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LINKING THERMAL PROPERTIES OF TERRESTRIAL 
SEDIMENTARY ENVIRONMENTS TO MARS

A. Koeppel1 (akoeppel@nau.edu), C. S. Edwards1, K.A. Bennett2, L.A. Edgar2, 
H. Eifert1, A. Gullikson2, S. Nowicki3, S. Piqueux4, A.D. Rogers5

Mars visible and THEMIS Night-
time Surface Temperature data

BACKGROUND

Sunset Tephra Site, AZ

 Infrared imagers 
orbiting Mars have 
collected an astound-
ingly complete record 
of surface tempera-
tures spanning over 
�ve decades. Because 
the physical nature 
of di�erent rocks 
and sediment a�ect 
how quickly they 
can heat up or cool 
down, temperature 
measurements pro-
vide us with a valu-
able tool for study-
ing geology in areas 
where ground mea-
surements are limit-
ed or absent. We can 
use inferred sedimen-
tary features to help 
interpret past envi-
ronmental processes.
 However, direct-
ly quantifying how a given temperature re-
sponse aligns with a sediment type is di�cult 
without at least initial validation from direct 
observations on the ground. To aid our under-
standing of materials on Mars’ surface, we are 
studying thermal responses at sedimentary 
�eld analog sites, each representing a di�er-
ent depositional environment. Shown here 
are results from a 72-hr observation of a ba-
saltic eolian dune site near Sunset Crater, AZ. 
We collected weather data from a tower and 
used UAVs to map surface temperatures, rep-
licating satellite viewing angles. We use a sur-
face energy balance model to derive thermal 
inertia, allowing us to ultimately relate ther-
mophysical controls between the two worlds.
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RESULTS

Air Temperature

Radiation into surface

Wind Speed

Soil Moisture

Thermal inertia is derived from the mod-
eled thermal  conductivity for each pixel. 
The ultimate goal will be to quantify how 
thermal inertia is correlated with measured 
sediment properties that include: soil mois-
ture, grain size and shape, subsurface stra-
tigraphy, mineralogy, and cementation in 
the context of each �eld site (eolian, �uvial, 
alluvial, glacial, pyroclastic).

Uncertainty
Observed

Modeled top 1 cm TI  = 442.32 ± 4.40 Jm-2K-1S-1/2 

Pole-Mounted Surface Temperature Fit (χV2 = 1.02) 

Digital Terrain Model

Thermal Inertia 
(from 10 temperature mosaics)

RSurf: SURFACE 
EMISSION

G: CONDUCTION

H: CONVECTION
(SENSIBLE HEAT)

LE: EVAPORATION/
SUBLIMATION 
(LATENT HEAT)

RSky: LONG WAVELENGTH
DOWNWELLING RADIATION

RSun: ABSORBED 
SOLAR RADIATION VOLATILES

We developed an approach to deriving ther-
mal inertia in undisturbed sediments on 
Earth using UAS and weather station data. 
The method allows for relating thermophys-
ical controls observed on Earth to environ-
ments captured in satellite data from Mars.

Relative Humidity

Adapted from NASA
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Observed
Modeled top 1 cm  TI = 413 Jm-2K-1S-1/2

Single Pixel UAS Surface Temperature �t (χV2  = 1.7)

Markov Chain Monte Carlo simulations optimize thermal conductivity, subsurface 
layering, and unitless coe�cients to �t observed surface temperatures beneath 

the tower. Coe�cients are then recycled to �t thermal conductivity for 
each pixel in the larger �eld area from 10 UAS thermal mosaics.

10 Band Multispectral 
Map (False IR)

Jm-2K-1S-1/2 620330

Temperature (C) 240 Temperature (C) 7550

ANALYSIS
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