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Abstract17

We present a first study showing that organization of trade cumulus (Tc) clouds can sig-18

nificantly enhance Tc response to climate change. Among four recently identified states19

of Tc organization, the “Flower” state has the highest and the “Sugar” state the low-20

est cloud fraction and cloud radiative effect. Using large-eddy simulations, we show that21

the organized “Flower” Tc state is strongly suppressed at the end of the 21st century,22

unlike the less organized “Sugar” Tc state and Tc studied previously. The primary cause23

of the suppression is down-welling long-wave radiation from increased greenhouse gas con-24

centrations, which weakens the mesoscale circulation that organizes clouds into the “Flower”25

Tc state. The cumulus-valve mechanism, which is thought to limit Tc response to cli-26

mate change, does not prevent this response. Our work unravels an unrecognized role27

of cloud organization in the cloud response to climate change.28

Plain Language Summary29

Trade cumulus clouds cover large swaths of the oceans and cool the planet. Cli-30

mate models struggle to capture these clouds, leading to uncertainty in climate projec-31

tions. We show that among four recently identified organized types of trade cumulus clouds,32

the type of organization with the highest cooling effect will be strongly suppressed at33

the end of the 21st century, unlike less organized trade cumulus clouds with a lower cool-34

ing effect. The strong suppression is a direct consequence of cloud organization. Down-35

welling long-wave radiation from rising greenhouse gases is the primary cause. The role36

of cloud organization and the underlying physical mechanisms we identify may contribute37

to improving the representation of trade cumulus clouds in climate models.38
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1 Introduction39

Low clouds cool the Earth by reflecting sunlight back to space. The cooling effect40

depends on the response of clouds to the climate system, and in turn affects Earth’s cli-41

mate. This cloud-climate feedback determines climate sensitivity, the Earth’s temper-42

ature response to rising levels of greenhouse gases (GHG). The latest generation of cli-43

mate models predicts a high climate sensitivity due to strong low cloud feedbacks (Zelinka44

et al., 2020). Observations, however, indicate a moderate climate sensitivity due to low45

clouds (Cesana & Del Genio, 2021; Myers et al., 2021). The discrepancy is caused in part46

by trade cumulus (Tc) clouds, a key source of uncertainty in climate projections (Bony47

& Dufresne, 2005; Vial et al., 2013; Medeiros et al., 2015). Tc feedbacks in climate mod-48

els are governed by changes in cloud fraction near cloud base (Brient et al., 2016; Vial49

et al., 2016). Climate models with a high climate sensitivity suggest a strong decrease50

in Tc cloud base cloudiness owing to increased lower-tropospheric mixing and cloud base51

evaporation (Sherwood et al., 2014; Brient et al., 2016; Vial et al., 2016). Vogel et al.52

(2022) refuted this mixing-desiccation hypothesis observationally, and found that a weak53

Tc feedback is more plausible than a strong one, providing an important line of evidence54

against high climate sensitivity. Observations (Nuijens et al., 2015) and large-eddy sim-55

ulations (Rieck et al., 2012; Blossey et al., 2013; Vogel et al., 2016; Tan et al., 2017) sug-56

gest that Tc are remarkably stable against climate change, and exhibit a weak positive57

feedback (Vial et al., 2017). The leading hypothesis for a broad stability of Tc against58

climate change is the cumulus-valve mechanism (Neggers et al., 2006). This hypothe-59

sis postulates a negative feedback between the cloud base cloud fraction and the mixed60

layer height via the cloud mass flux.61

Four new manifestations of Tc organization called Sugar, Gravel, Fish, and Flow-62

ers have been identified by Stevens et al. (2020). These cloud states cool the Earth to63

different extents: the Sugar Tc state has the lowest and the Flower Tc state the high-64

est cloud fraction and cloud radiative effect (Bony et al., 2020). This diversity suggests65

an uncharted landscape of Tc responses to climate change involving potentially unrec-66

ognized mechanisms. We explore the role of organization of the Flower and Sugar Tc states67

to anthropogenic climate change from present-day (PD) to end-of-21st-century (EC) con-68

ditions. 21st century climate change is represented using the RCP8.5 scenario, which is69

the best match out to midcentury under current and stated policies, with still highly plau-70

sible levels of CO2 emissions in 2100 (Schwalm et al., 2020). CO2 approximately dou-71
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bles, and in the region considered here, sea surface temperature (SST) increases by 1.8 K72

from PD to EC. We divide climate change into effects from SST and large scale mete-73

orology (LSM), and effects from GHG down-welling long-wave (LW) radiation. LSM con-74

sists of atmospheric temperature, water vapor, zonal and meridional wind speed, and sub-75

sidence.76

We use Lagrangian large eddy simulations (Kazil et al., 2021; Narenpitak et al.,77

