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Abstract12

CMIP6 model sea surface temperature (SST) seasonal extrema averaged over 1980-201013

are assessed against the World Ocean Atlas (WOA18) observational climatology. The14

biases in SST seasonal extrema are largely consistent with the annual mean SST biases.15

However, the amplitude and spatial pattern of SST bias vary seasonally in the 20 CMIP616

models assessed. Large seasonal variations in the SST bias occur in eastern boundary17

upwelling regions and polar regions, and the eastern equatorial Atlantic. These results18

demonstrate the importance of evaluating model performance not simply against annual19

mean properties. Models with greater vertical resolution in their ocean component typ-20

ically demonstrate better representation of SST extrema, particularly seasonal maximum21

SST. No significant relationship with horizontal ocean model resolution is found.22

Plain Language Summary23

It is important that climate models give accurate projections of future extremes24

in summer and winter sea surface temperature, because these affect tropical cyclone for-25

mation and coral bleaching as well as many other features of the global climate system.26

For a selection of the latest generation of global climate models, we calculate the model27

bias, defined as the difference between simulated and observed sea surface temperatures.28

Most previous studies examined the annual mean bias. However analysing the summer29

and winter extremes reveals large biases in sea surface temperature in certain regions in30

some seasons and in some models. These summer and winter biases are not the same as31

the annual mean bias for each model. We find that models with more detailed represen-32

tation of vertical structure in the ocean tend to have a better representation of the sea-33

sonal extrema in sea surface temperature, particularly in summer.34

1 Introduction35

Typically, climate model historical run evaluations focus on annual or longer-term36

mean sea surface temperature (SST). There are a number of areas where common bi-37

ases are seen across many models. Most Coupled Model Intercomparison Project Phase38

5 (CMIP5) models have substantial annual mean SST (Tmean) warm biases (up to sev-39

eral ◦C) in Southern Ocean SST primarily due to cloud-related short-wave biases (Flato40

et al., 2013; Hyder et al., 2018). A warm bias in Tmean in CMIP5 models has been iden-41

tified in the tropical southeastern Pacific and Atlantic, which is associated with exces-42

sive heat flux into the ocean caused by stratocumulus cloud errors (Wang et al., 2014).43

In eastern boundary upwelling regions, a Tmean warm bias in the CMIP5 multi-model44

mean (Richter, 2015; Wang et al., 2014) has been linked to underestimated cloud and45

insufficient cooling from upwelling (Richter, 2015). A too zonal North Atlantic Current46

can lead to a lack of warm water east of the Grand Banks of Newfoundland, and thus47

a SST cold bias in the northwest Atlantic (Kuhlbrodt et al., 2018; Drews et al., 2015).48

This cold bias in the CMIP5 multi-model mean is over 3◦C (Wang et al., 2014). A Tmean49

bias in the equatorial Pacific cold tongue exists in the multi-model mean of CMIP3, CMIP5,50

and CMIP6 models, with the cold tongue tending to be too cold and extending too far51

west (Tian & Dong, 2020). Li and Xie (2014) attributed Pacific cold tongue biases to52

an overly strong easterly wind in the western equatorial Pacific, acting to enhance up-53

welling. The latest state-of-the-art CMIP6 climate model outputs provide a foundation54

for the model SST bias identification and reduction, but the seasonal biases in CMIP655

models have not yet been evaluated globally.56

Previous studies have emphasised the benefits of increasing ocean model horizon-57

tal resolution, for example in the representation of boundary currents, ocean fronts, ed-58

dies and air-sea fluxes (Hewitt et al., 2017; Kirtman et al., 2012; Roberts et al., 2016).59

