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Abstract13

In the spectral analysis of time series, the necessity of a robust determination of the back-14

ground power spectrum and identification of discrete power enhancements, due to the15

occurrence of periodic fluctuations, encompasses many research fields. Some application16

in geophysical and astrophysical observations are the identification of periodic density17

structures in the solar wind, the distinction between discrete and broadband Ultra Low18

frequency waves in Earth’s magnetospheric field, and the turbulent evolution of the so-19

lar wind. Here, we present a new method based on the adaptively weighted multitaper20

estimate of the power spectral density. Given the direct spectrum (raw) and its four dif-21

ferent smoothed versions (med, mlog, bin, but), we obtain, via a maximum likelihood ap-22

proach, robust background spectrum estimates according to four models (WHT, PL, AR(1),23

BPL). We select the best representation through statistical criteria and define the con-24

fidence levels of possible power spectrum enhancements. We identify periodicities in the25

time series by combining the discrete power enhancements identified in the spectrum with26

those identified in the multitaper harmonic F test. We demonstrate the algorithm on a27

case study of magnetospheric field fluctuations directly driven by periodic structures in28

the solar wind proton density. The method is robust and flexible, allowing for the char-29

acterization of the background spectrum in three distinct environments: the solar wind,30

magnetosphere, and ground observatories. Using our algorithm to identify background31

spectra and identify discrete periodicities, we show that there is a directly driven peri-32

odicity at f ≈ 0.9 mHz and possibly at f ≈ 0.2 and ≈ 0.4 mHz.33

1 Introduction.34

In the analysis of space physics time series, the distinction between quasi-periodic35

fluctuations due to underlying physical processes and fluctuations from noise is a chal-36

lenging task. Identifying periodicities is important in many circumstances, for example37

the acceleration and loss of radiation belt electrons via ULF wave-particle interactions38

not only depend on the mode structure of the wave and the azimuthal wave number but39

also on whether the wave is discrete (drift bounce or drift resonances; Zong et al., 2007;40

Claudepierre et al., 2013; I. R. Mann et al., 2013) or broadband (radial diffusion; Ozeke41

et al., 2014). Therefore, the distinction between discrete ULF wave power from broad-42

band wave power is fundamental to address the relative importance of resonant versus43

stochastic ULF wave interactions. Another example is the analysis of coronagraph im-44
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ages showing that mesoscale solar wind density structures are periodically released from45

the top of helmet streamers on time scales of many hours down to the resolutions of the46

imagers (many minutes; Sheeley et al., 1997; Wang et al., 2000; Viall et al., 2010; Sanchez-47

Diaz et al., 2017; DeForest et al., 2018) with ≈90 min being one characteristic time scale48

(Viall & Vourlidas, 2015). In situ measurements of periodic density oscillations showed49

the presence of these structures between 0.3 and 0.6 AU (Di Matteo et al., 2019) as well50

as at 1 AU (Viall et al., 2008; Rouillard et al., 2011). Concurrent periodic changes in com-51

position of heavy abundances link the formation of the periodicities with the origin of52

solar wind parcels from different region of the solar corona (Kepko et al., 2016; Viall et53

al., 2009). However, Kolmogorov-like power spectra, often observed by several spacecrafts54

in solar wind magnetic field and velocity measurements, suggested the turbulent expan-55

sion of the solar wind (Kolmogorov, 1941; Tu & Marsch, 1995; Bruno & Carbone, 2013;56

Tsurutani et al., 2018). Therefore, the distinction between periodic fluctuations and the57

underlying power spectrum is one way to understand the differences between the struc-58

tured and turbulent nature of the solar wind.59

While harmonic analysis to identify the occurrence of periodic variations compared60

to a flat power spectrum (i.e. white noise) are well established (Fisher, 1929; Percival61

and Walden, 1993), there is a lack of standard techniques to assess the significance of62

a periodicity against a colored noise, such as the red spectra typically found in astrophys-63

ical and geophysical time series. One of the major diagnostic tools for the identification64

of quasi-periodic fluctuations in a time series is the frequency domain characterization65

via the spectral density function S(f), which establishes the distribution of the signal66

power at specific frequencies. Given a discrete time series {xn} of N data points (n =67