2021) that track Tc evolution along two trajectories east of Barbados (Fig. SF1). Along78

a northern trajectory, three simulations (FPD, F−
EC, FEC) simulate the Flower Tc state79

but differ in their forcings. FPD uses SSTPD, LSMPD, and GHGPD. F−
EC uses SSTEC,80

LSMEC, but GHGPD. FEC uses SSTEC, LSMEC, and GHGEC. Simulations of the Sugar81

Tc state (SPD, SEC) are constructed from the Flower simulations along the northern tra-82

jectory by holding the subsidence profile constant starting from 8 h into the simulations83

(Fig. SF5). This suppresses large scale upward motion and keeps the cloud field in the84

Sugar Tc state until sunset. The role of large scale vertical motion for the evolution of85

the Flower Tc state is discussed by Narenpitak et al. (2021). The simulation SPD uses86

SSTPD, LSMPD, and GHGPD, simulation SEC uses SSTEC, LSMEC, and GHGEC. We87

quantify the response of the Flower Tc state to the change from PD to EC in SST and88

LSM, and down-welling LW from GHG. We identify the underlying physical mechanisms,89

and compare the response of the Flower Tc state to that of the Sugar Tc state and to90

Tc studied previously. Along a southern trajectory, the simulations F∗
PD, F∗

EC explore91

the response to the change from PD to EC of the Flower Tc state in different conditions,92

and the simulations F∗∗
PD, and F∗∗

EC test the sensitivity of the results to resolution.93

We use the System for Atmospheric Modeling (SAM, Khairoutdinov & Randall,94

2003). The SST, LSM, and GHG forcing of our simulations is constructed from the ERA595

reanalysis (Hersbach et al., 2020) along the simulation trajectories, and from CMIP5 (Taylor96

et al., 2012) simulations under the RCP8.5 scenario with CESM1(WACCM) (Marsh et97

al., 2013). The model, trajectories, PD and EC forcings, and simulations are described98

in the Supporting Information (SI).99
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2 Results100

2.1 Flowers101

Figure 1 displays the simulated Tc evolution. The cloud field at sunrise (09h47m UTC)102

is in the Sugar Tc state across the simulations, without discernible organization. In the103

Flower simulations FPD, F−
EC, and FEC the cumulus clouds first cluster and then aggre-104

gate into Flowers as the day progresses, with characteristic stratiform patches from cloud105

top outflows (Stevens et al., 2020; Bony et al., 2020; Narenpitak et al., 2021; Schulz et106

al., 2021). The Flowers produce surface precipitation and a first generation of cold pools107

by sunset (21h18m UTC). The effect of SST increase and LSM change (FPD to F−
EC) and108

of increased GHG levels (F−
EC to FEC) imprints itself by weakening cumulus clustering,109

aggregation, and Flower formation, and reduces the number and size of cold pools (Fig. 1a-110

c). The effect is subdued from FPD to F−
EC and conspicuous from F−

EC to FEC: FEC ex-111

hibits a much reduced number and size of Flowers and cold pools.112

Figure 2a-c shows the time series of cloud fraction (CF), liquid water path (LWP),113

and short-wave cloud radiative effect (SWCRE) in the simulations. In the Flower sim-114

ulations, as the Flower state evolves, the response of CF, LWP, and SWCRE to climate115

warming strengthens. Table 1 gives the change in CF, LWP, and SWCRE between the116

simulations, mean values for each simulation are given in Table ST1. Warming due to117

the changes in SST and LSM (FPD to F−
EC) drives less of a response than the increase118

in GHG (F−
EC to FEC): CF and LWP fall by a smaller amount from FPD to F−

EC, and119

by a larger amount from F−
EC to FEC. Consequently, SWCRE is less sensitive to change120

in SST and LSM, and more sensitive to increased GHG: SWCRE weakens from FPD to121

