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Abstract:

A new solution method is given for the general multiple collocation problem for-
mulated in terms of the covariance equations. By a logarithmic transformation,
the covariance equations reduce to ordinary linear equations that can be han-
dled using standard methods. Solution by matrix inversion has the advantage
that the analytical solutions can be reconstructed. The method can be applied
to each determined or overdetermined subset of the covariance equations. It is
demonstrated on quintuple collocations of ocean surface vectors winds obtained
from buoys, three scatterometers and model forecasts, with representativeness
errors estimated from differences in spatial variances. The results are in good
agreement with those from quadruple collocation analyses reported elsewhere.



The average of the solutions from all determined subsets of the covariance equa-
tions equals the least-squares solution of all equations. The standard deviation
of all solutions from determined subsets agrees with the accuracy found in earlier
triple and quadruple collocation studies, but the difference between minimum
and maximum value is much larger. It is shown that this is caused by increased
statistical noise in more complex solutions. The averages of the error covariances
are close to zero, with a few exceptions that may point at small deficiencies in
the underlying error model. Precise accuracy estimates are needed to decide to
what extent statistical noise explains the spreading in the results and what is
the role of deficiencies in the underlying error model.

Plain language summary

When a quantity is measured with three independent measuring systems at
(almost) the same time and place, it is possible to retrieve the relative calibra-
tion and the errors of the systems using a statistical technique named triple
collocation. When more than three measuring systems are available, also error
correlations can in principle be retrieved. In most cases there are more equations
than unknowns, and the problem is solved in an approximate way. In this paper
a new solution method is presented. It allows to solve all possible subsets of the
problem, to retrieve the analytical solutions, and to study the statistics of the
solutions. The method is applied to ocean surface wind components measured
with five different systems (quintuple collocation): buoys, three satellite-borne
scatterometers, and forecasts from a weather prediction model. The results are
in good agreement with those from earlier triple and quadruple analyses, though
the spreading in the results is larger. It is shown that this is due to the more
complex solutions that are present in a quintuple collocation analysis, but not
in quadruple or triple collocation. It is also shown that the underlying error
model has good consistency.

1. Introduction

The triple collocation method was introduced by Stoffelen (1998) in order to
assess the intercalibration coefficients and error variances of three systems ob-
serving ocean surface vector winds. It is an extension of regression analysis
to three dimensions under the assumptions that linear calibration is sufficient,
that the errors are independent of the measured value (also referred to as error
orthogonality), and that the correlations in the errors of the observing systems
are known or can be neglected. Triple collocation has been applied to a variety
of geophysical parameters like ocean surface vector winds (Stoffelen, 1998; Vo-
gelzang et al., 2011; Vogelzang and Stoffelen, 2021), ocean surface wind speed
(Abdallah and De Chiara, 2017), ocean surface current (Danielson et al., 2018),
sea surface salinity (Horeau et al., 2018), precipitation (Roebeling et al., 2012),
soil moisture (e.g. Gruber et al., 2016), etc.

Stoffelen (1998) already realized that the assumption of uncorrelated errors is
in most cases violated, because differences in the spatial and/or temporal res-
olutions between the observation systems give rise to representativeness errors



which express themselves as error covariances, also in cases where the measure-
ments are completely independent. Unfortunately the term representativeness
error has different meanings in different communities (Gruber et al., 2020). In
this paper we follow the meteorological convention and consider representative-
ness errors as caused by differences in resolution between the various systems,
in order to distinguish them from error correlations caused by interdependence
of the measurement system errors. Spatial representativeness errors can be es-
timated from spectral analysis (Stoffelen, 1998; Vogelzang et al., 2011), from
constraints on the intercalibration (Lin et al., 2015), or from spatial analysis
(Vogelzang et al., 2015). Another approach is to estimate spatial representative-
ness errors, or error covariances in general, using more than three observation
systems. This is enabled by the increase of satellite observations, but can also
be achieved by introducing instrumental variables, i.e., using model forecasts or
hindcasts with different analysis times (Su et al., 2014; Abdallah and De Chiara,
2017; Danielson et al., 2018) or time-lagged variables (Crow et al., 2015). These
developments led to so called extended collocation analyses, although that term
has also been used by McColl et al. (2014) for a generalization of the correlation
coefficient from linear regression to triple collocation.

