References
P.Berdeklis and R.LIST, The Ice Crystal–Graupel Collision Charging
Mechanism of Thunderstorm Electrification, Journal of the atmospheric
sciences 58, 2751 (2001).
A. Chilingarian, A. Daryan, K. Arakelyan, et al., Ground-based
observations of thunderstorm-correlated fluxes of high- energy
electrons, gamma rays, and neutrons, Phys. Rev. D 82 (2010) 043009.
A.Chilingarian, G. Hovsepyan, A. Hovhannisyan, Particle bursts from
thunder- clouds: natural particle accelerators above our heads, Phys.
Rev. D 83 (2011) 062001.
Chilingarian, A. and Mkrtchyan, H., Role of the Lower Positive Charge
Region (LPCR) in initiation of the Thunderstorm Ground Enhancements
(TGEs), Physical Review D 86, 072003 (2012).
Chilingarian A., Hovsepyan G., Mailyan B., 2017a, In situ measurements
of the Runaway Breakdown (RB) on Aragats mountain, Nuclear Inst. and
Methods in Physics Research, A 874,19–27.
Chilingarian A., Chilingaryan S., Karapetyan T., et al., 2017b, On the
initiation of lightning in thunderclouds, Scientific Reports 7,
Article number: 1371, DOI:10.1038/s41598-017-01288-0.
A.Chilingarian, G. Hovsepyan, S. Soghomonyan, M. Zazyan, and M. Zelenyy,
Structures of the intracloud electric field supporting origin of
long-lasting thunderstorm ground enhancements, Physical review 98,
082001(2018).
A.Chilingarian , S. Soghomonyan , Y. Khanikyanc , D. Pokhsraryan , On
the origin of particle fluxes from thunderclouds, Astroparticle
Physics 105 , 54(2019).
A. Chilingarian, G. Hovsepyan, T. Karapetyan, G. Karapetyan, L.
Kozliner, H. Mkrtchyan, D. Aslanyan, and B. Sargsyan, Structure of
thunderstorm ground enhancements, Phys. Rev. D 101, 122004 (2020).
A. Chilingarian, G. Hovsepyan, E. Svechnikova, and M. Zazyan, Electrical
structure of the thundercloud and operation of the electron accelerator
inside it, Astroparticle Physics 132 (2021a) 102615
https://doi.org/10.1016/j.astropartphys.2021.102615.
Chilingarian, A.2017, Hovsepyan, G., & Zazyan, M. (2021b). Muon
tomography of charged structures in the atmospheric electric field.Geophysical Research Letters , 48 , e2021GL094594.
https://doi.org/10.1029/2021GL094594
A. Chilingarian, G. Hovsepyan, G. Karapetyan, and M. Zazyan, Stopping
muon effect and estimation of intracloud electric field, Astropart.
Phys. 124, 102505 (2021c).
A.Chilingarian, G. Hovsepyan, and M. Zazyan, Measurement of TGE particle
energy spectra: An insight in the cloud charge structure, Europhysics
letters (2021c), 134, 6901, https://doi.org/10.1209/0295- 5075/ac0dfa
Chilingarian, Ashot, Hovsepyan, Gagik,
Dataset for 16 parameters of ten thunderstorm ground enhancements (TGEs)
allowing recovery of electron energy spectra and estimation the
structure of the electric field above earth’s surface, Mendeley Data,
V1, doi: 10.17632/tvbn6wdf85.2
J. Chum, R. Langer, J. Baše, M. Kollárik, I. Strhárský, G. Diendorfer,
and J. Rusz, Significant enhancements of secondary cosmic rays and
electric field at high mountain peak during thunderstorms, Earth,
Planets Space 72, 72 (2020).
Gurevich, A., Milikh, G., & Roussel-Dupre, R. (1992). Runaway electron
mechanism of air breakdown and preconditioning during a thun- derstorm.
Physics Letters A, 165(5–6), 463–468.
https://doi.org/10.1016/0375-9601(92)90348-P.
J. Kuettner, The electrical and meteorological conditions inside
thunderclouds, J. Meteorol. 7 (1950) 322.
T.C.Marshall, M.Stolzenburg, Paul R. Krehbiel et. al., Electrical
evolution during the decay stage of New Mexico thunderstorms, JGR
114, D02209 (2009).
Tinglong Zhang, Hai Yu, Fangcong Zhou, Jie Chen, and Maohua Zhang,
Measurements of vertical electric field in a thunderstorm in a Chinese
inland plateau, Atmosphere 2018, 9 , 295;
doi:10.3390/atmos9080295.
A. Nag and V. Rakov, Some inferences on the role of lower positive
charge region in facilitating different types of lightning, Geophys.
Res. Lett. 36, L05815 (2009).
Soghomonyan, Suren; Chilingarian, Ashot ; Khanikyants, Yeghia (2021a),
“Dataset for Thunderstorm Ground Enhancements terminated by lightning
discharges”,
Mendeley Data, V1, doi: 10.17632/p25bb7jrfp.1
Soghomonyan, Suren; Chilingarian, Ashot (2021b), “Thunderstorm ground
enhancements abruptly terminated by a lightning flash registered both by
WWLLN and local network of EFM-100 electric mills.”, Mendeley Data, V1,
doi: 10.17632/ygvjzdx3w3.1
Maribeth Stolzenburg · Thomas C. Marshall, Charge Structure and Dynamics
in Thunderstorms, Space Sci Rev (2008) 137: 355–372 DOI
10.1007/s11214-008-9338-z
Qie, X.; Zhang, T.; Chen, C.; Zhang, G.; Zhang, T.; Wei, W. The lower
positive charge center and its effect on lightning discharges on the
Tibetan Plateau. Geophys. Res. Lett. 2005, 32 , L05814.
S D Pawar, P Murugavel and V Gopalakrishnan, Anomalous electric field
changes and high flash rate beneath a thunderstorm in northeast India,
J. Earth Syst. Sci. 119, No. 5, October 2010, pp. 617–625.
Takahashi, T. (1978), Riming electrification as a charge generation
mechanism in thunderstorms, J. Atmos. Sci., 35, 1536–1548.
Wada, Y., Enoto, T., Kubo, M., Nakazawa, K., Shinoda, T., Yonetoku, D.,
et al. (2021). Meteorological aspects of gamma-ray glows in winter
thunderstorms. Geophysical Research Letters, 48, e2020GL091910.
https://doi. org/10.1029/2020GL091910
E.R. Williams, The tripole structure of thunderstorms, JGR 94 (1989)
151-13,167.
T.C.Marshall, M.Stolzenburg, Paul R. Krehbiel et. al., Electrical
evolution during the decay stage of New Mexico thunderstorms, JGR
114, D02209 (2009).
Tinglong Zhang, Hai Yu, Fangcong Zhou, Jie Chen, and Maohua Zhang,
Measurements of vertical electric field in a thunderstorm in a Chinese
inland plateau, Atmosphere 2018, 9 , 295;
doi:10.3390/atmos9080295.