0, 1, . . . , N−1) with a sampling rate ∆t, the simplest estimator of S(f) is the periodogram68

based on the time series discrete Fourier transform defined as:69

Xj =

N−1∑
n=0

xne
−i2πfjn∆t

evenN j = −N/2, . . . , N/2

oddN j = −(N − 1)/2, . . . , (N − 1)/2
(1)70

where fj = j/(N∆t) are the Fourier frequencies defined over the frequency interval [−fNy, fNy],71

limited by the Nyquist frequency fNy = 1/(2∆t), with the frequency resolution deter-72

mined by the Rayleigh frequency fRay = 1/(N∆t). The periodogram is defined as the73

product of the time series sampling rate over the number of points and discrete Fourier74

transform square modulus: S
(p)
j = (∆t/N)|Xj |2. The major issues of this estimator are75

(Percival & Walden, 1993): (i) the leakage of power into adjacent bins, due to the finite76
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frequency resolution, (ii) a bias in the estimate not known a priori, depending on the time77

series itself, and (iii) the associated variance, that is equal to the estimate S
(p)
j itself. These78

effects can be reduced by tapering the time series with appropriate weights wn, satis-79

fying
∑
n w

2
n = 1, and/or by averaging the S

(p)
j over adjacent frequency bins (Percival80

& Walden, 1993). Another procedure consists of averaging the spectral density functions81

estimated on different weighted subintervals (possibly overlapped) of the original time82

series (Welch, 1967); since the intervals are shorter, the frequency resolution is reduced.83

Additionally, many other parametric and non-parametric spectral analysis procedure ex-84

ist, e.g. minimum prediction error (Samson, 1983), multitaper windowing (Thomson, 1982),85

and maximum entropy (Vellante & Villante, 1984) method. For real-valued processes,86

the spectral density function is two-sided, i.e. symmetric about the zero frequency S(−f) =87

S(f). In this case a common representation is the one sided spectral density function88

defined as:89

P (f) =


0 f < 0

S(f) f = 0, fNy

2S(f) 0 < f < fNy

(2)90

often referred as power spectral density or power spectrum. Via the periodogram S
(p)
j ,91

a simple estimator P
(p)
j can be defined on nf Fourier frequencies fj with j = 0, 1, . . . , (nf−92

1). Note that nf = N/2 + 1 for even N and nf = (N + 1)/2 for odd N .93

Purely periodic or quasi-periodic signals manifest in the power spectrum as enhance-94

ments relative to the continuous background spectrum, i.e. the spectrum due to noise.95

The identification of the continuous part of the spectrum constitutes a great challenge96

since sharp peaks can be created by completely different processes, like random/stochastic97

processes with signals or deterministic chaotic systems (Kantz & Schreiber, 2003). Vaughan98

(2010) addressed this issue by analysing the occurrence of quasi-periodic oscillations in99

X-ray observations of Seyfert galaxies (Vaughan, 2005). They introduced a significance100

test for periodicity assuming red noise spectrum with approximately power law or bend-101

ing power law (McHardy et al., 2004) shape. Using the statistical properties of the pe-102

riodogram, Vaughan (2010) applied Markov Chain Monte Carlo techniques to estimate103

the posterior distribution of the spectrum model parameters. After selecting the best104

representation of the background spectrum via the sum of the squared standard errors105

(χ2) and the likelihood ratio test (Vaughan, 2010; Vaughan et al., 2011), periodic sig-106

nals manifest as periodogram outliers.107
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More recently, Inglis et al. (2015) adapted the Vaughan (2010) method to the iden-108

tification of quasi-periodic pulsations typically observed during the impulsive phase of109

solar and stellar flares over a wide range of wavelengths. From radio waves and microwaves110

to hard X-rays and gamma-rays (Nakariakov & Melnikov, 2009), the characteristic timescales111

of these fluctuations range from one second up to several minutes. The Automated Flare112

Inference of Oscillations (AFINO; Inglis et al., 2015, 2016) technique probes the power113

spectrum of the time series for a single power-law-plus-constant model, a broken-power114

law model, and power-law-plus-constant combined with a Gaussian component in log-115

frequency space, representing the excess power due to the occurrence of a periodic os-116

cillation. The most appropriate background model is selected via the Bayesian informa-117

tion criterion (Burnham & Anderson, 2004) and a modified χ2 statistic for exponentially118

distributed data (Nita et al., 2014). The AFINO technique has been applied also to Flux119