A number of methods has been proposed to solve the multiple collocation prob-
lem for four or more observing systems. The methods depend on the spatial
and temporal statistical properties of the quantity under consideration and on
the availability of a calibration reference. The most popular one is to change
variables, cast the problem in matrix form, and solve the resulting overdeter-
mined system of equations using a least-squares method (Pierdicca et al., 2015;
Gruber et al., 2016). This is equivalent to minimizing a quadratic cost func-
tion to the unknowns. A different approach has been followed by Vogelzang
and Stoffelen (2021) for quadruple collocations. They solve each subset of four
equations from the six off-diagonal covariance equations analytically. There
are 15 such subsets, further referred to as models, of which 12 are soluble. The
remaining two equations of each soluble model can be solved for two error covari-
ances. The number of possibilities grows rapidly with the number of observing
systems, and for quintuple collocation there are already 252 models. It is clear
that the analytical solution of the problem becomes increasingly cumbersome
and mathematically complex.

In this paper a new method is introduced for solving all possible models. The
diagonal covariance equations establish the error variances of the observing sys-
tems, while a determined subset of the off-diagonal equations is solved for the
calibration scalings and the common variance. By taking logarithms, this system
of covariance equations is transformed into a set of ordinary linear equations,
that can be solved using standard methods. The determinant of the system
clearly indicates whether a solution exists. Solution by matrix inversion enables
reconstruction of the analytical solutions and introduction of a quantity named
complexity that gives the number of observed covariances that enter the ana-
lytical solution. The method proves to be fast and accurate, and can also be
applied to any overdetermined subset of the covariance equations. Results are



shown here for quintuple collocations of ocean vector surface winds, while up to
octuple collocations have been tested (not shown here for brevity).

In section 2 the multiple collocation problem is formulated and the new solution
method is introduced. It is applied to a quintuple collocation data set consisting
of ocean surface vector winds observed by buoys, three different scatterometers
(ASCAT-A, ASCAT-B, and ScatSat), and ECMWF model forecasts. Section
3 contains a short description of the data used and the representativeness er-
rors that are estimated from differences in spatial variances. The results are
presented and discussed in section 4. For comparison also least-squares and
minimization solutions are calculated. The average of all models equals the
least-squares solution and the minimization solution. The standard deviation
over all models agrees with the accuracy estimated from triple collocation anal-
yses, but the range is considerably larger. It is shown that this is caused by
increased statistical noise in more complex solutions. The average error covari-
ances are close to zero, indicating that deficiencies in the underlying error model
may also play a role. The paper ends with the conclusions in section 5.

2 Multiple collocation formalism

Suppose we have a set of K collocated measurements made by n observation
systems, {xik)}, with k the collocation index, k = 1, ..., K, and 7 the observation
system index, i = 1,...,n. Assuming that linear calibration is sufficient for
intercalibration and omitting the collocation index k, we can pose the following
simplified observation error model:

r; =a; (t+¢;)+b (1)

where ¢ is the signal common to all observation systems (also referred to as
the truth), a; the calibration scaling, b; the calibration bias, and ¢; a random
measurement error with zero average and variance o7. It is assumed that e;
is uncorrelated with the common signal ¢, (te;) = 0, where the brackets { )
stand for averaging over all measurements k. In the literature this condition
is also referred to as error orthogonality. Of course, the assumptions made on
linearity and error orthogonality should be checked first by inspecting scatter
plots. Note that x; is an uncalibrated measurement while ¢ is calibrated, so (1)

actually constitutes an inverse calibration transformation.

Without loss of generality we can select the first observation system as calibra-
tion reference, so a; = 1 and b; = 0. By forming first and second moments from
(1) and introducing covariances the general collocation problem can be cast in
the form (McColl et al., 2014; Vogelzang and Stoffelen, 2021)

by = M; —a; M, (2)
with M, = (x;) the averages of the observations, and
Cy = a;a; (T + eij) (3)

with Cj; = M;; — M;M; the (co-)variances of the observations, M;; = (z;z;)



the (mixed) second moments of the observations, T’ = (t?) — M? the common
variance, and e;; = <€i€j> the error covariances. Note that Cj; and e;; are
symmetric in their indices. Representativeness errors can be incorporated in
the observed covariances by

n—1 2
Cij = Gy = 2w Tk (D)

where r,% is the representativeness error of system k with respect to system k41,
the systems assumed to be sorted to decreasing spatial resolution. Also error
covariances known a priori can be included in this way.

