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1. TROPOMI NO2  

1.1 Air Mass Factors and Uncertainty Estimates 

The slant tropospheric column is converted to a vertical column using a quantity known as the air 

mass factor (Palmer et al., 2001).  The air mass factor is the most uncertain quantity in the 

retrieval algorithm (Lorente et al., 2017), and is a function of the surface reflectance, the NO2 

vertical profile, and scattering in the atmosphere among other factors (Lamsal et al., 2014).  

Using accurate and high-resolution data (spatially and temporally) as inputs in calculating the air 

mass factor can significantly reduce the overall errors of the air mass factor (Choi et al., 2019; 

Goldberg et al., 2017; Laughner et al., 2016, 2019; Lin et al., 2015; Liu et al., 2019; Russell et 

al., 2011; Zhao et al., 2020) and thus the tropospheric vertical column content.   

Operationally, the TM5-MP model (1 × 1° resolution) (Williams et al., 2017) is used to provide 

the NO2 vertical shape profile and the climatological Lambertian Equivalent Reflectivity (0.5 × 

0.5° resolution) (Kleipool et al., 2008) is used to provide the surface reflectivities.  The 

operational air mass factor calculation does not explicitly account for aerosol absorption effects, 

which are accounted for in the effective cloud radiance fraction.  While the operational product 

does have larger uncertainties in the tropospheric column contents than a product with higher 

spatial resolution inputs, we limit our analysis to relative trends, which dramatically reduces this 

uncertainty.  The uncertainty in any daily measurement in the operational slant column data has 

been assigned to be approximately 5.7 × 1014 molecules-cm-2 (van Geffen et al., 2020). This 

equates to roughly a 5-10% uncertainty over polluted areas. However, because we are averaging 

over many days (~20-40), we assume that random errors will cancel due to the large number of 

observations used. This leaves only the systematic errors. Here, we assign the AMFs and 

tropospheric vertical column contents a systematic uncertainty of 20% in the trends (McLinden 

et al., 2014).  This systematic uncertainty may be largest over areas with changing snow cover, 

such as Minneapolis, Chicago, Toronto, and Montreal.  We calculate total uncertainty as the 

quadrature of the uncertainty associated with this potential systematic bias and the standard 

deviation of the three Methods. These are listed in Table S1. 



1.2 Re-gridding of TROPOMI NO2  

For our analysis we re-grid the operational TROPOMI tropospheric vertical column NO2, with 

native pixels of approximately 3.5 × 7 km2, to a newly defined 0.01° × 0.01° grid (approximately 

1 × 1 km2) centered over the continental United States (CONUS; corner points: SW: 24.5° N, 

124.75° W; NE: 49.5° N, 66.75° W).  Before re-gridding, the data are filtered so as to use only 

the highest quality measurements (quality assurance flag (QA_flag) > 0.75).   

2. Description of Methodologies 2 & 3 

2.1 Method 2: Normalization of Daily TROPOMI NO2 using ERA5 

We use TROPOMI NO2 data from 2018 – 2019 as analog data to normalize 2020 data.  

Essentially, our method is searching through the 2018 – 2019 archive to find a meteorological 

analog to the current conditions and then adjusting the current day’s conditions based off that 

analog.   

For each day of the record, we modify the original observed TROPOMI NO2 based on its value 

compared to a "baseline" which we set as a weekday in April with 3 m/s southwest winds. For 

each day, n, and each city, i, the normalized NO2, 𝑁𝑂#$ , is calculated as follows: 

𝑁𝑂#$
%,' =

𝑁𝑂#%,'
𝑓*+*,-%,'

 

The subscript i represents a city-specific average within a 0.4° × 0.4° box (i.e., ~20 km radius) 

surrounding the city center. 

The four adjustment factors are: sun angle, wind speed, wind-direction, and day-of-week.  While 

other conditions affect NO2 amounts they are either interrelated to the aforementioned factors or 

can be considered secondary.  Each of the four individual factors are multiplied together to get a 

"total adjustment factor".  The “total adjustment factor”, ftotal is calculated for each day, n, and 

each city, i, as follows: 

𝑓*+*,-%,' = .𝑓/0%1,%2-34%.𝑓5,61+7183394%.𝑓8'%51/:3354%,'[𝑓8'%515'<]%,' 



For the sun angle factor, we calculate this using a cosine fit. For each julian date, n, the sun angle 

factor (fsun-angle) can be calculated as follows:  

𝑓/0%1,%2-3% =
0.75 + 0.25 ∗ 𝑐𝑜𝑠 H2𝜋 𝑛 + 11365 N

0.75 + 0.25 ∗ 𝑐𝑜𝑠 H2𝜋 𝑛5 + 11365 N
 

At the winter solstice, December 21st (n = -11 or n = 354) the numerator value is 1 and at the 

summer solstice, June 21st (n = 171) the numerator value is 0.5. The variable nd represents the 

normalization day, in this case April 15th (nd = 105).  The aforementioned equation is only valid 

for locations north of the Tropic of Cancer (23.4°N). 

For the wind speed factor, we fit a third-order polynomial using analog winds speeds from the 

2018 – 2019 TROPOMI time frame. Wind speeds of 5 m/s would yield a correction factor of 1. 