Gate Magnetometer data from the Magnetospheric Multiscale mission to study the role120

of the Ultra Low frequency (ULF) waves in the dynamics of the inner magnetosphere121

and outer radiation belt (Murphy et al., 2018).122

M. E. Mann and Lees (1996) proposed another procedure for the distinction be-123

tween background and peaks in power spectra, based on the spectral and harmonic anal-124

yses of Thomson (1982). Briefly, the background spectrum is estimated fitting a lag-one125

autoregressive model to the median smoothed power spectrum of the time series. Then,126

a periodicity is identified at locations where the power spectrum enhancements above127

a confidence threshold are concurrent with harmonic F (HF) test values above a confi-128

dence threshold (Thomson, 1982). This method has been applied to many studies of re-129

mote and in situ observation of the solar wind.130

Here, we combine and improve all of these approaches. Following a brief descrip-131

tion of the spectral and harmonic analysis via the multitaper method, we discuss the ex-132

tension of the maximum likelihood approach, developed for the periodogram, to the mul-133

titaper estimates of the power spectrum. Then we introduce various spectrum smooth-134

ing approaches to improve the identification of the background spectrum obtained by135

fitting multiple models. Once the best representation of the background is obtained ac-136

cording to robust criteria, periodic fluctuations manifest as concurrent confident enhance-137

ments in the spectral and harmonic analyses.138
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2 The Multitaper Method139

Among the many parametric and non-parametric methods introduced to provide140

a better estimator of the power spectrum, the Multitaper Method (MTM) is of partic-141

ular interest (Thomson, 1982), and the one we use in our algorithm. Starting from the142

spectral representation of a time series {xn} (Cramér, 1940; Koopmans, 1974; Thom-143

son, 1982) with the addition of the phase factor ei2πf(N−1)/2
144

xn = ∆t

∫ 1
2∆t

− 1
2∆t

ei2πf[n−
N−1

2 ]∆tdZ(f) (3)145

where dZ(f) is an increments process (Cramér, 1992; Percival & Walden, 1993), the cor-146

responding Fourier transform yield the fundamental equation of spectral analysis:147

y(f) =

N−1∑
n=0

e−i2πf[n−
N−1

2 ]∆txn = ∆t

∫ 1
2∆t

− 1
2∆t

sin
[
Nπ(f − f ′)∆t

]
sin [π(f − f ′)∆t]

dZ(f
′
) (4)148

It is possible to evaluate an approximate solution for (4) considering the eigenfunctions149

of the Dirichlet kernel, namely the Slepian functions Uk(N,W ; f), that are orthonormal150

on the interval [−1/(2∆t), 1/(2∆t)] and orthogonal on [−W/∆t,W/∆t] with 0 < 2W <151

1 (Slepian, 1978). They are also called discrete prolate spheroidal wave functions and152

their eigenvalues λk represent the fraction of energy in the frequency band [−W/∆t,W/∆t].153

The terms of the expansion of y(f) over the interval (f−W/∆t, f+W/∆t) are called154

eigencoefficients (yk(f); Thomson, 1982) and can be evaluated directly from the orig-155

inal time series xn using the Slepian sequences, namely the discrete prolate spheroidal156

sequences (DPSS), as data weights before performing the Fourier transform. Ordering157

the DPSSs with the corresponding eigenvalues in decreasing order, the first K ≤ 2NW−158

1 eigensequences have λk close to 1 (Slepian, 1978) and provide, in the case of a white159

noise process, unbiased and uncorrelated estimates of the spectral density function at160

the Fourier frequencies fj (Thomson, 1982): S
(mt)
k,j = ∆t|yk(fj)|2. For colored spectrum161

slowly varying over intervals [f − W/∆t, f + W/∆t], a refined estimator is the adap-162

tive multitaper:163

S
(amt)
j =

∑K−1
k=0 d2

k,jS
(mt)
k,j∑K−1

k=0 d2
k,j

(5)164

in which the weights dk,j are derived from:165

dk(f) =

√
λkS(f)

λkS(f) + (1− λk)σ2
(6)166

where σ2 is the variance of the time series. The weights are obtained at the Fourier fre-167

quencies fj by recursively substituting the true spectrum S(f) with the one estimated168
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by (5). In particular, starting from the average of the spectral estimates S
(mt)
k,j via the169

first two DPSSs, we obtain a set of weights from (6), that, when substituted into (5) gives170

a new estimate of the spectrum to be used for the evaluation of dk,j = dk(fj). This pro-171

cedure reduces the average broad band bias, i.e. the amount of leakage outside a [f−172

