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Methods for adjusting surface NO2 concentrations in rural areas 

For grid cells >5km away from roadways and in rural areas, we developed new NO2 concentration estimates using 
NO2 column observations from the OMI satellite instrument with some adjustments to fill spatial and temporal gaps 
in the OMI satellite record, and to estimate 24-hour averages from the early afternoon OMI overpass time (Figure 
S1). We use an OMI NO2 version 3, level 4 surface concentration dataset (0.1° x 0.1° resolution) for 2011, which 
followed methods described by Lamsal et al.1 and was obtained from the NASA Goddard Space Flight Center 
(GSFC). The newer version 4 OMI retrieval uses enhanced surface reflectivities in the calculation of the 
tropospheric column amounts, but surface concentrations prepared by NASA GSFC are not currently available from 
the version 4 product. Due to the lack of satellite dataset coverage over snow/ice covered areas, some gridcells 
(mostly in higher latitudes) have no OMI observations in some months. We used the MERRA-2 reanalysis product 
(0.625° x 0.5° resolution) to generate a correction factor to ensure availability of NO2 concentrations in all locations 
and months, as follows:  

 

Equation S1:  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓#1 =  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑂𝑂𝑂𝑂𝑂𝑂 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 4 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
 

 

We also applied a second correction factor to convert surface NO2 concentrations from the early afternoon OMI 
overpass time (13:00 local time) to 24-hour averages. Following Anenberg et al.2, we used NO2 surface 
concentrations from the GMI-Replay chemical transport model3,4 (2° x 2.5° resolution) simulations to generate these 
correction factors, as follows: 

Equation S2:  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓#2 =
𝐺𝐺𝐺𝐺𝐺𝐺24 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

𝐺𝐺𝐺𝐺𝐺𝐺13:00 
 

The NO2 surface concentration estimates used for gridcells >5km away from roads and in rural areas were then 
generated using the following formula: 

Equation S3:  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑂𝑂𝑂𝑂𝑂𝑂 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 4 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓#1 ×
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 #2 

For rural gridcells within 5km of major roadways, we linearly scaled between Larkin et al.5 values and the new 
adjusted rural concentrations in the span of the 5 km distance. The result of these steps is a 1km x 1km annual 
average surface NO2 concentration dataset for 2011 that uses Larkin et al.5 values in gridcells that are categorized as 
urban or over roads, and a new concentration dataset derived from OMI satellite observations in rural areas (Figure 
S2). 

 

Methods for scaling NO2 concentrations from 2011 to 1990-2019 

The GBD requires NO2 concentrations for each year included in the comparative risk assessment, from 1990-2019. 
We therefore scaled the new 2011 surface NO2 concentration dataset to each year in this time period, in five-year 
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increments from 1990-2005, and annually from 2010-2019. For the years 2005-2019, we scaled surface NO2 
concentrations from 2011 to each year using 3-year rolling averages of annual average NO2 columns from the OMI 
version 4.0 level 2 product (13 km x 25 km resolution at nadir; Figure S3) at the gridcell level. We use NO2 columns 
because surface concentrations derived from the version 4 OMI retrieval are not yet available. We oversampled the 
column NO2 dataset to 0.1° x 0.1° resolution and re-gridded to 0.0083° x 0.0083° (approximately 1km x 1km). The 
3-year rolling averages remove noise from the satellite data. For 2005 and 2019, we did not have data to create 3-
year rolling averages, so we used that year’s NO2 columns directly. The years 1990, 1995, and 2000 predated the 
OMI observational record. We therefore used NO2 concentrations from the MERRA-2 reanalysis product to scale 
2011 NO2 concentrations to those years.6 To remove model noise, we created the MERRA-2 scaling factors across 
broad world regions (Figure S5), as opposed to applying scaling factors on a gridcell by gridcell basis as we did for 
the OMI scaling. 

The final result used for estimating the global burden of disease from NO2 is a global, 0.0083° x 0.0083° 
(approximately 1km x 1km) resolution dataset of annual average surface NO2 concentrations from 1990-2019 
(Figure 1).  