However, ocean vertical resolution has drawn less attention than ocean horizontal res-60

olution. Modelled diurnal and intraseasonal SST variability is affected by the vertical61
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resolution in the mixed layer (Misra et al., 2008; Xavier et al., 2008; Ge et al., 2017). How-62

ever, no studies have yet explored the impact of ocean vertical resolution on annual mean63

or seasonal extrema of SST in coupled models.64

Seasonal extrema of SST are important: winter SSTs determine the properties of65

intermediate and deep waters, while summer SSTs impact occurrences of tropical cyclones66

and coral bleaching. Thus, realistic model simulation of SST seasonal extrema is an es-67

sential aspect of model skill for future climate projections. Wang et al. (2014) showed68

that CMIP5 multi-model mean SST biases have spatial patterns independent of seasons,69

but amplitudes vary seasonally. Therefore, an accurate annual or long-term mean SST70

does not guarantee accurate seasonal extrema or seasonal cycle.71

A marked seasonal variability of SST warm bias in the eastern tropical Atlantic72

has been documented in CMIP5 models (Prodhomme et al., 2019; Richter et al., 2014),73

EC-Earth3.1 (Exarchou et al., 2018) and AWI-CM (de la Vara et al., 2020). In these mod-74

els, the eastern tropical Atlantic warm bias is maximum in boreal summer (June-July-75

August). Richter et al. (2012) attributes this to the largest wind biases occurring dur-76

ing spring. CMIP6 model SST cold biases in the North Pacific subtropics vary season-77

ally, and the seasonality is different between models (Zhu et al., 2020). Zhu et al. (2020)78

also found that the seasonal upper ocean cold bias in this region is related to vertical79

diffusivity. Song and Zhang (2020) suggested that the CMIP5 multi-model mean has sea-80

sonally dependent SST biases in the northeastern Pacific Ocean, with a warm bias dur-81

ing summer and a cold bias during winter, which they argued was caused by poorly sim-82

ulated North American monsoon winds.83

To our knowledge, there has been no assessment of biases in seasonal SST extrema84

on a global scale, so here we assess the performance of 20 CMIP6 models in simulating85

SST seasonal extrema. To examine the seasonal cycle of SST, most studies pick a spe-86

cific month or number of months to represent summer and winter. However, here we pick87

the month when local seasonal SST maxima/minima occur. Section 2 introduces the mod-88

els and the analysis techniques, and Section 3 discusses the results.89

CMIP6 models with different characteristics allow investigation of the factors re-90

lated to differences in model performance. We investigated the impact on SST biases of91

ocean grid type, ocean vertical coordinate, ocean and atmosphere horizontal and ver-92

tical resolution, Earth system model or not. It is shown that biases in Tmean and SST93

seasonal extrema are related to the ocean model vertical resolution. No clear relation-94

ship was found with any other model characteristic considered here.95

2 Data and Methods96

The historical run of 20 models were averaged over 1981-2010 to create monthly97

mean climatologies for each model. These 20 models with various ocean vertical reso-98

lutions include models with 33 levels: GISS-E2-1-H (Kelley et al., 2020); 40 levels: BCC-99

CSM2-MR (Wu et al., 2019), BCC-ESM1 (Wu et al., 2020), GISS-E2-1-G (Kelley et al.,100

2020), INM-CM5-0 (Volodin et al., 2017), and MPI-ESM1-2-HR (Müller et al., 2018);101

45 levels: CanESM5 (Swart et al., 2019); 46 levels: AWI-CM-1-1-MR (Semmler et al.,102

2019); 50 levels: ACCESS-CM2 and ACCESS-ESM1-5 (Law et al., 2017); 60 levels: CESM2103

(Danabasoglu et al., 2020), E3SM-1-0 (Golaz et al., 2019) and SAM0-UNICON (Park104

et al., 2019); 62 levels: MIROC6 (Tatebe et al., 2019); 70 levels: NorESM2-MM (Seland105

et al., 2020); 75 levels: GFDL-CM4 (Held et al., 2019), HadGEM3-GC3-LL (Andrews106

et al., 2020), HadGEM3-GC3-MM (Andrews et al., 2020), UKESM1-0-LL (Sellar et al.,107

2019) and IPSL-CM6A-LR (Boucher et al., 2020). AWI-CM-1-1-MR, GFDL-CM4 and108

HadGEM3-GC3-MM have an ocean horizontal resolution of approximately 25 km; BCC-109