F−
EC by 0.5 Wm−2 and from F−

EC to FEC by 0.7 Wm−2.122

We now identify the mechanisms by which climate warming suppresses the Flower123

Tc state. Figure 3 shows the change in mean profiles from FPD to F−
EC (Fig. 3a-d) and124

from F−
EC to FEC (Fig. 3e-h). We focus on the period until sunset, around which inter-125

mittent precipitation (Fig. SF9i, SF10) contributes a stochastic component whose elim-126

ination would require averaging over ensembles. From FPD to F−
EC, which differ in SST127

and LSM, warmer air takes up more moisture from the ocean. This causes a stronger128

vertical moisture flux in the sub-cloud layer and across cloud base, but not up to the in-129

version (Fig. 3a). This pattern shapes the response of liquid water; it is enhanced at cloud130

base and in the lower part of the cloud layer, but reduced around the inversion (Fig. 3b).131

–5–



manuscript submitted to Geophysical Research Letters

Why does boundary layer circulation not carry the enhanced moisture flux all the way132

to the inversion in F−
EC? The cause is the lapse rate reduction from PD to EC (Fig. SF4f),133

which results in greater atmospheric stability above the mixed layer in the simulations134

(Fig. SF7). To maintain intensity of circulation in the more stable EC conditions, tur-135

bulence kinetic energy (TKE) production would need to increase. TKE production does136

increase from FPD to F−
EC in the lower part of the cloud layer (Fig. 3c) due to enhanced137

latent heat release from higher vertical moisture transport (Fig. 3a). In the upper part138

of the cloud layer and around the inversion, however, TKE production decreases from139

FPD to F−
EC. This decrease is caused by stronger radiative heating around the inversion140

(Fig. 3d). Decomposition of the radiative heating rate change into short-wave (SW) and141

LW components shows that it is stronger LW heating that is responsible for the over-142

all stronger heating around the inversion (Fig. SF14). At the inversion, down-welling LW143

increases more than up-welling LW from FPD to F−
EC, by approximately 2 Wm−2 (Fig. SF15).144

The increase in radiative heating around the inversion is hence primarily caused by down-145

welling LW from the warmer atmosphere above, which is also a consequence of the lapse146

rate reduction from PD to EC. The stronger heating causes an enhanced temperature147

increase around the inversion from FPD to F−
EC (Fig. SF14d), which stabilizes the air148

and suppresses TKE production.149

From F−
EC to FEC, which differ in GHG levels, the vertical moisture flux and liq-150

uid water content decrease, most strongly around the inversion (Fig. 3e, f). TKE pro-151

duction is reduced as well, primarily below the inversion and in the upper part of the152

cloud layer (Fig. 3g). Here too, the cause is an increase in radiative heating at and around153

the inversion (Fig. 3h). Decomposition of the radiative heating rate into SW and LW154

components shows that it is stronger LW heating that is responsible for the overall stronger155

heating around the inversion (Fig. SF16). Down-welling LW increases more than up-welling156

LW from F−
EC to FEC at the inversion, by approximately 7 Wm−2 (Fig. SF17). The in-157

crease in radiative heating around the inversion is hence caused by down-welling LW from158

increased GHG levels. The stronger heating causes an enhanced temperature increase159

around the inversion from F−
EC to FEC (Fig. SF16d), which stabilizes the air and sup-160

presses TKE production.161

Both from FPD to F−
EC and from F−

EC to FEC, the Flower Tc state is suppressed.162

From FPD to F−
EC, which captures the effect of end-of-century SST and LSM, offsetting163

mechanisms are at play: the warmer atmosphere takes up more moisture from the ocean,164
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which results in a stronger moisture supply to the cloud layer, and a stronger TKE pro-165

duction in its lower portion, both mechanisms that strengthen cloudiness. Concurrently,166

a reduced lapse rate opposes moisture transport to the inversion and strengthens down-167

welling LW radiation from the free troposphere, which warms the air around the inver-168

sion and suppresses TKE production. In combination, these mechanisms weakly suppress169

the Flower Tc state. In contrast, from F−
EC to FEC, which captures the effect of increased170

GHG levels via LW radiation, there are no such offsetting mechanisms, and the increase171

in down-welling LW at the inversion is stronger compared to the step FPD to F−
EC. The172

result is a strong suppression of the Flower Tc state.173

2.2 Sugar174

In the simulations SPD and SEC, the Sugar Tc state persists throughout the day,175

with some clustering (Fig. 1d, e). Flowers begin to form only at sunset. The response176

to climate change of the Sugar Tc state (SPD to SEC) differs from the response of the177