W/∆t, f +W/∆t] frequency band through the spectrum (Thomson, 1982; Percival &173

Walden, 1993). As for the periodogram, the power spectral density estimator P
(amt)
j can174

be defined on nf Fourier frequencies fj with j = 0, 1, . . . , (nf − 1) following eq.(2).175

A powerful tool that we use in conjunction with the MTM spectral analysis is the176

HF test. Starting from the assumption that a time series xn can be expressed as a su-177

perposition of phase coherent harmonic components and a background process ξn with178

a continuous spectrum Sξ(f) (Thomson, 1982; Ghil et al., 2002), we consider a single179

signal with constant amplitude A and phase ϕ at frequency f0:180

xn = µ(f0)ei2πf0n∆t + µ∗(f0)e−i2πf0n∆t + ξn (7)181

where µ(f0) =
(
Aeiϕ

)
/2 and the asterisk denotes the complex conjugation. The eval-182

uation of the corresponding eigencoefficients through the MTM yields a complex-valued183

regression model (Thomson, 1982; Di Matteo & Villante, 2017) from which an estimate184

of the amplitude is185

µ̂(f0) =

∑K−1
k=0 Uk(N,W ; 0)yk(f0)∑K−1

k=0 U2
k (N,W ; 0)

(8)186

and a statistical confidence interval is given by the HF test187

F2,2K−2(f0) =
χ2

2

2
/
χ2

2K−2

2K − 2
=

(K − 1)|µ̂(f0)|2
∑K−1
k=0 U2

k (N,W ; 0)∑K−1
k=0 |yk(f0)− µ̂(f0)Uk(N,W ; 0)|2

(9)188

according to a Fisher distribution. If the initial assumption is not valid and the back-189

ground spectrum is not locally white or it is related to a chaotic system, spurious lines190

will be identified at arbitrary frequencies even with high confidence levels. This is the191

reason why M. E. Mann and Lees (1996) introduced an additional test on the power spec-192

trum. They considered only confident lines in the HF test concurrent with power spec-193

trum enhancements with respect to a background spectrum evaluated fitting a lag-one194

autoregressive process AR(1) on the convolution of the adaptive multitaper spectrum195

with a median smoother. In the following section, we extend this approach considering196

different smoothing procedures of the original spectrum estimate and other background197

models, fitted via an appropriate maximum likelihood approach.198
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3 Maximum Likelihood and Confidence Bounds199

While fitting a model to an estimated spectrum, we have to consider the proba-200

bility density function (PDF) of these estimates since they are not gaussian distributed.201

The periodogram estimates follow an exponential distribution P
(p)
j ∼ exp(1/Bj) where202

Bj = B(fj) is the background spectrum (the expectation value of the periodogram)203

at the Fourier frequencies fj 6=0 (Anderson et al., 1990; Bevington & Robinson, 2003; Vaughan,204

2005). The adaptive MTM estimates instead are represented by a gamma distribution205

P
(amt)
j ∼ Gamma(αj , Bj/αj) (Thomson & Haley, 2014), where αj is related at each206

Fourier frequency to the number of degrees of freedom νj defined as (Percival & Walden,207

1993)208

νj = 2αj =
2
(∑K−1

k=0 d2
k(fj)

)2

∑K−1
k=0 d4

k(fj)
(10)209

where dk(fj) are the final weights obtained from eq.(6).210

Considering a model for the background spectrum Bj(θ) determined by nθ free pa-211

rameters θ = [θ1, θ2, . . . , θnθ ], we can proceed with a robust maximum likelihood fit-212

ting procedure based on the joint probability density of observing N/2−1 power spec-213

tral density estimates:214

L(θ) =

N/2−1∏
j=1

p(Pj) M(θ) = −2 lnL(θ) (11)215

We extend this approach, already adopted for periodograms (Vaughan, 2005, 2010; Vaughan216

et al., 2011), to MTM spectra. Table 1 summarizes the type of random variable, the prob-217

ability density function, and the log-likelihood for the periodogram and MTM estimates.218

Note that the two approaches match each other for αj = 1 corresponding to one direct219

spectrum estimate (S
(mt)
k,j ) among the ones obtained from the different tapered data in-220

stances.221

Once the background spectrum has been estimated, we probe the occurrence of pe-222

riodic or quasi-periodic fluctuations searching for enhancements in the power spectral223

density. In order to distinguish between real power peaks from the stochastic fluctua-224

tions due to the random nature of the spectrum estimates, we need confidence thresh-225

olds. In previous work, the ratio between the estimated spectrum and the modeled back-226

ground, often referred as γ, is probed for confidence bounds according to the correspond-227

ing probability distribution function (e.g. for the periodogram, γ ∼ χ2
2/2). In our case,228
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Table 1. Probability density function p(Pj) and log-likelihood M(θ) of the power spectral

density Pj estimated via the periodogram and the MTM at the Fourier frequencies fj .

