show a good 370 

agreement in their predicting trends. Rising CO2 levels might compensate negative temperature 371 

effects in the near future but already for the mid-century scenario (2041-2050), biomass is projected 372 

to decline despite further elevated CO2 levels (Fig 6D).   373 

The reason for the discrepancy between increasing LAI predictions and decreasing biomass estimates 374 

by APSIM, can be found in the way APSIM accounts for biomass partitioning processes. As a 375 

biophysical crop model, the APSIM model accounts for carbon assimilation in different plant parts 376 



(i.e. leaves, stem, fruit). Leaf area can therefore remain constant or even increase while the overall 377 

biomass decreases (APSIM model documentation, 2021). 378 

Recalling that both models assure a sufficient supply of irrigation water to meet changing water 379 

demands, our results reveal that temperature stress alone is responsible for the simulated yield 380 

declines in this study. We therefore conclude that increased water use has a strong limit in mitigating 381 

future yield losses. Intensification of irrigation might be able to mitigate yield declines in the near 382 

future, when positive CO2 effects balance the harmful temperature effects and irrigation demands 383 

are still increasing (Fig. 5B). For the mid-century scenario however, when positive CO2 effects are no 384 

longer sufficient and irrigation demand decrease, irrigation intensification will not be able to mitigate 385 

the projected yield losses.  386 

It should be mentioned that our deductions are based on the average trends estimated for maize, 387 

cotton, and rice crops. Plant specific reactions should be considered, when impacts on individual crop 388 

types are the focus.  The effects of climate change on each crop type showed that even though crop 389 

reactions differ, they agree in their overall responses to temperature stress and sensitivity to CO2 390 

(see Supplementary Section S3 for details). The exception to this general trend is the maize crop 391 

simulated by the APSIM model due its particular physiologies as a C4-plant (Supplementary Section 392 

S3). 393 

 394 

4. Conclusions 395 

The main finding of our study is that under the expected climate change scenarios a substantial 396 

reduction in summer crop yields is likely to occur in the study region, even though enough irrigation 397 

water is assumed to be available. It could be shown that plant development is dominantly controlled 398 

by temperature stress and that therefore the negative climate change impact on agricultural 399 

productivity cannot be mitigated by an intensification of irrigation.  400 



Assuming a constantly satisfied plant water demand, our results indicate that in the intensively 401 

irrigated agricultural system we looked at, the limit of additional water as adaptation measure could 402 

be reached in the near future. The dominant future factor, likely causing a substantial yield decline, 403 

seems to be plant heat stress. Under these circumstances, temperature related adaptation strategies 404 

such as the selection of more heat resistant crops, or changes in crop planting schedules to avoid 405 

high temperature stress seem more suitable than water related adaptation measures.  406 

The results contradict previous studies, which suggest that increased irrigation amounts can help to 407 

reduce crop heat sensitivity in such a way that it partially or even entirely offsets temperature 408 

induced yield reduction (Shaw et al., 2014; Tack et al., 2017; Zaveri and Lobell, 2019). However, these 409 

studies also argue that yield gains from intensified irrigation have already slowed down in recent 410 

years and that the application of more water has its limits as a potential adaptation strategy to 411 

prevent harmful effects of rising temperatures.  412 

Finally, by using two crop models from two different scientific disciplines, this study showed that 413 

while both models agree in their overall yield simulations, their predictions of future water demand 414 

and the capability of irrigation to counteract the dominating temperature stress can vary 415 

significantly. Hence, when using models as decision support systems for future water resources 416 

planning, it needs a careful examination of their respective model structures and especially their 417 

sensitivities with respect to temperature stress in order to draw the reliable conclusion about future 418 

irrigation demands.  419 
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