Flower Tc state (FPD to FEC). During daytime, CF, LWP, and SWCRE change only178

imperceptibly from SPD to SEC compared to the change from FPD to FEC (Fig. 2a-c).179

The response becomes more discernible around sunset, when Flowers emerge in SPD and180

SEC (Fig. 1d, e, 21h18m UTC). We quantify the sensitivity of the two cloud states with181

the relative change of CF, LWP, and SWCRE from PD to EC, expressed per K of SST182

change. This reveals that the Flower Tc state is twice as sensitive as the Sugar Tc state183

to climate warming (Tab. 1). The Flower Tc state is also approximately twice as sen-184

sitive to climate warming in terms of SWCRE compared to the cumulus clouds studied185

by Blossey et al. (2013), which was found to be insensitive to GHG levels, and hence to186

down-welling LW radiation (Bretherton et al., 2013).187

2.3 The Role of Organization188

Fig. 2d-f shows spectra of TKE production, water vapor, and SWCRE at 18h00m UTC,189

when Flowers are present FPD, F−
EC, and FEC, but not in SPD and SEC (Fig. 1). In the190

Flower simulations, the spectra have a strong mesoscale peak at 48 km. The TKE pro-191

duction peak (Fig. 2d) drives circulation that aggregates moisture (Fig. 2e), creating mesoscale192

moist patches (Bretherton & Blossey, 2017) where Flower clouds form (Narenpitak et193

al., 2021). The result is a prominent SWCRE mesoscale peak (Fig. 2f). In contrast to194

the Flower Tc state, the Sugar Tc state exhibits smaller mesoscale peaks. These reflect195
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clustering of individual cumulus clouds in the Sugar Tc state (Fig. 1d, e). The mesoscale196

peaks in the spectra experience a stronger response from PD to EC in the Flower Tc state197

compared to the Sugar Tc state (Fig. 2d-f). In particular, the spectral response of SWCRE198

from PD to EC is much stronger in the Flower Tc state compared to the Sugar Tc state,199

and confined to the mesoscale (Fig. 2f). Hence the suppression of the Flower Tc state200

by climate warming, by the mechanisms identified above, arises from selective weaken-201

ing of mesoscale circulation that generates the Flower Tc state.202

2.4 Cumulus-Valve Mechanism203

The higher sensitivity to climate warming of the Flower Tc state compared to the204

Sugar Tc state appears in the vertical profiles of cloud mass flux and CF (Fig. SF13).205

From PD to EC, the cloud mass flux, and in particular CF, display a stronger decrease206

in the cloud top region of the Flower Tc state compared to the Sugar Tc state. The de-207

crease in CF near cloud top of the Flower Tc state reflects a reduction of the stratiform208

cloud patches that form from cloud top outflows. At cloud base, cloud mass flux and CF209

remain unchanged from PD to EC (Fig. SF9d, e; SF11d, e) prior to onset of drizzle and210

precipitation (Fig. SF9h, i; SF11h, i). This stability is consistent with the cumulus-valve211

hypothesis. Yet, this does not prevent the response of the Flower Tc state, which arises212

from the suppression of mesoscale circulation in the cloud layer.213

2.5 Sensitivity Tests214

To test the response of the Flower Tc state in different conditions, F∗
PD and F∗

EC215

simulate the Flower Tc state along the southern trajectory (Fig. SF1). The southern tra-216

jectory has a warmer SST, a lower estimated inversion strength, and an initally faster217

wind speed (Fig. SF2), all of which favor cloud development. Visual inspection reveals218

that Flower clouds form earlier in F∗
PD and F∗

EC (Fig. SF18a, b) compared to FPD and219

FEC (Fig. 1a, b). Daytime CF and LWP are elevated in F∗
PD and F∗

EC (Fig. SF19a, b)220

compared to FPD and FEC (Fig. 2a, b). Moving from PD to EC conditions (F∗
PD to F∗

