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Model Architecture Fine-Tuning: Results

Research Questions

Model update: The last fully connected layer is re-trained, using
Task. For a given pixel, the model takes a sequence of MODIS observations between September 1% lilac/honeysuckle ground-truth labels.
of year t-1, and August 30" of year t, in order to predict the first flowering date at that pixel in

How can satellite imagery be synthesized into a large-scale,
nigh-resolution proxy for the timing of flowering?

s this proxy able to capture year-to-year variations in the onset of

flowering? How well does it extrapolate across space? JEENT 16, Root Mean Squared Error, days
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Figure 3: Temporal convolutional network architecture, adapted from [3]. [Top] Overall architecture. [Bottom left] A 0.041 0.041
Data dilated block. A 1-convolution is included when input and output have different dimensions. The model includes 3 such 0.021 0:021
dilated blocks. [Bottom right| Illustration of a dilated convolution with dilation factors d = 1, 2, 4 and filter size k = 3. U0 0 10 0 10 20 U0 0 10 0 10 20
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Figure 6: Departure from the temperature model: probability histogram of prediction error,
Input features: MODIS Terra Surface Reflectance 8-Day Global 500m relative to the intermediate label (first bloom index). [Left] Intermediate-stage model.
= 7 reflectance bands, quality layer, 4 observation bands, day of year Key feature. The model looks for temporal patterns, both local in time (3 consecutive snapshots of [Right] Final-stage model.
= 2000-2018 the MODIS 8-Day product), and more spread out over a year (regularly spaced but non-consecutive
snapshots). Next Steps
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