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Methods for generating surface NO2 concentrations 

We estimated surface annual average NO2 concentrations at 1km x 1km resolution in five-year 
increments from 1990-2010 and annually from 2010-2019. To begin, we used a previously published 
NO2 concentration dataset for the average of 2010-2012, which used land use regression modeling with 
inputs from road networks and other land use variables, as well as satellite NO2 column observations 
from SCIAMACHY and GOME-2 (Larkin et al. 2017, Geddes et al. 2016). We aggregated NO2 
concentrations from this dataset from its native 100m x 100m resolution globally to 1km x 1km, which is 
still a high enough resolution to avoid substantially underestimating NO2-attributable asthma impacts 
(Mohegh et al. 2020). Due to the lack of ground measurements in rural areas, the Larkin et al. (2017) 
NO2 dataset is fine-tuned towards the urban areas and overestimates NO2 concentrations in rural areas, 
likely due to a high sensitivity to the normalized difference vegetation index (NDVI). 

Given the good performance in urban areas, we applied the Larkin et al. (2017) NO2 concentrations in all 
1km x 1km grid cells globally that are categorized as “urban” according to the Global Human Settlement 
Model grid (Pesaresi et al. 2019), as well as those grid cells that include major roadways (Larkin et al. 
2017). For grid cells >5km away from roadways and in rural areas, we developed new NO2 concentration 
estimates using NO2 column observations from the OMI satellite instrument with some adjustments to 
fill spatial and temporal gaps in the OMI satellite record, and to estimate 24-hour averages from the 
early afternoon OMI overpass time. We use an OMI NO2 version 3, level 4 surface concentration dataset 
(0.1 x 0.1 degree resolution) for 2011, which followed methods described by Lamsal et al. (2008) and 
was obtained from the NASA Goddard Space Flight Center (GSFC). The newer version 4 OMI retrieval 
uses enhanced surface reflectivities in the calculation of the tropospheric column amounts, but surface 
concentrations prepared by NASA GSFC are not currently available from the version 4 product. Due to 
the lack of satellite dataset coverage over snow/ice covered areas, some gridcells (mostly in higher 
latitudes) have no OMI observations in some months (Figure S1). We used the MERRA 2 reanalysis 
product (0.625 x 0.5 degree resolution) to generate a correction factor to ensure availability of NO2 
concentrations in all locations and months, as follows:  

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓#1 =  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑂𝑂𝑂𝑂𝑂𝑂 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 4 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
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We also applied a second correction factor to convert surface NO2 concentrations from the early 
afternoon OMI overpass time (13:00 local time) to 24-hour averages. Following Anenberg et al. (2018), 
we used NO2 surface concentrations from the GMI-Replay chemical transport model (2 x 2.5 degree 
resolution) simulations to generate these correction factors, as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓#2 =
𝐺𝐺𝐺𝐺𝐺𝐺24 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   

𝐺𝐺𝐺𝐺𝐺𝐺13:00 
 

The NO2 surface concentration estimates used for gridcells >5km away from roads and in rural areas 
were then generated using the following formula: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑂𝑂𝑂𝑂𝑂𝑂 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 4 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓#1 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 #2 

 

For rural gridcells within 5km of major roadways, we linearly scaled between Larkin et al. (2017) values 
and the new adjusted rural concentrations in the span of the 5 km distance. The result of these steps is a 
1km x 1km annual average surface NO2 concentration dataset for 2011 that uses Larkin et al. (2017) 
values in gridcells that are categorized as urban or over roads, and a new concentration dataset derived 
from OMI satellite observations in rural areas (Figure S2). 

The GBD requires NO2 concentrations for each year included in the comparative risk assessment, from 
1990-2019. We therefore scaled the new 2011 surface NO2 concentration dataset to each year in this 
time period, in five-year increments from 1990-2005, and annually from 2010-2019. For the years 2005-
2019, we scaled surface NO2 concentrations from 2011 to each year using 3-year rolling averages of 
annual average NO2 columns from the OMI version 4.0 level 2 product (13 km x 25 km resolution at 
nadir). We use NO2 columns because surface concentrations derived from the version 4 OMI retrieval 
are not yet available. We oversampled the column NO2 dataset to 0.1 x 0.1 degree resolution and re-
gridded to 0.0083 x 0.0083 degrees (approximately 1km x 1km). The 3-year rolling averages remove 
noise from the satellite data. For 2005 and 2019, we did not have data to create 3-year rolling averages, 
so we used that year’s NO2 columns directly. The years 1990, 1995, and 2000 predated the OMI 
observational record. We therefore use NO2 concentrations from the MERRA2 reanalysis product to 
scale 2011 NO2 concentrations to those years (Gelaro et al. 2017). To remove model noise, we created 
the scaling factors across broad world regions, as opposed to applying scaling factors on a gridcell by 
gridcell basis. 

The final result used for estimating the global burden of disease from NO2 is a global, 0.0083 x 0.0083 
degree (approximately 1km x 1km) resolution dataset of annual average surface NO2 concentrations 
from 1990-2019 (Figure S3).  