 

Evaluation of NO2 concentration dataset 

The Larkin et al.5 NO2 concentration dataset was evaluated extensively in that work and agreed well with ground 
observations in urban areas. Here we add two limited new analyses to evaluate the changes we made in rural areas 
and the scaling other years (focusing specifically on the latest year, 2019).  

We evaluated the rural NO2 concentration estimates using the European Monitoring and Evaluation Program 
(EMEP) ground monitoring dataset, which has a large number of stations in rural areas (Table S1 and Figure S6). 
Other ground monitoring datasets (e.g. from EPA) may have rural sites, but we found that most were located directly 
downwind from urban areas. For example, the average surface annual mean NO2 concentration in rural areas in 2011 
from the EPA network is 4.3 ppb, likely too high to represent true background concentrations. We aggregated the 
available monitoring stations for the year 2011 to calculate annual averages and used a set of criteria to filter for 
stations that mostly closely represent background concentrations: 1) Stations with >300 days of data (the threshold 
was selected based on the distribution in days available for stations); 2) Stations that are at least 500m away from 
roads; 3) Stations that are not in urban and suburban areas. After applying these criteria, 67 stations across Europe 
remained. The evaluation is performed based on the aggregated annual average surface NO2 concentrations for each 
monitor, and the value of the gridcell corresponding to that monitor for both original exposure dataset and final 
product. 

The evaluation results show that the newly developed NO2 surface concentrations outperformed the Larkin et al.5 
concentrations in rural areas, based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Bias 
(MB), and correlation with ground observations (Table S1). The slope of the best fitted line is improved from 1.41 
to 1.10, and the mean ratio of estimated to observed concentrations is improved from 1.81 to 1.32 (Table S1 and 
Figure S6). The RMSE is reduced from 3.37 ppb to 2.26 ppb, and MAE is improved from 2.74 ppb to 1.72 ppb, and 
the MB is reduced from 2.40 ppb to 1.02 ppb. The correlation between the estimated surface concentrations and 
ground measurements is improved from Pearson correlation coefficient (R) of 0.51 in the original product to 0.58.  

In addition to the comparison of our dataset with previously published NO2 concentrations during their overlapping 
time period, we further test the fidelity of our dataset for a more recent year (Figure S7). We obtain annual average 
observations for 2019 from three different networks: the National Air Pollution Surveillance (NAPS) program in 
Canada7, the Air Quality System (AQS) in the United States8, and the European Environment Agency (EEA) in 
Europe.9 These networks provide data from 4,348 individual monitors (181 NAPS, 466 AQS, and 3,701 EEA), and 
we compare each monitor’s NO2 concentration to the concentration in the gridcell co-located with each monitor for 
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2019. All monitor data for 2019 have passed several quality control tests and quality assurance assessments by the 
entities that disseminate these data.  

The mean bias (normalized mean bias) was -2.27 ppb (-20.40%) in Europe, 1.69 ppb in the U.S. (20.79%), and 3.34 
ppb (49.56%) in Canada across the three networks in 2019 (Figure S7b,e,h). In urban areas specifically, the mean 
bias was -2.87 (-22.51%) in Europe, 1.26 ppb (12.21%) in the U.S., and 3.93 ppb (50.14%) in Canada for an average 
of 0.77 ppb across these three networks (Figure S7c,f,i). The mean bias at rural sites averaged over the three 
networks is 1.56 ppb, similar in magnitude to the rural bias reported for 2010-2012 (compare Figure S7c,f,i with 
Table S1).  

The high mean bias evident in the NAPS and AQS datasets (Figure S7b-c, e-f) could, in part, reflect known issues 
with NO2 monitors, which have been reported to overestimate NO2 concentrations by up to ~50% due to interference 
from reactive nitrogen compounds, especially at locations distant from NOx sources.10 Additionally, this high bias 
could also stem from monitors sited near traffic or other sources of NOx emissions that may not be resolved in our 
~1 km2 dataset.  