Values larger than 1 represent winds slower than 5 m/s and values smaller than 1 represent winds 

faster than 5 m/s. This fit allows us to calculate a correction factor given any city-specific wind 

speed. 

For the wind direction factor, we calculate a correction factor normalized to southwest winds. 

Wind directions are grouped into the following categories: 0 – 90 º are southwest, 90 – 180 º are 

northwest, 180 – 270 º are northeast, and 270 – 360 º are southeast.  Once the wind speed is 

grouped into a specific category, the factor is defined based on its relation to the climatological 

wind direction; northwest for New York City and Washington D.C., and northeast for Los 

Angeles. Daily winds which are typical of the climatological wind direction yield a correction 

factor of 1.  

Lastly, for the day-of-week factor, we assume 15% lower values on Saturdays and 30% lower 

values on Sundays. We assume all weekdays have similar emissions rates to each other. 

Weekdays have a factor of 1, Saturdays a factor of 0.85 and Sundays a factor of 0.70. These 

assumptions are broadly consistent with literature demonstrating day-of-week NOX emissions 

patterns. 



As an example, a stagnant day in January may be lowered by a factor of ~2 to "normalize" to a 5 

m/s April weekday, whereas a very windy weekend day in April might be increased by a factor 

of 1.5 to account for the faster than normal winds and the weekend effect. 

Method 3: Normalization of Daily TROPOMI NO2 using a CTM 

We infer expected NO2 columns (Vex) during the lock-down period (tcovid) using the output from 

the GEM-MACH model(Moran et al., 2009; Pendlebury et al., 2018).  The operational version of 

the model, used in this study, has a 10 × 10 km2 grid cell size with 80 vertical levels (from the 

surface to about 0.1 hPa), provides hourly output, and includes emissions, chemistry, dispersion, 

and removal processes of 41 gaseous and eight particle species. The emissions used in the model 

are processed using the Sparse Matrix Operator Kernel Emissions (SMOKE)(Coats, n.d.) and 

account for seasonal changes; changes in emissions due to the COVID-10 lock-downs are not 

considered in the model framework. 

In a first step the GEM-MACH NO2 vertical levels in the boundary layer (up to approximately 2 

km) are summed to a column amount using the model’s pressure and temperature profile(Côté et 

al., 1998). Since the GEM-MACH model currently does not contain any NOx sources in the free 

troposphere (such as aircraft or lightning emissions), the NO2 model concentrations decrease to 0 

above the planetary boundary layer (PBL).  A free tropospheric column (from 2 km to 12 km) is 

added to the GEM-MACH PBL vertical column densities (VCDs) using a monthly GEOS-Chem 

run (0.5x0.67⁰ resolution, version v8-03-01; http://www.geos-chem.org)(Bey et al., 2001; 

McLinden et al., 2014). The model VCDs are then mapped in space and time to the TROPOMI 

observations, and treated like the observations, where data with qa<0.75 are filtered and 

averaged over the city center using a 28-day running mean.  

The expected VCDs (Vex) are the 28-day running means of the modelled VCDs (VM) during the 

lockdown period (tcovid). Vex is scaled to remove any bias between the model and satellite (VT) 

for the pre-lockdown period (tpre, between February 1st and March 1st  2020): 

𝑉3Q(𝑡T+U'5) = 𝑉W(𝑡T+U'5) ∙ 𝑚𝑒𝑎𝑛\
𝑉]^𝑡:<3_
𝑉W^𝑡:<3_

`. 



Depending on the city, some dates within the tpre time period may not be considered for the 

scaling, if there is a strong divergence between the model and the observations. 

The estimated NO2 drop is the average of the difference between the expected VCDs, Vex(tcovid), 

and the observed TROPOMI VCDs, VT(tcovid), between March 28th and April 16th, 2020 using 

the daily 28-day running means as shown in Figure 4. 



3. Supplemental Figures 
 

 
Figure S1. Frequency of daily maximum 2-m temperature within each bin, according to the 
ERA5 re-analysis. Each bar is a different city as noted by list in top left. 
 

 
Figure S2. Frequency of 100-m afternoon (16Z-21Z) wind speed within each bin, according to 
the ERA5 re-analysis. Each bar is a different city as noted by list in top left. 



 
Figure S3. Frequency of 100-m afternoon (16Z-21Z) wind direction within each bin, according 
to the ERA5 re-analysis. Each bar is a different city as noted by list in top left. 
 

 
Figure S4. Trends in TROPOMI NO2 since January 1 in 2019 and 2020. The lines represent the 
28-day rolling median value (50th percentile) in a 0.4° × 0.4° box centered on the city center for 
the largest cities (New York City, Los Angeles, Chicago, Toronto, Houston) and 0.2° × 0.2° box 
in all other cities. 
 
 



 
Figure S5. Average 100-m afternoon (16Z-21Z) wind speed and direction for March 15 – April 
30 in (left) 2019, (center) 2020, (right) difference between the two years, according to the ERA5 
re-analysis. 
 
 

4. Supplemental Table 
 
Table S1. Uncertainties associated with our methodology. Uncertainties are calculated as the 
quadrature of any potential systematic bias (20%) and the standard deviation of Methods 1 – 3.  
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