CSM2-MR, BCC-ESM1, E3SM-1-0, INM-CM5-0 and MPI-ESM1-2-HR have an ocean110

horizontal resolution of approximately 50 km; the remaining models share an ocean hor-111
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izontal resolution of approximately 100 km. The first ensemble member (r1i1p1f1) is used,112

except when r1i1p1f1 is not available; we choose r1i1p1f3 for HadGEM3-GC3-LL and113

HadGEM3-GC3-MM; r1i1p1f2 for UKESM1-0-LL.114

Maximum and minimum monthly mean SST (Tmax and Tmin), and the range of115

the seasonal cycle (Tcycle, that is Tmax minus Tmin) from the model climatologies are116

compared with the World Ocean Atlas 2018 (WOA18) observational climatology on a117

grid spacing of 0.25◦×0.25◦ (Locarnini et al., 2018), which covers the period from 1981118

to 2010. The model fields were interpolated to the same grid as WOA18. Biases are de-119

fined as model values minus WOA18 values. Since there is some uncertainty in obser-120

vational climatologies because of sparse sampling, instrumental error, quality control or121

gridding techniques, we compared 3 recent climatologies: WOA18, WOCE-Argo Global122

Hydrographic Climatology (WAGHC)(Gouretski, 2018) (covering the time period 1985-123

2016), and HadISST (Rayner et al., 2003) (covering the time period 1981-2010). Any124

grid points where the maximum difference in Tmax or Tmin between the three climatolo-125

gies is larger than 2◦C are considered uncertain for that variable, and these grid points126

are excluded from our assessment. Any grid points which did not have values for all 12127

months for at least two climatologies are also excluded. For Tcycle, we exclude any points128

where either Tmax or Tmin is excluded. 4%, 3% and 4% of the ocean’s surface area is ex-129

cluded for Tmax, Tmin and Tcycle respectively.130

To quantify the performance of CMIP6 models, we calculated the area-weighted131

root mean square error of the model against WOA18 (henceforth RMSE) for global SST,132

SST at mid-high latitudes (latitudes greater than 30 degrees in both hemispheres) and133

SST at low latitudes (latitudes between 30◦N and 30◦S). We use SST monthly time se-134

ries in specific regions to investigate the representation of the seasonal cycle. Linear re-135

gression was performed to study the relationship between SST bias and ocean vertical136

resolution.137

3 Results and Discussion138

3.1 Model Representation of SST Extrema139

The magnitudes of biases in Tmax and Tmin vary from model to model (Figs. 1,140

2). Most models have Tmax and Tmin RMSEs between 1◦C and 2◦C. Only HadGEM3-141

GC31-LL and GFDL-CM4 have Tmax RMSE less than 1◦C (0.94◦C and 0.93◦C respec-142

tively). The Tmax and Tmin RMSEs are both larger than that for Tmean in all models.143

AWI-CM-1-1-MR, GFDL-CM4, HadGEM3-GC31-LL, HadGEM3-GC31-MM, IPSL-CM6A-144

LR, NorESM2-MM, SAM0-UNICON and UKESM1-0-LL have Tmean RMSEs less than145

1◦C. GISS-E2-1-H has the largest Tmax RMSE of 1.89◦C and MIROC6 has the largest146

Tmin RMSE of 1.62◦C (Figs. 1, 2). MIROC6 also has the largest Tmean RMSE (1.61◦C).147

Tmax and Tmin biases vary with latitude (Figs. 1, 2, 3g, 3h). Models have larger148

Tmax RMSE at mid to high latitudes (30◦-80◦) than at low latitudes (Fig. 3g). Typi-149

cally, the RMSE of Tmax at 30◦-80◦ is 1-2◦C larger than at low latitudes. For GISS-E2-150

1-H, GISS-E2-1-G, BCC-CSM2-MR, BCC-ESM1 and IPSL-CM6A-LR, Tmax RMSEs at151

30◦N-80◦N are about 3◦C larger than at low latitudes. For MIROC6, Tmax RMSE at152

70◦S-80◦S is over 4◦C larger than at low latitudes, due to the large warm bias over the153