 

Evaluation of NO2 concentration dataset 

The Larkin et al. (2017) NO2 concentration dataset was evaluated extensively in that work and agreed 
well with ground observations in urban areas. Since we used the Larkin et al. (2017) concentrations for 
urban areas, we focus here on evaluating the Larkin et al. (2017) and the newly developed NO2 
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concentrations for rural areas for the year 2011. We evaluated the rural NO2 concentration estimates 
using the European Monitoring and Evaluation Program (EMEP) ground monitoring dataset, since it has 
a large number of stations in rural areas. We aggregated the available monitoring stations for the year 
2011 to calculate annual averages, and used a set of criteria to filter for stations that mostly closely 
represent background concentrations: 1) Stations with >300 days of data (the threshold was selected 
based on the distribution in days available for stations); 2) Stations that are at least 500m away from 
roads; 3) Stations that are not in urban and suburban areas. After applying these criteria, 67 stations 
across Europe remained (Figure S4). The evaluation is performed based on the aggregated annual 
average surface NO2 concentrations for each monitor, and the value of the grid-cell corresponding to 
that monitor for both original exposure dataset and final product. 

The evaluation results (Figure S5) show that the newly developed NO2 surface concentrations 
outperformed the Larkin et al. (2017) concentrations in rural areas, based on Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), and correlation with ground observations. The slope of the best 
fitted line is improved from 1.41 to 1.10, and the mean ratio is improved from 1.81 to 1.32 (Table S1). 
The RMSE is reduced from 3.37 ppb to 2.26 ppb, and MAE is improved from 2.74 ppb to 1.72 ppb. The 
correlation between the estimated surface concentrations and ground measurements is improved from 
Pearson correlation coefficient (R) of 0.51 in the original product to 0.58. Figure S5 shows the 
improvement for each station in a scatter plot. 

 

Methods for decomposing parameter contributions to NO2-attributable asthma trends 

We calculate the contribution of each parameter used in health impact assessment (population, 
baseline asthma rates, and concentrations) using four sets of simulations:  

● Control scenario, where we calculated the asthma cases for each year. 
● Three “parameter rollback” simulations in which we revert one of the parameters (population, 

baseline asthma rates, or concentrations) to the base year 2000.  

By comparing each of the three parameter rollback scenarios to the control scenario, we calculate the 
contribution of each parameter to the change in asthma cases between 2000 and all other years. We 
use the following set of equations to calculate the contribution of each parameter. 

We use Equation S4 to calculate pediatric asthma incidence attributable to NO2 for the control scenario. 
This equation is the same as Equation 1 in the main text, but we denote the parameters differently here 
to make it easier to compare with the control scenario equations. 

Eq S4:  

Where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑡𝑡 is the NO2-attributable pediatric asthma incidence for year t, 𝑥𝑥𝑡𝑡  is the baseline 
pediatric asthma rate for year t, 𝑦𝑦𝑡𝑡  is the pediatric population for year t, and 𝑧𝑧𝑡𝑡 is the fraction of 
pediatric asthma incidence that is attributable to NO2 for year t. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 , 𝑧𝑧𝑡𝑡) = 𝑥𝑥𝑡𝑡 × 𝑦𝑦𝑡𝑡 × 𝑧𝑧𝑡𝑡 
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We then calculate NO2-attributable pediatric asthma incidence for each simulation, replacing one 
parameter with its value in the year 2000 while holding the other two parameters at the same value 
used in the control scenario (Equations S5-S7). 

Eq S5:  

 

Eq S6:  

 

Eq S7:  

Where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑖𝑖,𝑡𝑡 is the estimated NO2-attributable pediatric asthma incidence for year t, where we 
have reverted one parameter back to the base year of 2000. 

We then calculate the ratio of estimated NO2-attributable pediatric asthma incidence in the control 
scenario versus in each of the parameter rollback scenarios, as shown in Equation S8. 

Eq S8: 
 

 

Since NO2-attributable pediatric asthma incidence is calculated by multiplying three parameters, we 
assume that the ratio of NO2-attributable asthma incidence between year t and base year 2000 would 
be equivalent to the multiplication of the three rollback scenario ratios calculated in Equations S5-S7 
(Equation S9). In this step we assume that aggregating the three parameter rollbacks separately is 
equivalent to reverting all of them together.  

Eq S9: 
 

 

To calculate the contribution of each parameter individually, we need to transform the parameter ratios 
so that they add up to 1 when summed. We therefore calculate a logarithm in the base of the left side of 
Equation S9 (𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑎𝑎𝑡𝑡/𝐴𝐴𝑠𝑠𝑠𝑠ℎ𝑚𝑚𝑎𝑎0); since the logarithm of every number in its own base equals 1, this 
step makes the left side equal to 1 (Equation S10). 