EC),221

Flower formation is delayed (Fig. SF18a, b). CF, LWP, and SWCRE are more strongly222

reduced from F∗
PD to F∗

EC compared to from FPD to FEC (Tab. 1). The stronger sup-223

pression of SWCRE from F∗
PD to F∗

EC arises from the overall stronger reduction in CF224

and LWP, but also because CF and LWP peak closer to noon in F∗
PD, and later in F∗

EC225

(Fig. SF19a, b). This delay exposes the CF and LWP peaks in F∗
PD to stronger and in226
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F∗
EC to weaker insolation, which adds to a reduced SWCRE (Fig. SF19c). The simula-227

tions along the southern trajectory, with a stronger suppression of the Flower Tc state228

compared to the northern trajectory from PD to EC conditions, suggest that the sup-229

pression of the Flower Tc state by climate change is a systematic phenomenon.230

Our analysis has found that the sensitivity of CF of the Flower Tc state from PD231

to EC conditions is confined to the cloud top region. This raises the question whether232

the finite vertical resolution in the simulations may cause spurious mixing and cloud evap-233

oration that renders the top region and the stratiform patches of Flower clouds overly234

sensitive to the change in conditions from PD to EC. Simulation F∗∗
PD and F∗∗

EC use a ver-235

tical grid spacing that is refined relative to F∗
PD and F∗

EC from 50 to 25 m across the cloud236

layer (Tab. ST3). In PD conditions, F∗∗
PD produces visibly larger and denser stratiform237

Flower cloud patches (Fig. SF18c) compared to F∗
PD (Fig. SF18a). In EC conditions, in238

F∗∗
EC relative to F∗

EC, the effect is more subtle (Fig. SF18d and SF18b). Averaged over239

the simulations, the vertical grid refinement strengthens CF, LWP, and SWCRE more240

in PD conditions compared to EC conditions (Tab. ST1), resulting in their stronger re-241

duction from PD to EC (Tab. 1). Spurious effects from a finite vertical resolution hence242

lead to a stronger underestimation of cloud top cloudiness of the Flower Tc state when243

it is more widespread, in PD conditions. This implies that the simulations underestimate244

the response of the Flower Tc state from PD to EC conditions.245

3 Discussion and Conclusions246

We present a first study of the response to climate change of two recently identi-247

fied manifestations of Tc organization, the organized Flower Tc state and the less or-248

ganized Sugar Tc state (Stevens et al., 2020; Bony et al., 2020). Using Lagrangian large249

eddy simulations forced by reanalysis meteorology and change in large scale conditions250

from climate simulations over the 21st century, we demonstrate that organization enhances251

the response of the Flower Tc state to climate change. Anthropogenic climate warming252

at the end of the 21st century strongly suppresses the organized Flower Tc state, result-253

ing in smaller Flower-type clouds. The response is primarily caused by stronger down-254

welling LW radiation from increased GHG levels, and secondarily by the change in SST255

and LSM over the course of the 21st century. The stronger down-welling LW radiation256

warms and stabilizes air near the trade inversion and weakens the mesoscale circulation257

which organizes clouds into the Flower Tc state. This renders the Flower Tc state twice258
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as sensitive in terms of SWCRE response to climate warming compared to the Sugar Tc259

state, and compared to Tc studied previously (Blossey et al., 2013). Stability against cli-260

mate warming of Tc identified in previous research is thought to be caused by the cumulus-261

valve mechanism (Neggers et al., 2006). Both the Flower and Sugar Tc state in our sim-262

ulations exhibit a stable cloud base cloud fraction and mass flux, consistent with the cumulus-263

valve mechanism. However, we find that this does not prevent the strong response of the264

Flower Tc state to climate warming, because the response arises from mesoscale circu-265

lation in the cloud layer. Hence the cumulus-valve mechanism does not stabilize all Tc266

against climate change.267

Our simulations cover a limited range of conditions and Flower Tc state evolutions.268

More comprehensive studies are needed to assess the prevalence of the phenomenon and269

to quantify its role for cloud feedbacks on a global scale. Such studies could reveal a role270

of mesoscale circulation and organization for cloud-climate feedbacks in the Gravel and271

Fish Tc states, and in the Tc aggregates that resulted in the discovery of mesoscale mois-272

ture aggregation as an organizing mechanism of Tc clouds (Bretherton & Blossey, 2017).273

A diverse response of Tc to climate change and a role of cloud state organization would274

present a more complex challenge in representing Tc feedbacks in climate simulations.275