The paucity of monitors throughout large swaths of Canada and the United States (Figure S7a, d) and throughout the 
rest of the world inhibits a more in-depth performance assessment of our dataset and highlights the urgent need for 
more strategic and equitable monitoring of ambient air pollution (e.g. 11).  

 

Methods for decomposing parameter contributions to NO2-attributable asthma trends 

We calculate the contribution of each parameter used in health impact assessment (population, baseline asthma rates, 
and concentrations) using four sets of simulations:  

● Control scenario, where we calculated the asthma cases for each year. 

● Three “parameter rollback” simulations in which we revert one of the parameters (population, baseline 
asthma rates, or concentrations) to the base year 2000.  

By comparing each of the three parameter rollback scenarios to the control scenario, we calculate the contribution of 
each parameter to the change in asthma cases between 2000 and all other years. We use the following set of 
equations to calculate the contribution of each parameter. 

We use Equation S4 to calculate pediatric asthma incidence attributable to NO2 for the control scenario. This 
equation is the same as Equation 1 in the main text, but we denote the parameters differently here to make it easier 
to compare with the control scenario equations. 

Equation S4:  

Where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑡𝑡 is the NO2-attributable pediatric asthma incidence for year t, 𝑥𝑥𝑡𝑡 is the baseline pediatric asthma rate 
for year t, 𝑦𝑦𝑡𝑡 is the pediatric population for year t, and 𝑧𝑧𝑡𝑡 is the fraction of pediatric asthma incidence that is 
attributable to NO2 for year t. 

We then calculate NO2-attributable pediatric asthma incidence for each simulation, replacing one parameter with its 
value in the year 2000 while holding the other two parameters at the same value used in the control scenario 
(Equations S5-S7). 

Equation S5:  

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 , 𝑧𝑧𝑡𝑡) = 𝑥𝑥𝑡𝑡 × 𝑦𝑦𝑡𝑡 × 𝑧𝑧𝑡𝑡 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑥𝑥,𝑡𝑡(𝑥𝑥0,𝑦𝑦𝑡𝑡 , 𝑧𝑧𝑡𝑡) = 𝑥𝑥0 × 𝑦𝑦𝑡𝑡 × 𝑧𝑧𝑡𝑡 
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Equation S6:  

 

Equation S7:  

Where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑖𝑖,𝑡𝑡 is the estimated NO2-attributable pediatric asthma incidence for year t, where we have 
reverted one parameter back to the base year of 2000. 

We then calculate the ratio of estimated NO2-attributable pediatric asthma incidence in the control scenario versus in 
each of the parameter rollback scenarios, as shown in Equation S8. 

Equation S8:  

 

Since NO2-attributable pediatric asthma incidence is calculated by multiplying three parameters, we assume that the 
ratio of NO2-attributable asthma incidence between year t and base year 2000 would be equivalent to the 
multiplication of the three rollback scenario ratios calculated in Equations S5-S7 (Equation S9). In this step we 
assume that aggregating the three parameter rollbacks separately is equivalent to reverting all of them together.  

Equation S9:  

 

To calculate the contribution of each parameter individually, we need to transform the parameter ratios so that they 
add up to 1 when summed. We therefore calculate a logarithm in the base of the left side of Equation S9 
(𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑎𝑎𝑡𝑡/𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑎𝑎0); since the logarithm of every number in its own base equals 1, this step makes the left side 
equal to 1 (Equation S10). 

Equation S10:  

 

Finally, we multiply each of the three log-transformed parameter rollback ratios by the total percentage change in 
NO2-attributable asthma incidence between years 2000 and t to calculate the percent contribution of each parameter 
to that total change (Equation S11).  