Periodogram: Pj = P
(p)
j Multitaper Method (MTM): Pj = P

(amt)
j

Pj = Bj
χ2

2

2 ∼ exp
(

1
Bj

)
Pj = Bj

χ2
2αj

2αj
∼ Gamma

(
αj ,

Bj
αj

)
p(Pj) = 1

Bj
e−Pj/Bj p(Pj) =

αj
Γ(αj)Bj

(
αjPj
Bj

)αj−1

e
−
αjPj
Bj

M(θ) = 2
∑
j

[
Pj
Bj

+ ln (Bj)
]

M(θ) = 2
∑
j

[
αjPj
Bj

+ ln [Γ(αj)Pj ]− αj ln
(
αjPj
Bj

)]

from table 1, at each Fourier frequency fj 6=0:229

γj =
Pj
Bj

=
χ2

2αj

2αj
∼ Gamma

(
αj ,

1

αj

)
(12)230

However, if we consider the ensemble of γj as nf possible representation of a single ran-231

dom variable γ, being nf the number of frequencies, the corresponding probability dis-232

tribution function is:233

p(γ) = p(γ/α)p(α) with p(γ/α) ∼ Gamma(α,
1

α
) (13)234

where p(α) is the probability distribution function of the half number of degrees of free-235

dom, that we estimate via a simple histogram of the αj values over the range [0,K] with236

a fixed step of ∆α = 0.2. The use of more sophisticated methods for the estimation of237

p(α), like the nearest neighbour or the kernel methods (Silverman, 1986), are compu-238

tational expensive and only determine differences lower than the 1.0% on the final con-239

fidence level with respect to the simple histogram.240

To define the cutting value z, we need the corresponding cumulative distribution241

function. Considering that 0 < α < K by definition and that z > 0, since the spec-242

tral density function is always positive, we obtain:243

P (γ < z) =

∫ z

0

p(γ′)dγ′ =

∫ K

0

α

Γ(α)
αα−1

(∫ z

0

γ′α−1e−αγ
′
dγ′
)
p(α)dα (14)244

Introducing the normalized lower incomplete gamma function:245

Px(a) =

∫ x
0
e−tta−1dt∫∞

0
e−tta−1dt

=
γ(a, x)

Γ(a)
(15)246

the cumulative distribution function for the random variable γ is:247

P (γ < z) = CK(z) =

∫ K

0

Pαz(α)p(α)dα = c (16)248
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At a given confidence level c, the cutting value zc can be evaluated by searching for the249

zero of the function g(z) = CK(z)−c estimated via trapezoidal numerical integration.250

4 Practical Procedure251

The structure of our procedure is outlined with a flowchart in Figure 1. Given a252

time series xn defined on the time steps tn, we subtract by default the average value <253

xn >. Note that data trends, due to long term variations on the same timescale of the254

length of the interval, might affect the results. In this case, the user should deal with a255

prewhitening of the time series if necessary. At this point, an optional step is the zero256

padding of the data that is a virtual extension of the length of the time interval to re-257

duce the frequency separation between Fourier frequencies. Once the corresponding Slepian258

sequences are evaluated, we estimate the adaptive multitaper power spectrum and the259

Harmonic F values. In the following sections, we carefully describe our new procedure260

for the characterization of the background spectrum and the identification of signals. First,261

we list the spectrum smoothing approaches and the implemented background models.262

Their combination provide a set of possible background spectra among which the best263

representation is selected according to specific selection criteria. Finally, we discuss the264

combination of the background spectrum and the HF test for the identification of sig-265

nals at given confidence levels.266

4.1 Smoothing.267

The identification of the background spectrum or noise level can be strongly influ-268

enced by embedded signals creating large enhancements in the power spectrum. The ma-269

jor consequence is the introduction of a bias that increases the estimated background270

level, possibly along the entire frequency range, leading to selection of power peaks at271

lower confidence levels. The smoothing of the estimated power spectrum is a way to re-272

duce this effect (Percival & Walden, 1993). In the following we propose four different ap-273

proaches in which the degree of smoothing is determined by a percentage value p of the274

frequency interval [0, fNy].275
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Figure 1. Flowchart outlining the steps of our procedure (see section 4 for details).