At this point it must be emphasized that the approach outlined above is geared
towards ocean surface vector winds. Their statistical properties in time and
space are well studied. In particular, their spectra follow power laws, and the
observing systems with highest resolution show the largest variations. Therefore
buoy winds are widely accepted as calibration standard. This need not be the
case for other quantities, and slightly different approaches have been developed
to account for this. Nevertheless, much of what follows can be easily adapted
to those approaches.

Equations (2) and (3) completely define the multiple collocation problem for
error model (1). Once the calibration scalings a; are known, the calibration
biases b; follow from (2). The remaining unknowns, in particular the essential
unknowns (the calibration scalings a;, the error variances o? = ¢;;, and the

common variance T'), must be obtained from the covariance equations (3).

For triple collocation, n = 3, there are six equations. Setting the off-diagonal
error covariances e;; to zero, the covariance equations can be solved analytically
for the essential unknowns. For quadruple and higher-order collocations there
are more equations than essential unknowns: the number of equations is n(n +
1)/2 while the number of essential unknowns equals 2n. The common approach
is to solve (3) as an overdetermined system with a least-squares method by
introducing new variables y, = a,a;T if the error covariance e;; is neglected
or Y, = a;a; (T + eij) if it is included as unknown and writing the covariance
equations in matrix-vector form as Ay = b with b, = C}; and A a matrix with
elements zero or one (Gruber et al., 2016). The solution reads

y = (ATA) "ATb (5)

provided the inverse of AT A exists. In cases where no calibration reference is
selected, also the error variances are included in the variables (e.g., Gruber et
al., 2016).

The n error variances o2 only appear in the n diagonal covariance equations,
so these are easily calculated when a, and T are known. The remaining n(n —
1)/2 off-diagonal covariance equations only contain the essential variables a;
and T plus the error covariances e;. For quadruple collocations, Vogelzang
and Stoffelen (2021) take all possible combinations of determined subsets of
off-diagonal covariance equations, neglect the error covariances, and solve each



set analytically. There are 15 possible combinations, further referred to as
models, of which 12 have a solution. Besides the essential unknowns each model
also yields two error covariances from the remaining two covariance equations
that were not used to solve a; and T'. The spread in the model solutions is
considered as an indication of how accurate the underlying error model (1)
describes the data. The number of models grows rapidly with the number of
observing systems, see table 1 in the next section. For quintuple collocation
there are already 252 models, and analytical solution is practically impossible.

Taking a closer look at the covariance equations with the error covariances
neglected, one sees that the unknowns a; and 7T appear as a product on one
side and the coefficients C};, calculated from the data, on the other. By taking
logarithms on both sides, the unknowns are separated and the equations reduce
to an ordinary system of linear equations. Suppose a selection of n off-diagonal
covariance equations {C’i(jm) = aiajT} with j > ¢ has been made, labeled with
index m = 1, ..., n. Setting z; = InT, 2z, = Ina,, for m = 2,... ) n, and

d,, =In Ci(jm, the off-diagonal covariances read in matrix-vector notation
Dz =d (6)

where the matrix D has for each row the value 1 in the first column, D, ; =
1, and one or two additional values 1 in the remaining columns, D, ; = 1 if
i > 1, and D,,; = 1. All other elements of D are zero. The determinant of
D can thus only take integer values, the zero value indicating that system (6)
has no solution. The calibration scalings a,,, are generally close to 1, so their
logarithms are around 0, and the observed covariances Cij are nonnegative, also
when representativeness errors are taken into account. Therefore the problem
(6) is well posed and can be solved numerically with standard methods.

In this work the inverse of D is calculated using Gaussian elimination, and the
solution reads z = D~'d. This has the advantage that the analytical solution
can be reconstructed, since in components

n —
Bm = Zkzl Dm%(dk' (7)
which implies that after exponentiating

1
le

T= HZ:l (Cijk)) (8)

D 1
n k mk
a, =TT, (CF) ™, m>1(9

so the analytical solutions for the common variance T and the calibration scal-
ings a,, are products of observed covariances raised to a power determined by
the components of D™!. The error variances are given by o2, = C,,,, — a2, T,
and from (8) and (9) it follows that

Dii)

n (
ot =Cyy — Hk:1 (Ci(jk>) (10)



n (D1 +2D,5)
02 = Cou — Iy (CF) 570 m>1 (1)

Note that in (11) factors may cancel in the exponent.