Equation S11:  

 

Using this methodology, we calculated percent contributions for each of the three health impact function parameters 
(concentration, population, asthma rates) that add up to the total percentage changes between the two years, while 
remaining loyal to the multiplicative nature of the original health impact assessment function. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑦𝑦,𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑦𝑦0, 𝑧𝑧𝑡𝑡) = 𝑥𝑥𝑡𝑡 × 𝑦𝑦0 × 𝑧𝑧𝑡𝑡 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑧𝑧,𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 , 𝑧𝑧0) = 𝑥𝑥𝑡𝑡 × 𝑦𝑦𝑡𝑡 × 𝑧𝑧0 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖,𝑡𝑡
 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑎𝑎𝑡𝑡
𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑎𝑎0

≈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑥𝑥,𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦,𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧,𝑡𝑡 

1 = log�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑥𝑥,𝑡𝑡� + log�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦,𝑡𝑡� + log (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧,𝑡𝑡) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑖𝑖,𝑡𝑡 =
𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑎𝑎𝑡𝑡
𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑎𝑎0

× 𝑙𝑙𝑙𝑙𝑙𝑙�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡� 
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Supplemental Tables and Figures 

Table S1. Statistical parameters for NO2 concentrations from the Larkin et al.5 dataset and our new concentration 
estimates for rural areas compared with EMEP rural observations. Values reported here for Larkin et al.5 differ from 
those reported in their paper because here we are only evaluating predicted concentrations in rural areas at the 
EMEP monitor locations. 

 

Root Mean 
Square Error 
(RMSE) (ppb) 

Mean 
Absolute 

Error 
(MAE) (ppb) 

Mean Bias (MB) 
(ppb) 

Pearson 
coefficient (R) 

Mean ratio: 
Estimate/obs 

Slope of best 
fitted line 

New product 2.26 1.72 1.02 0.58 1.32 1.10 

Larkin et al.5 3.37 2.74 2.40 0.51 1.81 1.41 
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Table S2. Count of urban clusters in each GBD region/super region. The total does not match the total urban clusters 
in analysis (13,189) since some urban clusters are located at the border between two regions. 

Super region name Region name Count 

Central Europe, Eastern Europe, and Central Asia   628 

  Central Asia 148 

  Central Europe 161 

  Eastern Europe 319 

High-income   1280 

  Australasia 35 

  High-income Asia Pacific 148 

  High-income North America 389 

  Southern Latin America 115 

  Western Europe 593 

Latin America and Caribbean   968 

  Andean Latin America 93 

  Caribbean 75 

  Central Latin America 438 

  Tropical Latin America 362 

North Africa and Middle East   1231 

  North Africa and Middle East 1231 

South Asia   3899 

  South Asia 3899 

Southeast Asia, East Asia, and Oceania   2904 

  East Asia 1955 

  Oceania 49 

  Southeast Asia 900 

Sub-Saharan Africa   2313 

  Central Sub-Saharan Africa 250 

  Eastern Sub-Saharan Africa 1024 

  Southern Sub-Saharan Africa 124 

  Western Sub-Saharan Africa 915 

Grand Total   13223 
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Table S3. Population-weighted NO2 concentrations (ppb), NO2-attributable pediatric asthma incidence (95% 
uncertainty interval in parentheses), NO2-attributable pediatric asthma incidence rate (per 100,000), and NO2 
attributable fraction (%) for each super-region in 2000, 2005, 2010, and 2019. 

Super region Year 

Pop-wt NO2 
concentration 
(ppb) 

NO2-attributable pediatric 
asthma incidence 

NO2-attributable asthma 
rate (per 100,000) 