Southern Ocean during summer (Fig. 1m). A similar pattern is seen in Tmin, but the154

variation with latitude is smaller (Fig. 3h). Flato et al. (2013) found a similar result for155

some CMIP5 models, with larger zonal mean biases in Tmean at mid to high latitudes156

(30◦-70◦) than at other latitudes.157

Model performances in many locations are different for Tmax and Tmin. Tmax bi-158

ases are generally larger than Tmin biases, especially at mid-high latitudes (Figs. 1, 2,159

3g, 3h). The larger difference at mid-high latitudes may be explained by the large sea-160

sonal cycle of mixed layer depth there. Shallower summer mixed layers have smaller heat161
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Figure 1. (a) Tmax in WOA18 and (b-u) Tmax model biases. Black dots mark grid points

excluded from our analysis, as described in section 2. The numbers on (b-u) indicate the global

RMSE of Tmax. Red lines in (a) are 30◦N and 30◦S.
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Figure 2. As in Fig. 1, but for Tmin.
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Figure 3. Monthly time series of area-weighted mean SST over (a) western equatorial Pacific

(5◦S - 5◦N, 140◦E - 160◦W), (b) northwestern Indian Ocean (60 - 70◦E, 10 - 20◦N), (c) sub-

tropical Southern Hemisphere (30◦ - 40◦S), (d) subtropical Northern Hemisphere (30 - 40◦N),

(e) Arctic (70 - 80◦N), (f) Antarctic (70 - 80◦S), and area-weighted RMSE in 10◦ bands for (g)

Tmax, (h) Tmin, (i) Tcycle. Y-axis range is same for (a-f).
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capacity, thus a small error in heat fluxes or mixing processes can result in a large bias162

for Tmax, though this will be modulated by any seasonal biases in mixed layer depth. The163

difference between biases in Tmax and Tmin leads to biases in Tcycle. The RMSE of Tcycle164

at low latitudes is typically 1◦C, whereas at mid-high latitudes it is larger, particularly165

in the Northern Hemisphere (Fig. 3i). The Tcycle RMSE in IPSL-CM6A-LR and MIROC6166

reaches 4◦C at high latitudes (Fig. 3i).167

In polar regions Tmin RMSEs in all models except for MIROC6 are close to 0◦C168

(Fig. 3h) as winter SSTs in models are at or close to freezing (Figs. 3e, 3f). Note that169

some models have fixed freezing points and some models have salinity-dependent freez-170

ing points (Beaumet et al., 2019). Tmin biases in the Arctic are larger than in the Antarc-171

tic (Figs. 3e, 3f), and are cold biases in most models. This suggests that freezing points172

may be too low in some models, and/or sea ice extent may be biased in some models (Shu173

et al., 2020), but it could also be caused by the lack of wintertime observations in the174

Arctic biasing the climatology.175

The large cold biases at northern hemisphere mid-high latitudes in BCC-CSM2-176

MR, BCC-ESM1, GISS-E2-1-G and GISS-E2-1-H, are typically 2-5◦C smaller in Tmin177

than in Tmax (Figs. 1, 2, 3g, 3h). One possible reason for these cold biases is the over-178

estimated cloud in BCC-CSM2-MR (Wu et al., 2019), BCC-ESM1 (cloud simulation likely179

to be similar to BCC-CSM2-MR), GISS-E2-1-G and GISS-E2-1-H (Kelley et al., 2020),180

which blocks too much incoming solar radiation. As solar radiation is negligible at high181

latitudes in winter, the SST cold bias due to overestimated cloud is much smaller than182

that in summer, which is consistent with our results. Deep winter mixed layer depth and183

the way SSTs at high latitudes tend towards freezing also contribute to the smaller cold184

biases in Tmin than in Tmax.185

In most models there is a warm bias in the Southern Ocean, commonly attributed186

to excessive short wave radiation linked to underestimated cloud (Hyder et al., 2018).187

The warm bias is larger for Tmax than Tmin (Figs. 1, 2, 3g, 3h), and the RMSE at 70◦S-188

