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TEXT S1 

Input catalog 
The events initially recorded and located by the Italian National Network and Seismological 

Data Centre (INGV Seismological Data Centre 2006; ISIDe Working Group, 2007) have 

been relocated in absolute terms using NonLinLoc code (Lomax et al., 2000), based on a 

nonlinear inversion method. We used the same 1D gradient velocity model and setup used 

by Chiaraluce et al. (2017); we also included station corrections to counteract the effects of 

using an oversimplified velocity model. These preliminary locations already have good 
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quality factors, as shown in Michele et al. 2019, with most events (~66%) included in the A 

and B quality classes (see Figure S1 in the supplementary material). 

 

To further maximize the quality of the templates’ catalog in terms of hypocentral location 

resolution, we apply a double difference (Waldhauser and Ellsworth, 2000) scheme taking 

only absolute travel times. In the relative relocation process, we used the same setup 

proposed by Michele et al., 2020 for relocating the 2016 aftershocks sequence. We kept 

all the ML>1.5 events of the 2016 sequence together with the previous events to be 

relocated. In doing this, we additionally constrain the depth of the whole system (see 

Figure S2). We selected a well-constrained subset of events to obtain more robust 

quantitative estimates of coordinates location errors of the final catalog we used as input 

for the template matching. We relocated them using the full covariance matrix and singular 

value decomposition (SVD) instead of the weighted least squares (LSQR) method (see 

Waldhauser and Ellsworth, 2001).  

 
 
TEXT S2 
Template matching 

Template matching is run to search eight years (2009-2016) of continuous data exploiting 

approximately 23,000 well-located earthquakes in Central Italy. Codes are rewritten from 

Vuan et al. (2018) to improve the performance and scalability, evaluate background 

seismicity, and analyze clustering before the 2016-2017 sequence in Central Italy.  

The technical improvements needed to address massive computations involved: a) 

performance: ≈200% speedup in single-threaded mode, near-linear scaling using multiple 

threads. GPU support with further performance improvements: 50 templates per second 

per node with 4 GPU (NVIDIA V100), and higher speedups possible using longer signals. 

Faster post-processing thanks to AVRO/Parquet data serialization, b) usability: CLI, 

logging, input and output handling, arbitrary signal length, template duration (per channel 

basis), and sampling rate, c) robustness & correctness: better error handling, among fixed 

bugs: negative normalization in Obspy cross-correlation routine, drop multiple detections 

within template length, more stable magnitude estimation (missing data, template data and 

other bug fixes), detections at beginning or end of the signal, full usage of data 

(template/signal traces matching before processing), d) maintainability: less code (-80%) 
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and dependencies, enhanced readability (refactoring into functions, meaningful variable 

nomenclature), modularity, easier deployment via registered PyPI package. 

Template matching is applied to daily three-component continuous waveforms covering 

the 2009/01/01-2016/08/24 time window. Seismic data from 2009 to 2016 are collected for 

37 stations of the INGV seismic network (Figure 1 in the manuscript). We resample 

waveform data to 20 Hz and apply a 3-8 Hz bandpass filter. Templates are trimmed using 

a 5 s data window, starting 2.5 s before the theoretical S wave arrival, computed using the 

ObsPy port (Krisher et al., 2015) of the Java TauP Toolkit routines (Crotwell et al., 1999) 

and a suitable 1D-model (a modified version of Carannante et al., 2013). We adopt 

Kurtosis-based tests to evaluate the signal-to-noise ratio of templates (Baillard et al., 

2014), avoiding unwanted signals in the matching technique (Vuan et al., 2018, Vuan et 

al., 2020).  

A match, or detection, is a peak above a given threshold, set to 0.4, in the average of the 

stacked correlograms. In post-processing, some detections have been dropped based on 

the ratio between the average cross-correlation and the noise baseline level, estimated via 

the daily Median Absolute Deviation (MAD) of the correlograms. Keeping only the 

detections with a high ratio proved a robust method to exclude artifacts and false 

detections. The threshold for this ratio, defined after a visual inspection of some examples 

of detected events, was set to 18 times the MAD. 

Time windows of 6 s are selected. Within each one, the template for which the normalized 

correlation coefficient is the greatest is taken to determine the event location and 

magnitude (e.g., Kato et al., 2012). In synthesis, in declaring a detection, we use very 

restrictive criteria: a) the average cross-correlation must be greater or equal than 0.4, b) it 

must be also greater or equal than 18 times the MAD, and c) at least 8 channels must 

have cross-correlation greater or equal to 0.4. 

The location of the small events in the augmented catalog strictly depends on the quality of 

the input catalog locations and associated errors. Due to the high resolution of the starting 

catalog, we decided to keep the new detections co-located with the templates.  

This choice of not relocating the new events is partly justified by the area dimensions (100 

x 100 km), the seismic station’s inter-distance relatively to the area under study, and the 

reduced number of earthquakes for which it is possible to obtain a more refined location. 

Ross et al. (2019), Simon et al. (2021), and Cabrera et al. (2022), by using different 

relocation tools, demonstrated that only a small portion of events from template matching 
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could be relocated (on average less than 20%). Moreover, relocation techniques based on 

limited frequency-band envelopes (e.g., Vuan et al., 2017) cannot improve the location of 

small magnitude events when the network coverage is sparse. These considerations led 

us to co-locate the new events at the respective template position. 

To improve the robustness of the magnitude assessment, we removed the outliers in the 

pool of used channels (e.g., Ross et al., 2019). 