4.1.1 Running Median (med).276

Given the estimated power spectrum Pj with j = 0, 1, . . . , (nf −1), the smooth-277

ing via the running median is performed over frequency intervals of M = 2w+1 points.278

Pmed,j = median(Pk) with k = j − w, . . . , j + w (17)279

Near the edges of the frequency interval the window is truncated to fewer points. The280

number of points, determined by w, are evaluated from a percentage value p relative to281

the available frequency interval. For example, given the complete interval [0, fNy] and282

the percentage value p (such that 0 < p < 1), the width of the smoothing window is283

M ≈ (pfNy)/fRay. A useful guideline in the choice of p, suggested by M. E. Mann and284

Lees (1996), is NWfRay . pfNy . fNy/4.285

4.1.2 Running Median on Uniform Logarithmic Frequency Window (mlog).286

When facing colored spectrum with steep variations, the running median does not287

provide an accurate representation of the spectrum. For geophysical signals, typically288
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manifesting a red noise nature, the critical range is at low frequencies (M. E. Mann &289

Lees, 1996). A better approach was suggested by Stella et al. (1994) who proposed a run-290

ning median on windows with uniform width with respect to the central frequencies in291

the logarithmic frequency space.292

Pmlog,j = median(Pk) (18)293

with k : |log(fj)− log(fk)| ≤ psmooth ∗ log(fNy)/2294

An appropriate choice of the percentage of smoothing p follows the previous guidelines295

so that log(NWfRay) . p log(fNy) . log(fNy/4). Even though the median calculated296

over a uniform window in logarithmic space includes only a few points at low frequen-297

cies, which enables the recovery of the steep nature of the spectrum, it loses accuracy298

at high frequencies where a large portion of the frequency range is included, leading to299

a flattening of the smoothed spectrum.300

4.1.3 Binned Logarithmic Spectrum (bin).301

The running average of the logarithmic power spectrum over M = 2w + 1 data302

points is associated to the geometric mean of the corresponding frequencies.303

log [Pbin(fbin,j)] =
1

M

∑
k

log [Pk] and fbin,j =

(∏
k

fk

)1/M

(19)304

with k = j − w, . . . , j + w. At the edges of the frequency interval we fill the missing305

points mirroring the data. For example, at j = 0 with M = 5 we would consider k =306

[1, 0, 0, 1, 2]; the same argument is applied at the upper edge. Papadakis and Lawrence307

(1993) showed that this is an unbiased estimator of the true power spectrum at the set308

of frequencies fbin,j in the case of power law spectrum. They also remark that the bias309

is small as long as the logarithm of the spectral density varies smoothly with the log-310

arithm of frequency. As a consequence, the choice of the window M should be such that311

this condition is valid; as a general guideline we consider the same limits imposed for the312

running median procedure.313

4.1.4 Butterworth Filter (but).314

In this option for smoothing, we apply a butterworth low pass filter and smooth315

the power spectral density as if it were a time series. The butterworth gain function is316
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given by:317

G(f ′) =
1√

1 +
(
f ′

fc

)2n
(20)318

where f ′ are the ”frequencies”, fc is the cutoff frequency, and n is the order of the fil-319

ter. Usually, after filtering, the smoothed series manifests problems at the boundaries320

of the interval. To overcame this issue, we first extended the amount of data by intro-321

ducing before and the after the spectrum a mirrored replicate of itself. Then, we eval-322

uate the Fast Fourier Transform of the signal and multiply it for the butterworth filter’s323

gain function. Finally, the central part of the inverse Fourier transform provides the smoothed324

power spectrum. Here, the percentage of smoothing p regulates the value of the cutoff325

frequency fc = pfNy/8 such that 0 < fc ≤ fNy/8, while the order is set to n = 17.326