NO2 
attributable 
fraction 

Central Europe, 
Eastern Europe, 
Central Asia 

2000 15.1 65,000 
(33,400 – 107,500) 202 23 

2010 13.6 44,300 
(26,400 – 85,300) 172 20 

2019 12.7 54,900 
(26,400 – 87,000) 188 20 

High-income 
2000 17.3 464,800 

(264,700 – 725,800) 428 29 

2010 15.1 433,300 
(255,500 – 655,000) 404 24 

2019 11.1 340,900 
(191,400 – 523,200) 310 17 

Latin America and 
Caribbean 2000 12.8 256,100 

(147,300 – 397,000) 332 19 

2010 12.4 236,900 
(138,000 – 380,300) 302 19 

2019 10.6 233,800 
(125,300 – 375,800) 281 16 

North Africa and 
Middle East 2000 12.1 111,800 

(63,300 – 176,300) 180 19 

2010 13.2 120,100 
(65,000 – 189,200) 189 20 

2019 12.8 157,600 
(67,000 – 202,200) 203 20 

South Asia 
2000 8.6 50,000 

(28,600 – 78,100) 33 13 

2010 9.9 106,500 
(55,900 – 161,900) 65 15 

2019 10.1 90,400 
(40,700 – 130,700) 50 16 

Southeast Asia, East 
Asia, and Oceania 2000 11.1 211,300 

(113,900 – 343,100) 109 16 

2010 14 226,600 
(129,500 – 377,600) 128 18 

2019 10.6 240,900 
(122,100 – 378,000) 129 15 

Sub-Saharan Africa 
2000 6.4 49,100 

(27,400 – 78,700) 89 9 

2010 6.9 65,700 
(26,000 – 74,700) 84 9 

2019 7.1 102,900 
(30,200 – 90,900) 97 10 
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Figure S1. Schematic of datasets used and the process of combining them. Blue arrows represent applied processes. 

 

 

Figure S2. Annual average surface NO2 concentration estimates for 2011 at ~1km x 1km resolution globally from 
this work, using a combination of Larkin et al.5 land use regression estimates, OMI satellite observations, and 
chemical transport modeling. 

Level 4 
OMI

Larkin 2017

Annual NO2 
surface

concentration
for year 2011

Factor#1: 
Adjusting for 

coverage

Factor#2: 
Adjusting for 
satellite pass 

time

Adjusted
rural 

concentrations Combining 
rural and 

urban

Annual NO2 
surface 

concentration 
for 1990-2019

Scaling for 
different years 

using OMI 
column values 
for 2005-2019 
and MERRA2 
for 1990-2005
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Figure S3. Regional trends in annual average NO2 column densities (0.5° x 0.5°) from the OMI satellite instrument 
(2005-2019). 
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Figure S4. Countries and territories included in each region and super region, using regional definitions from the 
GBD 2019 Study. 

 

 

Figure S5. World regions used to generate the MERRA-2 scaling factors for NO2 in 1990, 1995, and 2000.
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Figure S6. Comparison between annual average NO2 concentrations from the original Larkin et al.5 product (orange) 
and our new NO2 concentration product (blue), versus concentrations from ground measurements for 2011 in rural 
areas. A 1:1 reference line is added for comparison. Each point represents a monitor. Monitor data source: European 
Monitoring and Evaluation Programme (EMEP). 
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Figure S7. (a,d,g) The location of NO2 monitors from the NAPS, AQS, and EEA networks and their annual average 
2019 concentrations. (b,e,h) Annual average 2019 NO2 concentrations from the gridcells co-located with each 
monitor versus the monitor concentrations. (c,f,i) are the same as (b,e,h) but for urban versus rural monitors. 
Rurality in (c,f,i) is determined with the GHS-SMOD dataset. The mean bias (MB; = 𝑀𝑀� − 𝑂𝑂�), normalized mean 

bias (NMB; = (𝑀𝑀
�

𝑂𝑂�
− 1) × 100%), and RMSE (= �1

𝑁𝑁
∑  (𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 �

1
2) are indicated in each scatterplot. Here, M 

corresponds to the new dataset and O corresponds to observed concentrations. A 1:1 reference line is included in 
scatterplots for comparison.  
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Figure S8. Population-weighted annual average NO2 concentrations (ppb) for 13,189 urban areas (top) and the cities 
with the top 10 concentrations (bottom) in 2019. Color bar saturates at 18 ppb for greater contrast.
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Figure S9. As for Figure 3, but for each subregion within each super-region. 
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Figure S10. As for Figure S8, but for NO2-attributable pediatric asthma incidence.  
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Figure S11. As for Figure S8, but for NO2-attributable pediatric asthma incidence rate per 100,000 children.  
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Figure S12. As for Figure S8, but for the fraction of pediatric asthma incidence attributable to NO2 (%). Color bar 
saturates at 30% for greater contrast. 
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Figure S13. As for Figure 5, but for the change from 2000 to 2005 and 2010-2019 annually (represented left to right by the bars in each panel).
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