References
P.Berdeklis and R.LIST, The Ice Crystal–Graupel Collision Charging Mechanism of Thunderstorm Electrification, Journal of the atmospheric sciences 58, 2751 (2001).
A. Chilingarian, A. Daryan, K. Arakelyan, et al., Ground-based observations of thunderstorm-correlated fluxes of high- energy electrons, gamma rays, and neutrons, Phys. Rev. D 82 (2010) 043009.
A.Chilingarian, G. Hovsepyan, A. Hovhannisyan, Particle bursts from thunder- clouds: natural particle accelerators above our heads, Phys. Rev. D 83 (2011) 062001.
Chilingarian, A. and Mkrtchyan, H., Role of the Lower Positive Charge Region (LPCR) in initiation of the Thunderstorm Ground Enhancements (TGEs), Physical Review D 86, 072003 (2012).
Chilingarian A., Hovsepyan G., Mailyan B., 2017a, In situ measurements of the Runaway Breakdown (RB) on Aragats mountain, Nuclear Inst. and Methods in Physics Research, A 874,19–27.
Chilingarian A., Chilingaryan S., Karapetyan T., et al., 2017b, On the initiation of lightning in thunderclouds, Scientific Reports 7, Article number: 1371, DOI:10.1038/s41598-017-01288-0.
A.Chilingarian, G. Hovsepyan, S. Soghomonyan, M. Zazyan, and M. Zelenyy, Structures of the intracloud electric field supporting origin of long-lasting thunderstorm ground enhancements, Physical review 98, 082001(2018).
A.Chilingarian , S. Soghomonyan , Y. Khanikyanc , D. Pokhsraryan , On the origin of particle fluxes from thunderclouds, Astroparticle Physics 105 , 54(2019).
A. Chilingarian, G. Hovsepyan, T. Karapetyan, G. Karapetyan, L. Kozliner, H. Mkrtchyan, D. Aslanyan, and B. Sargsyan, Structure of thunderstorm ground enhancements, Phys. Rev. D 101, 122004 (2020).
A. Chilingarian, G. Hovsepyan, E. Svechnikova, and M. Zazyan, Electrical structure of the thundercloud and operation of the electron accelerator inside it, Astroparticle Physics 132 (2021a) 102615 https://doi.org/10.1016/j.astropartphys.2021.102615.
Chilingarian, A.2017, Hovsepyan, G., & Zazyan, M. (2021b). Muon tomography of charged structures in the atmospheric electric field.Geophysical Research Letters , 48 , e2021GL094594. https://doi.org/10.1029/2021GL094594
A. Chilingarian, G. Hovsepyan, G. Karapetyan, and M. Zazyan, Stopping muon effect and estimation of intracloud electric field, Astropart. Phys. 124, 102505 (2021c).
A.Chilingarian, G. Hovsepyan, and M. Zazyan, Measurement of TGE particle energy spectra: An insight in the cloud charge structure, Europhysics letters (2021c), 134, 6901, https://doi.org/10.1209/0295- 5075/ac0dfa
Chilingarian, Ashot, Hovsepyan, Gagik,
Dataset for 16 parameters of ten thunderstorm ground enhancements (TGEs) allowing recovery of electron energy spectra and estimation the structure of the electric field above earth’s surface, Mendeley Data, V1, doi: 10.17632/tvbn6wdf85.2
J. Chum, R. Langer, J. Baše, M. Kollárik, I. Strhárský, G. Diendorfer, and J. Rusz, Significant enhancements of secondary cosmic rays and electric field at high mountain peak during thunderstorms, Earth, Planets Space 72, 72 (2020).
Gurevich, A., Milikh, G., & Roussel-Dupre, R. (1992). Runaway electron mechanism of air breakdown and preconditioning during a thun- derstorm. Physics Letters A, 165(5–6), 463–468. https://doi.org/10.1016/0375-9601(92)90348-P.
J. Kuettner, The electrical and meteorological conditions inside thunderclouds, J. Meteorol. 7 (1950) 322.
T.C.Marshall, M.Stolzenburg, Paul R. Krehbiel et. al., Electrical evolution during the decay stage of New Mexico thunderstorms, JGR 114, D02209 (2009).
Tinglong Zhang, Hai Yu, Fangcong Zhou, Jie Chen, and Maohua Zhang, Measurements of vertical electric field in a thunderstorm in a Chinese inland plateau, Atmosphere 2018, 9 , 295; doi:10.3390/atmos9080295.
A. Nag and V. Rakov, Some inferences on the role of lower positive charge region in facilitating different types of lightning, Geophys. Res. Lett. 36, L05815 (2009).
Soghomonyan, Suren; Chilingarian, Ashot ; Khanikyants, Yeghia (2021a),
“Dataset for Thunderstorm Ground Enhancements terminated by lightning discharges”,
Mendeley Data, V1, doi: 10.17632/p25bb7jrfp.1
Soghomonyan, Suren; Chilingarian, Ashot (2021b), “Thunderstorm ground enhancements abruptly terminated by a lightning flash registered both by WWLLN and local network of EFM-100 electric mills.”, Mendeley Data, V1, doi: 10.17632/ygvjzdx3w3.1
Maribeth Stolzenburg · Thomas C. Marshall, Charge Structure and Dynamics in Thunderstorms, Space Sci Rev (2008) 137: 355–372 DOI 10.1007/s11214-008-9338-z
Qie, X.; Zhang, T.; Chen, C.; Zhang, G.; Zhang, T.; Wei, W. The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau. Geophys. Res. Lett. 2005, 32 , L05814.
S D Pawar, P Murugavel and V Gopalakrishnan, Anomalous electric field changes and high flash rate beneath a thunderstorm in northeast India, J. Earth Syst. Sci. 119, No. 5, October 2010, pp. 617–625.
Takahashi, T. (1978), Riming electrification as a charge generation mechanism in thunderstorms, J. Atmos. Sci., 35, 1536–1548.
Wada, Y., Enoto, T., Kubo, M., Nakazawa, K., Shinoda, T., Yonetoku, D., et al. (2021). Meteorological aspects of gamma-ray glows in winter thunderstorms. Geophysical Research Letters, 48, e2020GL091910. https://doi. org/10.1029/2020GL091910
E.R. Williams, The tripole structure of thunderstorms, JGR 94 (1989) 151-13,167.
T.C.Marshall, M.Stolzenburg, Paul R. Krehbiel et. al., Electrical evolution during the decay stage of New Mexico thunderstorms, JGR 114, D02209 (2009).
Tinglong Zhang, Hai Yu, Fangcong Zhou, Jie Chen, and Maohua Zhang, Measurements of vertical electric field in a thunderstorm in a Chinese inland plateau, Atmosphere 2018, 9 , 295; doi:10.3390/atmos9080295.