80◦S is 1-3◦C larger in Tmas than in Tmin (Fig. 3g, 3h). Seasonality of both solar radi-189

ation and mixed layer depth at these latitudes likely contributes to the seasonal cycle190

of this warm SST bias. Consistent with our finding, Wang et al. (2014) pointed out that191

the CMIP5 multi-model mean warm bias is much stronger during December-January-192

February than June-July-August.193

MIROC6 stands out with the largest warm bias in the Southern Ocean (Figs. 1m,194

2m), with a Tmax RMSE between 3 and 5◦C and a Tmin RMSE between 2 and 3◦C at195

50-80◦ S (Fig. 3g). Beadling et al. (2020) also found that MIROC6 stands out from 21196

other CMIP6 models with the largest Tmean warm bias in the 0-100 m averaged tem-197

perature in the Southern Ocean (which in some locations is over 3◦C), and has the low-198

est sea ice extent. As well as cloud error, this significant SST warm bias may also be as-199

sociated with open ocean deep convection in models, which brings deep warm water to200

the surface in the Southern Ocean. Heuzé (2020) stated that a large majority of CMIP6201

models form Antarctic deep water via open ocean deep convection, and the area of open202

ocean deep convection is larger in MIROC6 than in other CMIP6 models, consistent with203

our result.204

In eastern boundary upwelling regions (especially the Benguela and Humboldt Cur-205

rents), most models have warm biases for both Tmax and Tmin, but the bias is 1-5◦C smaller206

in Tmax than in Tmin (Figs. 1, 2). This warm bias also exists in CMIP5 multi-model means207

(Richter, 2015; Wang et al., 2014). Underestimation of cloud, and insufficient upwelling208

due to overly weak winds, are suggested causes for these warm SST biases (Richter, 2015).209

Letelier et al. (2009) used satellite data to show that in the Humboldt Current coastal210

region the cooling effect of upwelling is strongest in austral summer, which is consistent211

with the peak of upwelling-favorable wind in December and January. A poor simulation212
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of this seasonal process will contribute to the seasonality of the SST bias in eastern up-213

welling boundary regions.214

Most models have a warm SST bias in the eastern equatorial Atlantic (Figs. 1 and215

2). The Tmin multi-model-mean bias is 1-3◦C larger than the Tmax multi-model-mean216

bias. Consistent with our analysis, the CMIP5 multi-model mean Tcycle bias is typically217

1-3◦C in this region, with larger warm biases during June-July-August when Tmin oc-218

curs (Richter et al., 2014; Prodhomme et al., 2019). GISS-E2-1-G and GISS-E2-1-H have219

the largest seasonality of SST warm bias in the eastern equatorial Atlantic, with Tcycle220

biases up to 5◦C. Richter et al. (2012) argued that the warm SST bias in eastern equa-221

torial Atlantic during June-July-August is linked to wind stress errors during March-April-222

May. Because the easterly winds are too weak, the tilt of the equatorial thermocline is223

reduced, leading to a deepened thermocline in the east. That too deep thermocline in224

the eastern equatorial Atlantic inhibits cold tongue formation and results in the warm225

bias (Richter et al., 2012).226

Although the amplitudes of biases are different in Tmax and Tmin, the global pat-227

terns of Tmax bias and of Tmin bias are similar in most models (Figs. 1, 2). Wang et al.228

(2014) also indicated that the SST bias of the CMIP5 multi-model mean has patterns229

independent of seasons. However, our results show two exceptions: E3SM-1-0 and IPSL-230

CM6A-LR, which both have an overall warm bias in Tmax, but an overall cold bias in231

Tmin (Figs. 1h, 2h, 1t, 2t). The warm bias in Tmax and cold bias in Tmin can compen-232

sate for each other and result in a small Tmean bias. In E3SM-1-0/IPSL-CM6A-LR, the233

Tmean RMSE is 1.17/0.94◦C, which is smaller than the Tmax RMSE (1.38/1.36◦C) and234

Tmin (1.39/1.21◦C). In E3SM-1-0, the global annual average mixed layer depth is gen-235

erally too shallow (Golaz et al., 2019), which can contribute to the summer SST warm236

bias and winter SST cold bias. For IPSL-CM6A-LR, the large difference between Tmax237

and Tmin at mid-high northern latitudes results in a bias of more than 3◦C in Tcycle (Fig.238