Climate models do not differentiate between individual Tc states, and therefore do not276

capture cloud feedback associated with the expected change in their occurrence as the277

Earth warms (Bony et al., 2020; Schulz et al., 2021). Climate models also do not resolve278

the response and feedback of the individual Tc states to climate change, including a re-279

sponse of mesoscale circulation to stronger down-welling LW radiation at future GHG280

levels. The issue is compounded because observational studies (Denby, 2020; Scott et281

al., 2020; Cesana & Del Genio, 2021; Myers et al., 2021; Schulz et al., 2021) do not de-282

tect the effect of down-welling LW from increasing GHG on clouds and their spatial or-283

ganization, and do not constrain the associated cloud-climate feedbacks.284

This highlights the need for better understanding of cloud organization for Tc feed-285

backs and improved approaches for Tc representation in climate models, in order to re-286

duce uncertainty of climate projections. High resolution simulations and large-eddy sim-287

ulations (LES) can provide the physical understanding of the various Tc states and their288

behavior in response to climate change, and help formulate improved representations of289

Tc in climate models that account for cloud organization. Still, constraints of Tc fee-290

backs from simulations, which need to connect large scale dynamics, mesoscale organ-291
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ization, boundary layer dynamics, and cloud processes, may remain encumbered by lim-292

ited resolution, as in the case of climate models, or limited spatial and temporal extent,293

as in the case of high resolution simulations and LES. The promise of an independent294

approach to constrain Tc feedbacks might be found in the application of machine learn-295

ing methods trained on observational data and reanalysis products (Denby, 2020) to cli-296

mate simulations to identify individual cloud states, in combination with an emulator-297

based quantification of the cloud radiative effect based on LES (Feingold et al., 2016).298

Thus, more than one approach to constraining the Tc feedback to climate is emerging299

on the horizon, not only as an opportunity to improve understanding and quantification300

of cloud-climate interactions, but also as checks and balances on one another.301
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Table 1. Absolute change between simulations, and relative change per change in SST from

PD to EC, of the 24 h mean of cloud fraction (CF), liquid water path (LWP), and short-wave

cloud radiative effect (SWCRE). The final row gives the change from simulation CTL to P2S

of cumulus clouds under idealized climate change in the multimodel ensemble of Blossey et al.

(2013).

∆CF ∆LWP ∆SWCRE ∆CF
CF∆SST

∆LWP
LWP∆SST

∆SWCRE
SWCRE∆SST

(g m−2) (W m−2) (% K−1) (% K−1) (% K−1)

FPD→F−
EC -0.002 -0.8 0.5

F−
EC→FEC -0.004 -1.9 0.7

FPD→FEC -0.007 -2.7 1.3 -4.3 -12.8 -4.7

SPD→SEC -0.004 -1.0 0.4 -2.7 -6.3 -2.2

F∗
PD→F∗

EC -0.009 -4.2 1.7 -5.4 -12.2 -6.1

F∗∗
PD→F∗∗

EC -0.011 -5.7 3.1 -6.2 -13.5 -9.9

CTL→PS2 -0.011 0.6 1.1 -3.1 1.0 -2.5
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Figure 1. Trade cumulus evolution in the simulations: (a) FPD, (b) F−
EC, (c) FEC, (d) SPD,

and (e) SEC. Sunrise (first column) is at 09h47m UTC (fractional day of year d = 32.41), sunset

(last column) at 21h18m UTC (fractional day of year d = 32.89).

Figure 2. Time series from the simulation FPD (blue), F−
EC (cyan) and FEC (red), SPD (light

green), and SEC (dark green) of (a) cloud fraction, (b) liquid water path, and (c) short-wave

cloud radiative effect (shading indicates nighttime), and spectra at 18h00m UTC (d = 32.75) of

(d) TKE production due to buoyancy in the cumulus layer, (e) variance of water vapor in the

cumulus layer, and (f) variance of the short-wave cloud radiative effect.

Figure 3. Change from simulation FPD to F−
EC (a–d) and from F−

EC to FEC (e–h) in total wa-

ter flux (a, e), liquid water (b, f), TKE production due to buoyancy (c, g), and radiative heating

(d, h). The base of active cloud convection (dashed, SI) and the inversion (solid) from F−
EC (a–d)

and FEC (e–h) are shown. An open triangle marks sunrise, a solid triangle sunset.
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