The number of observed covariances contributing to a solution will be denoted
as its complexity . For the common variance and the calibration scalings the
complexities are

Y(T) = X5, D] (12)
Y(ap) =0 [Dukl, m>1(13)

The calibration scalings are composed of an even number of observed covari-
ances, as many in the numerator as in the denominator, since their values are
of order one. The common variance is composed of an odd number of observed
covariances, one more in the numerator than in the denominator. The definition
of complexity is extended for the error variances as the complexity of a2, T and
reads

v(01) =2(T) =3, D] (14)
(o) =7(a5,T) = 3, [Di} + 2D (15)
The error variances have odd complexity.

The same logarithmic transformation can also be applied to all off-diagonal co-
variance equations and solved with the least-squares method, having the advan-
tage that the solution is given directly in the logarithms of the basic unknowns
rather than combinations of them. The complexities of the solutions are de-
fined in the same manner as (12) - (15), except that D! is to be replaced by

(DTD) DT because it is no longer a square matrix and that the summation
is over all n(n — 1)/2 off-diagonal covariance equations. If the number of equa-
tions permits, also error covariances can be included by adding extra variables
2y, = log(T—&—eij) with m > n. Similarly, the scaling of system 1 can be included
if no calibration reference is selected.

A solution method equivalent to the least-squares solution is minimizing a
quadratic cost function J defined as

n n 2
J = Zizl Zj:“_l (aia’jT - C’ij) (16)

to a; and T using a standard conjugate-gradient method. In this work the quasi-
Newton routine named LBFGS written by J. Nocedal is used (Liu and Nocedal,
1989).

3 Data and representativeness errors

A quintuple collocation analysis has been performed with the data used by
Vogelzang and Stoffelen (2021). The quadruple collocation files of buoy (b),
ASCAT-B (B) or ASCAT-A (A), ScatSat (S), and ECMWF (E), were combined
into one bBASE quintuple collocation file with 2454 collocations. The reader



is referred to Vogelzang and Stoffelen (2021) for a description of these data.
The maximum time difference was set to 1 hour, because of the 50 minutes
time difference between ASCAT-A and ASCAT-B, while the maximum distance
between buoy location and scatterometer grid center was 25 km.

In general, the representativeness errors can’t be retrieved from the error covari-
ances. The number of off-diagonal covariance equations is n,q = n(n — 1)/2,
so the number of error covariances that can be retrieved is n,. = n,g —n =
n(n—3)/2. The number of representativeness errors is n,, = % =ng.+1,
so there is always one off-diagonal covariance equation lacking. This can be cir-
cumvented when the two coarsest resolution systems have the same spatial and
temporal resolution. In the case considered here one could try ECMWF fore-
casts with different analysis time. However, as already remarked in (Vogelzang
and Stoffelen, 2021) this would introduce an additional error covariance between
the two forecasts, and the resulting model has no solution.

As a consequence, the representativeness errors must be estimated in a differ-
ent way. In this study they are obtained from differences in spatial variance
as a function of separation distance (scale). Figure 1 shows the difference in
spatial variance V(s) = Vi.:(8) — Veemwr(8), as a function of scale s for
ASCAT-B, ASCAT-A, and ScatSat. Figure 1 is the same as Figure 2 in (Vo-
gelzang and Stoffelen, 2021). In the terminology of equation (4), the ScatSat
representativeness error with respect to the ECMWF model, 2, is defined as
72 = Vaeatsat (5) — Veomwr (), the height of the dotted curve. The representa-
tiveness error r2 of ASCAT-A relative to ScatSat equals the vertical distance
between the dotted curve and the solid curve, and that of ASCAT-B relative to
ASCAT-A, r3 by the vertical distance between the dashed and the solid curve.
The representativeness error of ASCAT-B relative to the ECMWEF background
equals r3+r2+r2, the height of the dashed curve in Figure 1. The representative-
ness errors increase with scale. Previous work indicated that the optimum scale
for calculating the representativeness errors is about 200 km for the zonal wind
component v and about 100 km for the meridional wind component v. Note
that both correspond to a spatial representativeness wind vector component
variance of about 0.3 m? s for the ASCATSs,
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1. Difference between the spatial variance of ASCAT-A, ASCAT-B, and ScatSat
and that of ECMWF, V(s), as a function of s for the zonal and meridional
wind components, u and v.

4 Results and discussion

As a check, the numerical solutions, calculated in double precision, were com-
pared to the analytical ones for the quadruple collocations in (Vogelzang and
Stoffelen, 2021) and were found to agree to at least six decimal places.

4.1 Number of solvable models

Table 1 gives the number of observing systems, n, the number of off-diagonal
covariance equations, the number of models, and the number of solvable and
unsolvable models obtained from (6). The number of models, n,,, satisfies

- (n(n - 1)/2) an

The fraction of solvable models decreases from 80% for quadruple collocation
to about 23% for nonuple collocations, but still the number of solvable models
increases rapidly.