3i). Boucher et al. (2020) stated that in IPSL-CM6A-LR a SST warm bias in the North239

Pacific mostly occurs during summer, which is consistent with our analysis.240

In mid-latitudes the SST seasonal cycle is well represented by an annual sinusoid241

whereas in equatorial and polar regions an annual sinusoid explains little of the total SST242

seasonal variance (Trenberth, 1983; Yashayaev & Zveryaev, 2001). In regions with fairly243

sinusoidal SST annual cycles such as the subtropics, models have realistic SST seasonal244

cycles with well simulated amplitude and phase of the annual cycle (Figs. 3c, 3d). Phase245

biases are mainly within 1 month. In subtropical regions, the seasonal SST biases are246

consistent with biases in Tmean. Differences between the Tmax and Tmin biases (Figs.247

3c, 3d) are smaller than those in non-sinusoidal regions (Figs. 3a, 3b, 3e, 3f). In regions248

with non-sinusoidal SST seasonal cycles such as the western equatorial Pacific, north-249

western Indian Ocean, the Arctic and the Antarctic, models tend to have biases in am-250

plitudes or phases of their SST seasonal cycles (Figs. 3a, 3b, 3e, 3f). The regions with251

non-sinusoidal SST seasonal cycle have phase biases up to 6 months.252

In the western equatorial Pacific, the SST seasonal cycle in WOA18 is modest (within253

1◦C), whereas in some models such as MPI-ESM1-2-HR, GISS-E2-1-G, GISS-E2-1-H and254

especially INM-CM5-0 the seasonal cycle is much larger (Fig. 3a). In INM-CM5-0, the255

range of SST seasonal cycle is about 2◦C and there is a cold SST bias throughout the256

year, reaching 3◦C during September-October-November (Fig. 3a). Similar to our anal-257

ysis, Volodin et al. (2017) noted that INM-CM5-0 has a cold bias of more than 4◦C in258

annual mean temperature in the upper 700 m of the western equatorial Pacific.259

In the northwestern Indian Ocean where the monsoon prevails, SST has a semi-260

annual cycle, but most models are unable to reproduce this with the correct amplitude261

and phase (Fig. 3b). The timing of the primary maximum SST in ACCESS-ESM1-5 is262

two months later than in WOA18; GISS-E2-1-G and GISS-E2-1-H fail to simulate a re-263

alistic second minimum SST in August. Most CMIP6 models have SST cold biases in264
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this region throughout the year (Fig. 3b), however the biases are generally larger dur-265

ing March-April-May than other months. Consistent with our result, McKenna et al. (2020)266

found a cold SST bias over the northwestern Indian Ocean in the CMIP6 multi-model267

mean. Fathrio et al. (2017) also showed that the SST cold bias over the western Indian268

Ocean in the CMIP5 multi-model mean has a seasonal cycle with maximum bias occur-269

ring during March-April-May. As the SST seasonality in the north Indian Ocean is linked270

to the seasonal cycle of tropical cyclone intensity (Gilford et al., 2017), the bias of SST271

seasonal cycle could lead to bias in genesis or intensity of tropical cyclones in climate mod-272

els.273

3.2 Impact of Ocean Vertical Resolution on SST Seasonal Extrema274

We have shown that biases in Tmax, Tmin and Tcycle are different between mod-275

els. We now investigate the role of ocean model vertical resolution in influencing global276

area weighted RMSE for Tmax, Tmin, Tcycle and Tmean. For the 20 models, there is a de-277

crease in bias with increasing number of vertical levels (Fig. 4). SST is influenced by ocean278

stratification and vertical mixing processes, whose representation depends upon the ver-279

tical resolution. Models with a coarse vertical grid generate errors in the determination280

of stratification and thus SST, whereas upper ocean processes is better simulated in mod-281

els with higher vertical resolution. Our findings are consistent with studies which found282

that high resolution in the upper ocean is important for the reprensentation of diurnal283

and intraseasonal SST variability in ocean general circulation models (Misra et al., 2008;284