 

Text S3  
Clustering 

A nearest-neighbor approach (Zaliapin and Ben-Zion, 2016) performs a statistical analysis 

of the augmented catalog to separate the background seismicity from the clusters. The 

nearest-neighbor method computes the time-space distance η between pairs of 

earthquakes. Rescaled time (T) and distance (R) between an event i and its parent j are 

normalized by the magnitude of j and expressed as: 

 

Tij=tij10−pbm
i
/2; Rij=rij

d10−(1−p)bm
i
/2    (1) 

 

Where p is a weight parameter, b is the Gutenberg-Richter value, m is the magnitude of 

the i event, t and r are the time and distance between the two earthquakes, respectively, 

and d is the fractal dimension. We fixed p=0.5, b=0 (Zaliapin and Ben-Zion (2020) justifies 

to use b=0 for small events) and d=1.6. Thus, η, the generalized distance between pairs of 

earthquakes, is formulated as: 

 

Log ηij=log Rij+log Tij                         (2) 

 

Subsequently, clusters are classified into swarms, mainshock-aftershock, and foreshock-

mainshock sequences following the criterion proposed by Ogata and Katsura (2012). The 

mainshock is defined as the strongest earthquake in a cluster, and all the seismic events 

occurring before are pre-shocks. All pre-shocks are set foreshocks when the magnitude 

gap between the largest pre-shock and the mainshock is greater than 0.5. Unlike, a 

swarm-like sequence has pre-shocks with similar magnitudes (the difference is smaller 

than 0.5). 
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Further indications on clustering are also provided by comparing the covariance with the 

moment ratio variations. The covariance of interevent times (e.g., Kagan and Jackson, 

1991) define the level of temporal clustering as close to 0 for periodic seismicity and 

greater than 1 for temporally clustered sequences. The seismic moment ratio (Vidale and 

Shearer, 2006) values provide indications when most of the seismic moment can be 

associated with a single event (values close to 1) or when no prevailing event is found 

(values relative to 0).  

The covariance and moment ratio are evaluated using rolling windows of a variable number 

of events (50 to 150 with a step of 10). By shifting the rolling windows of 1 event and 

averaging the results, we can also derive the associated uncertainties.  

 
 
Text S4 
Repeating earthquakes  

We search for repeating earthquakes, families of two or more events with nearly identical 

waveforms, locations, geometry, and magnitudes that repeatedly rupture the same fault 

patch at different times (e.g., Uchida 2019). We analyze the overall cross-correlation 

output of the template matching procedure, looking for couples of events characterized by 

a mean cross-correlation value >=0.90. Then we group events sharing common events 

and compile a list of candidate repeating earthquakes (CRE). Events span in magnitude 

range from about 0.4 to 2.6 

This dataset is further investigated using a Python code for detecting true repeating 

earthquakes from self-similar waveforms that combines seismic waveform similarity by 

using cross-correlation (CC) and differential S-P travel times (Shakibay Senobari and 

Funning 2019; Sugan et al., 2022). Precise differential ΔS–P arrival times between CRE 

pairs are obtained by applying the cross-spectral method described in Poupinet et al. 

(1984). The spectral method is preferred since it allows sub-sample precision to resolve 

minimal source separation. We explore different CC and ΔS−P thresholds indicating 

possible RE that share at least 50% of the seismic source.  

The code needs as input a CRE catalog, the associated seismic waveforms, the 

associated P and S picks, if any, and a simple 1D velocity model.  

We use the original seismic waveforms sampled at 100Hz, and the travel-time phase file 

used to localize the templates. When this information is missed (e.g., for the new 

detections obtained with template matching), we use the theoretical arrival times 
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calculated using a suitable velocity model or perform automatic picking using STA/LTA 

strategies (Carannante et al., 2013). 

We explore different frequency configurations, considering up to four magnitude ranges. 

We set a minimum of three stations in the similarity space domain to declare a RE (Table 

1). Cross-correlation values are calculated for a time window starting 0.5 seconds before 

the P arrival phase and ending 12 seconds after the S phases.  Cross-spectrum is 

evaluated for P and S wave time windows with a length of about 1.4 s and 1.8 s, 

respectively. 

We found a maximum number of 46 RE for configuration #1 and a minimum number of 6 

RE for configuration #6. They are almost all doublets, characterized by short inter-even 

times (less than 10 hours); only one RE exceeds this value, with an inter event time of 

about 23 days (RE events occurred on 18 May and 10 June 2009). 

In Figure 3, we show the results using configuration #5. The final RE’s location for each 

doublet is obtained using the mean value of the events' latitude, longitude, and depth. 

 
 Conf#1 Conf#2 Conf#3 Conf#4 Conf#5 Conf#6 

 SSD CC 0.95 CC 0.97 

M ΔS–P (sec) BP(Hz) BP(Hz) BP(Hz) BP(Hz) BP(Hz) BP(Hz) 

0.5 0.004 1-30 1-35 1-40 1-30 1-35 1-40 

1.0 0.006 1-25 1-30 1-35 1-25 1-30 1-35 

1.5 0.009 1-20 1-25 1-30 1-20 1-25 1-30 

2.0 0.01 1-15 1-20 1-25 1-15 1-20 1-25 

 

 RE 46 37 28 17 7 6 

 

Table 1 – ΔS–P and CC values used for #6 different configurations to define the similarity 

space domain (SSD). Different band-pass filters (BP) for different magnitudes (M) ranges 

are explored. For each configuration, the corresponding number of RE is shown. 