Observing Off- Models Solvable Unsolvable
systems diagonal
equations

Figure



Observing Off- Models Solvable Unsolvable
systems diagonal
equations

Table 1 Number of observing systems, number of equations, number of models,
and number of solvable and unsolvable models.

Table 1 shows that there are 162 solvable models for quintuple collocations.
As for quadruple collocations, different models lead to different solutions, so it
makes little sense to present them all. Therefore only statistical results will be
shown.

4.2 Error variances

Figure 2 shows statistical results over all models as a function of the scale at
which the representativeness errors are calculated. The top panel of Figure 2
shows the average error variances, o2, for buoys, ASCAT-A, ASCAT-B, ScatSat,
and ECMWEF. The middle panels show the standard deviation in the error
variances, and the bottom panels the range in the error variances (highest value
minus lowest value). The left hand panels are for the zonal wind component u;
the right hand panels for the meridional wind component v.

The average error variances in Figure 2 differ little (in the second or higher
decimal) from those obtained with the least-squares solution of all off-diagonal
covariance equations. The least-squares solution differs only in the third or
higher decimal from the minimization solution of (16), as may be expected. This
is a strong indication that the average over all models is equivalent to the least-
squares solution, and that the spreading between the models can be interpreted
as a measure of accuracy of the underlying error model and/or statistical noise
caused by the sample size.

The value of the representativeness error affects the average error variances of
ECMWF and ScatSat (top panels of Figure 2): these error variances decrease
with increasing scale (increasing representativeness error). For ScatSat there is
little effect in u, because there ScatSat has almost the same representativeness
error as ASCAT, see Figure 1.
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2. Results for error variances as a function of scale for bBBASE collocations.
Top panels: average error variance of each system; middle panels: standard
deviation of error variances; bottom panels: range in error variance.

The effect of representativeness error is clearly visible in the standard deviation
and the range of the observation error variances for all five observation systems,
notably in v. In u the standard deviation and the range are smallest at scales
around 200 km, in v at scales slightly larger than 100 km. This agrees with
the results from the quadruple collocation analyses in (Vogelzang and Stoffelen,
2021). The standard deviation in the error variances (middle panels of Figure
2) is around 0.025 m2s2 for v and around 0.055 m?s2 for v, which agrees with
the accuracy in the error variance estimated from triple collocation analyses
(Vogelzang and Stoffelen, 2021). Note that the standard deviation in the error
variance is about the same for all observation systems involved.

The range in the quintuple collocation results (bottom panels in Figure 2) is
much larger than the standard deviation: at the minimum about 0.15 m?s2
for u and about 0.3 m2s2 for v. It may exceed the size of the error variance
of ASCAT-A and ASCAT-B, indicating that some models give negative error
variances for these instruments. Incompleteness of the error model (1) may play
a role. The scatterometer data may have retrieval problems, and in particular
Ku-band scatterometers like ScatSat are known to have wind direction biases
that will affect a collocation analysis (e.g., Ebuchi, 1999; Wang et al., 2017).
The ECMWF model is known to have biases in wind speed and direction too
(Belmonte and Stoffelen, 2019). Error orthogonality is hard to check and might
be violated. However, triple collocation analyses of all sensor combinations in
the dataset did not show such strong outliers.

4.3 Statistical noise

A more likely cause for the large spreading in the error variances in Figure 2
is statistical noise in the observed covariances C;; which leads to larger errors
in solutions with higher complexity . For triple collocation all error variances
have v = 3, while for quadruple collocation there are error variances with v = 5,
as can be inferred from the equations in Appendix A of (Vogelzang and Stoffelen,
2021). For quintuple collocation also error variances with v = 7 occur. Table 2
shows the statistics of the error variances of the zonal wind component u with
representativeness errors evaluated at a scale of 200 km for complexities 3, 5,
and 7. The subscripts in the first column indicate the observation system, while

the bottom row gives N, the number of models in the complexity class.

Table 2 shows that the average error variance is the same for each complexity
class, but that the standard deviation and the range increase with complexity.
The results for the meridional wind component v follow the same pattern and are
not shown here. This implies that higher-order collocation analyses may produce
results that are less accurate than triple collocation analyses, provided, of course,
that the error covariances from representativeness and/or error correlation are
well known.
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2

average (m?s?) standard deviation (m?s2) range (m?s?)