Xavier et al., 2008; Ge et al., 2017).285

On a global scale, seasonal biases are consistent with biases in Tmean (Figs. 1, 2),286

and this is well demonstrated in regions with fairly sinusoidal SST annual cycles (Figs.287

3c, 3d). However, particular areas of the world show different biases in Tmax and Tmin288

(Figs. 3a, 3b, 3e, 3f).289

The sensitivity of global Tmax RMSE to ocean vertical resolution (-0.013◦C per level)290

is twice as much as that of Tmin (-0.006◦C per level) (Fig. 4a, 4b). This is likely linked291

to a shallower mixed layer depth in summer than in winter, especially at mid-high lat-292

itudes where the sensitivity of Tmax (-0.015◦C per level) is three times greater than that293

of Tmin (-0.004◦C per level). Small Tmin biases in polar regions as temperatures tend294

towards freezing also contributes to the weaker impact of vertical resolution on Tmin.295

Unlike at mid-high latitudes, at low latitudes the sensitivities of Tmax (-0.011◦C296

per level) and Tmin (-0.009◦C per level) are similar. The reason might be that low lat-297

itudes mixed layer depth is less seasonal. Furthermore, the sensitivity of Tcycle at low298

latitudes is weak (only -0.002◦C per level), as the amplitude of the SST seasonal cycle299

is small in equatorial regions (Figs. 3a).300

No significant correlation was found between the models’ seasonal biases and hor-301

izontal ocean resolution, suggesting that SST extrema bias is not sensitive to horizon-302

tal ocean resolution. Chassignet et al. (2020) used four pairs of matched low-resolution303

and high-resolution ocean simulations from FSU-HYCOM, AWI-FESOM, NCAR-POP304

and IAP-LICOM to isolate the effect of ocean horizontal resolution, and compared their305

representation of global SST. They found that enhanced horizontal resolution does not306

deliver unambiguous SST bias improvement in all regions for all models, which is con-307

sistent with our finding.308

The 20 models discussed here vary not only in ocean horizontal and vertical res-309

olution, but also in atmospheric resolution, ocean grid, ocean vertical coordinate, and310

inclusion (or not) of biogeochemical processes. The Tmax and Tmin biases were assessed311

against each of these characteristics in the same way, but the ocean vertical resolution312

was the only characteristic yielding a statistically significant relationship.313

–10–



manuscript submitted to Geophysical Research Letters

Figure 4. Global RMSE of (a) Tmax, (b) Tmin, (c) Tcycle and (d) Tmean, all against the num-

ber of vertical levels in ocean. Circles represent earth system models, while squares represent

non earth system models. The size of the markers represents the ocean horizontal resolution for

that model, with larger markers for models with lower horizontal resolution. The black line is the

line of best fit (with the least sum of squared errors). The gradient (◦C per level) of the linear

regression is shown on each panel.
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4 Conclusions314

Global area-weighted Tmax, Tmin and Tcycle RMSEs are typically 1-2◦C. Most mod-315

els have Tmax and Tmin biases of the same sign at most grid points, apart from IPSL-316

CM6A-LR and E3SM-1-0 which have an overall warm bias in Tmax and an overall cold317

bias in Tmin. MIROC6 stands out as having an exceptionally large warm bias in the South-318

ern Ocean, especially in summer (more than 5◦C).319

For the models we examined, those with increased vertical resolution in the ocean320

generally had a better representation of SST extrema, particularly Tmax. This is likely321

related to the ability of the higher resolution models to better represent the surface mixed322

layer, and particularly shallow mixed layers in summer. Thus the increase in vertical res-323

olution between CMIP5 and CMIP6 has most likely had a positive impact on the fidelity324

of the simulation of SST. When averaged across the whole globe, the bias in Tmean is325

typically consistent with Tmax and Tmin biases, but certain regions (eastern boundary326

upwelling regions, polar regions, the eastern equatorial Atlantic) show significant differ-327

ences between winter and summer biases. In regions with non-sinusoidal SST seasonal328

cycles, models tend to have biases in amplitudes or phases of their SST seasonal cycles.329
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