The choice of this parameters is arbitrary, even though this combination has been proven327

to provide reasonable results in various synthetic data representation (white and colored328

noise). For spectrum with steep variations, this procedure manifests issues similar to the329

ones occurring for the running median.330

4.1.5 Adaptive Smoothing: Kolmogorov-Smirnov Test.331

The choice of the optimum window for the smoothing procedure can be also based332

on statistical tests when the probability density function of the spectrum estimates is333

known. Stella et al. (1994) showed that a Kolmogorov-Smirnov (KS) test, comparing the334

cumulative distribution function of a random variable to a test function, can be applied335

to the ratio between the periodogram and its smoothing. In a similar way, for the MTM336

we can apply the same concept to γ, as defined in eq.(12). The data points can be con-337

verted to an unbiased estimator of the cumulative distribution function Cγ(z) with z >338

0 providing the fraction of data points minor than a certain value z. The theoretical cu-339

mulative distribution function for the ratio γ is CK(z) as defined in eq.(16). The KS test340

(Press et al., 2007) probes the similarity between these two cumulative distribution func-341

tions evaluating their maximum distance:342

DKS = max(|Cγ(z)− CK(z)|) (21)343

Therefore, the optimal percentage of smoothing (pKS) is the one providing the Cγ(z)344

that minimize the DKS value.345
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4.2 Background Models346

Once the power spectrum Pj and its different smoothed versions have been eval-347

uated, we can test the background spectrum for simple parametric models Bj(θ) rep-348

resentative of a wide range of variable systems in geophysics. The best parameters θ̂ are349

determined from the maximum likelihood procedure outlined in section 3.350

4.2.1 White Noise (WHT).351

The simplest background model is the white noise spectrum, where the power is352

evenly distributed among the Fourier frequencies:353

Bj(θ) = N θ = [N ] (22)354

The only limit imposed on the parameter is for it to be positive N > ε. The ε & 0355

value is required to avoid the nonphysical result of null spectrum. The initial value N0356

(table 2), imposed when maximizing the likelihood, has been derived from the relation357

between the variance of a stochastic process and the integral of the spectral density func-358

tion (Percival & Walden, 1993):359 ∫ fNy

−fNy
S(f)df = σ2 = var{xn} (23)360

Note that the same is valid for the power spectrum P (f) when integrated over the in-361

terval [0, fNy]. Substituting the white noise parameterization and considering the con-362

tinuous spectrum, we obtain N0.363

4.2.2 Power Law (PL).364

Another common representation of the background spectrum is the power law model:365

Bj(θ) = Nf−βj θ = [N, β] (24)366

A rough estimate of β is the slope of the logarithmic spectrum, while for N we use eq.(23)367

limiting the integration interval to [∆f, fNy] (see table 2).368

4.2.3 Lag-one Autoregressive (AR(1)).369

When considering discrete finite red noise time series, the simplest statistical pro-370

cess one can assume is the lag-one autoregressive process AR(1) represented by xn =371
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ρxn−1 + wn. Physically it is reasonable to expect that the present value of a time se-372

ries xn depends on the past values xn−1 by the degree of serial correlation (the lag-one373

autocorrelation coefficient 0 ≤ ρ < 1) together with some random effect wn (white374

process with variance σ2). It is representative of many geophysical systems (M. E. Mann375

& Lees, 1996). The autocorrelation of a AR(1) process decays exponentially with a char-376

acteristic time determined by τ = −∆t/ log(ρ), therefore, on time scales larger than377

τ it behaves as a white process. The corresponding power spectrum is given by (M. E. Mann378

& Lees, 1996; Vaughan et al., 2011)379

Bj(θ) =
N

1− 2ρ cos(π
fj
fNy

) + ρ2
θ = [N, ρ] (25)380

Note that for ρ = 0 it reduces to a white process. The rough estimates of the model381

parameters (table 2) are derived for ρ0 directly from the definition of the AR(1) process,382

and for N0 from eq.(23) (see table 2).383

4.2.4 Bending Power Law (BPL).384

A more flexible approach is the adoption of analytical functions able to reproduce385

the general behaviour of geophysical signals spectra, even though they are not related386

to a particular stochastic process. An example is the bending power law defined as (Vaughan387

et al., 2011)388

Bj(θ) =
Nf−βj

1 +
(
fj
fb

)γ−β θ = [N, β, γ, fb] (26)389

There are four parameters: the normalization N , the spectral indices β and γ dominat-390

ing respectively the frequency intervals below and above the frequency break fb at which391

the model bends. This model is particularly helpful when analyzing time series of tur-392

bulent systems. In fact, the corresponding power spectrum presents power law trends,393

with different spectral indices at frequency below and above a frequency break, corre-394

sponding to different regimes of the energy cascade. As in the previous model, a rough395

estimate of the parameters (table 2) is provided assuming the frequency break at the cen-396

ter of the interval in analysis, the spectral indices as the slope of the logarithmic spec-397

trum in the respective frequency range, and the normalization factor from eq.(23).398

4.2.5 Confidence Levels of the Models Parameters.399

We use the maximum likelihood method for the determination of confidence inter-400

vals for the model parameters. Our approach is a modified version of the Likelihood Ra-401
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Table 2. Models parameters starting values and imposed rangea for the log-likelihood mini-

mization procedure.