Eq S10: 
 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑥𝑥,𝑡𝑡(𝑥𝑥0,𝑦𝑦𝑡𝑡 , 𝑧𝑧𝑡𝑡) = 𝑥𝑥0 × 𝑦𝑦𝑡𝑡 × 𝑧𝑧𝑡𝑡 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑦𝑦,𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑦𝑦0, 𝑧𝑧𝑡𝑡) = 𝑥𝑥𝑡𝑡 × 𝑦𝑦0 × 𝑧𝑧𝑡𝑡 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑧𝑧,𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 , 𝑧𝑧0) = 𝑥𝑥𝑡𝑡 × 𝑦𝑦𝑡𝑡 × 𝑧𝑧0 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑖𝑖,𝑡𝑡
 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑎𝑎𝑡𝑡
𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑎𝑎0

≈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑥𝑥,𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦,𝑡𝑡 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧,𝑡𝑡 

1 = log�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑥𝑥,𝑡𝑡� + log�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦,𝑡𝑡� + log (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧,𝑡𝑡) 
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Finally, we multiply each of the three log-transformed parameter rollback ratios by the total percentage 
change in NO2-attributable asthma incidence between years 2000 and t to calculate the percent 
contribution of each parameter to that total change (Equation S11).  

Eq S11: 
 

 

Using this methodology, we calculated percent contributions for each of the three health impact 
function parameters (concentration, population, asthma rates) that add up to the total percentage 
changes between the two years, while remaining loyal to the multiplication nature of the original health 
impact assessment function. 

  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑖𝑖,𝑡𝑡 =
𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑎𝑎𝑡𝑡
𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑎𝑎0

× 𝑙𝑙𝑙𝑙𝑙𝑙�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡� 
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Supplemental Tables and Figures 

Table S1. Statistical parameters for NO2 concentrations from the Larkin et al. (2017) dataset and our new 
concentration estimates.  

 

Root Mean 
Square Error 
(RMSE) (ppb) 

Mean 
Absolute 

Error (MAE) 
(ppb) 

Pearson 
coefficient (R) 

Mean ratio: 
Estimate/obs 

Slope of best 
fitted line 

New product 2.26 1.72 0.58 1.32 1.10 
Larkin et al. 
(2017) 3.37 2.74 0.51 1.81 1.41 
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Table S2: Count of urban clusters in each GBD region/super region. The total does not match the total 
urban clusters in analysis (13,189) since some urban clusters are located at the border between two 
regions. 

Super region name Region name Count 

Central Europe, Eastern Europe, and Central Asia   628 

  Central Asia 148 

  Central Europe 161 

  Eastern Europe 319 

High-income   1280 

  Australasia 35 

  High-income Asia Pacific 148 

  High-income North America 389 

  Southern Latin America 115 

  Western Europe 593 

Latin America and Caribbean   968 

  Andean Latin America 93 

  Caribbean 75 

  Central Latin America 438 

  Tropical Latin America 362 

North Africa and Middle East   1231 

  North Africa and Middle East 1231 

South Asia   3899 

  South Asia 3899 

Southeast Asia, East Asia, and Oceania   2904 

  East Asia 1955 

  Oceania 49 

  Southeast Asia 900 

Sub-Saharan Africa   2313 

  Central Sub-Saharan Africa 250 

  Eastern Sub-Saharan Africa 1024 

  Southern Sub-Saharan Africa 124 

  Western Sub-Saharan Africa 915 

Grand Total   13223 
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Figure S1. Spatial coverage of the OMI level 4 NO2 product (aggregated for all months of 2011), before 
adjustments. White spaces indicate areas with missing data for some months. 

 

 

Figure S2. Schematic of datasets used and the process of combining them. Blue arrows represent 
applied processes. 
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OMI
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surface
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Adjusted
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concentrations Combining 
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Annual NO2 
surface 

concentration 
for 1990-2019

Scaling for 
different years 

using OMI 
column values 
for 2005-2019 
and MERRA2 
for 1990-2005
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Figure S3. Annual average surface NO2 concentration estimates for 2011 at ~1km x 1km resolution 
globally from this work, using a combination of Larkin et al. (2017) land use regression estimates, OMI 
satellite observations, and chemical transport modeling. 
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Figure S4. Location of all EMEP monitoring stations across Europe, color coded based on annual average 
NO2 (ppb) concentrations for 2011. 
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Figure S5. Comparison between annual average NO2 concentrations from the “original” Larkin et al. 
(2017) product (orange) and our new NO2 concentration product (blue), versus concentrations from 
ground measurements for 2011. A 1:1 reference line is added for comparison. Each point represents a 
monitor. Monitor data source: European Monitoring and Evaluation Programme (EMEP). 
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Figure S6. Countries and territories included in each region and super region, using regional definitions 
from the GBD 2019 Study. 
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Figure S7. As for Figure 1, but including both urban and rural areas, whereas Figure 1 is only presenting 
the results for urban areas. Legend is the same as Figure 1. 

 

 

Figure S8. As for Figure 2, but including both urban and rural areas, whereas Figure 2 is only presenting 
the results for urban areas. Legend is the same as Figure 1. 
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Figure S9. Trend of the fraction of regional estimated NO2-attributable pediatric asthma incidence that 
occurs in urban areas. 
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Figure S10. As for Figure 4, but showing the full time trend for selected sub-regions. 
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