¥y=3 ¥=25 y="T y=3 =5 =7 ~=3 ~v=5
o2 0.835 0.835 0.835 0.020 0.033 0.041 0.051 0.115
o4 0.152 0.152 0.152 0.021 0.035 0.041 0.071 0.102
0% 0.139 0.138 0.138 0.017 0.030 0.046 0.051 0.118
0% 0.467 0.467 0.467 0.016 0.030 0.050 0.044 0.115
o2 0.714 0.714 0.714 0.021 0.035 0.042 0.053 0.126
N 90 60 12 90 60 12 90 60

Table 2. Average error variance, its standard deviation, and its range of the
zonal wind component u with representativeness errors evaluated at 200 km for
complexity 3, 5, and 7.

4.4 Error covariances

Figure 3 shows the average error covariances, represented by the dot, and their
standard deviation, indicated by the error bars, for the zonal wind component
u (left hand panel) and the meridional wind component v (right hand panel)
with representativeness errors evaluated at a scale of 200 km for v and 100 km
for v. Error covariances set to zero to solve the covariances were, of course,
excluded. Each average is over 81 values - the additional error covariances
appear distributed evenly over the solvable models. The standard deviations
of the average error covariances show the same dependency on the scale as the
error variances in Figure 2, with minimum spreading at a scale of about 200 km
for u and about 100 km for v.
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Figure 3 shows that the averaged error covariances all lie around zero, with
a standard deviation that is of the same order of magnitude as the average
value. For both u and v e15 (buoy - ECMWF) and ey (ASCAT-B - ASCAT-A)
show a negative covariance, and eg5 (ASCAT-A - ECMWF) a positive one. It
is not plausible that the values of e;; and eys are caused by correlated errors
between buoys and ECMWF forecast or between ASCAT-B and ASCAT-A, as
one would expect positive values. Averaged error covariance egs is positive, but
if this were caused by error correlations between ASCAT-A and ECMWF, one
also expects a similar error covariance ey5 between ASCAT-B and ECMWEF. It
is therefore more likely that the nonzero averaged error covariances are caused
by deficiencies in the underlying error model (1) or by statistical noise. Since the
differences from zero are small, well within three times the standard deviation,
the error model shows good consistency.

To decide to what extent statistical noise is responsible for the spread in the
results and what is the role of the error model, it is necessary to have good esti-
mates of the statistical accuracy of the solutions, taking properly into account
the correlations between the covariances. This is not a trivial problem that falls
outside the scope of this study but is being investigated further.

Finally, it is worth mentioning that the determinant of DTD in the least-squares
solution equals the number of soluble models for quadruple and quintuple col-
locations. In the determined case the matrix D! has only integer elements, in

the overdetermined case (DTD)f1 DT also contains rational numbers. The com-
plexities of the least-squares solutions are 3 for the common variance and 2 for
the calibration coefficients, yet the analytical solutions are rather complicated
as they involve square, cubic, and 6% roots.

5. Conclusions

In this paper a new method for solving the multiple collocation problem is pre-
sented. The method is fast and accurate, and can easily be applied to quintuple
collocations. Some preliminary tests show that up to and including octuple collo-
cations can be handled within reasonable computation time. The method allows
reconstruction of the analytical solutions and can be used for both determined
and overdetermined subsets of the covariance equations.

The method is applied to a quintuple collocation dataset of ocean surface vector
winds measured by buoys, three scatterometers, and ECMWF forecasts. The
results show good consistency with triple and quadruple collocation analyses of
the same data. The average over all solutions from determined subsets is almost
equal to the least-squares solution and the solution obtained from minimizing a
quadratic cost function. The standard deviation over all solutions agrees with
the accuracy estimated from triple collocation analyses. The standard deviation
and the range are smallest when representativeness errors from differences in
spatial variances are taken into account, evaluated at a scale of 200 km for u and
100 km for v. This agrees with findings from quadruple collocations, showing
that proper inclusion of representativeness errors increases the consistency of
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the underlying error model. The spreading in the results, however, is much
larger than in triple and quadruple collocation analyses. This is most likely
caused by an increase of statistical noise due to more complex solutions. The
averaged error covariances are close to zero with a few exceptions that may
be caused by incompleteness of the underlying error model. Further research is
needed to determine the precise roles of statistical noise and imperfections in the
underlying error model in the spreading of the results. The method introduced
here may help to avoid unnecessary complex solutions and thus reduce the effect
of statistical noise.
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