Model Rough Parameters Estimate Parameters Range

WHT

θ = [N ]
N0 = σ2

fNy
≈ 1

nf−1

∑
j Pj

θmin = [ε]

θmax = [+∞]

PL

θ = [N, β]

β0 = log(Pj′/Pj′′)/ log(fj′′/fj′)

N0 = σ2/
∫ fNy

∆f
f−β0df

θmin = [ε, 0]

θmax = [+∞, 10]

AR(1)

θ = [N, ρ]

ρ0 = mean(xnxn−1)/σ2

N0 = σ2/
∫ fNy

∆f
1/(1− 2ρ0 cos

(
πf
fNy

)
+ ρ2

0)df

θmin = [ε, 0]

θmax = [+∞, 1]

BPL

θ = [N, β, γ, fb]

fb0 = fj∗ with j∗ ≈ (j′′ − j′)/2

β0 = log(Pj′/Pj∗)/ log(fj∗/fj′)

γ0 = log(Pj∗/Pj′′)/ log(fj′′/fj∗)

N0 = σ2/
∫ fNy

∆f
f−β0/

[
1 + (f/fb0)γ0−β0

]
df

θmin = [ε, 0, 0,∆f ]

θmax = [+∞, 10, 10, fNy]

no padding: ∆f = fRay

aTo avoid the non physical result of null spectrum a lower ε & 0 limit is necessary for the

normalization factor N .

tio Confidence Bounds (Cash, 1976, 1979; Lampton et al., 1976; Protassov et al., 2002).402

Once the optimum set of parameters θ̂ has been identified for a specific model, from the403

relations in table 1 we define the likelihood ratio as404

LR(θ) =
L(θ)

L(θ̂)
= exp

∑
j

αj

[
ln

(
B̂j
Bj

)
+ Pj

Bj − B̂j
BjB̂j

] (27)405

in which B̂j is the background spectrum according to the θ̂ parameters and 0 < LR(θ) <406

1. Our approach can be divided into four steps. First, we evaluate the likelihood ratio407

over a coarse grid in the parameters space θ ∈ [θmin, θmax] and we estimate L̃R =
∫ θmax
θmin

LR(θ)dθ408

with a numerical rectangular integration. Note that the limits θmin and θmax, defined409

in table 2, are optimized for red colored spectra, but the entire procedure can be extended410

to other models as long as these and the θ limits constitute an appropriate choice. Sec-411

ond, we determine a reduced range for the model parameters θ′ = [θ′min, θ
′
max] for which412

the integrated likelihood ratio L̃′R does not vary more than εL̃R with respect to the orig-413

inal integral, that is L̃′R/L̃R . 1 − ε with ε = 10−9. Third, we define a fine grid over414
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the parameters range θ′ obtaining a better estimate of the integrated likelihood ratio L̃′R.415

Finally, the confidence levels for the model parameters are the extrema of the range θC416

over which the integrated likelihood ratio is CL̃R with respect to the original integral.417

For example, we can define the ”1σ” intervals imposing a confidence level of ≈68.3% (C=0.683).418

4.3 Best Background Spectrum Choosing Criteria.419

The combination of the possible smoothing and models creates a variety of back-420

ground spectral estimates that in some cases are very similar. Here, we introduce three421

tests based on the stochastic properties of the adaptive MTM spectrum estimates that422

provides objective criteria to choose the best representation of the background spectrum.423

AIC. Based on the likelihood and the number of free parameters nθ of each model,424

a useful method of comparison is the the Akaike Information Criterion (AIC) (Akaike,425

1973).426

AIC = −2 ln[L(θ)] + 2nθ (28)427

It corresponds to the sum of the log-likelihood with a penalty value for including more428

free parameters. This is a standard tool in maximum likelihood analysis and allow the429

comparison of non-nested model (Vaughan, 2005). The best background spectra corre-430

sponds to the model that minimises the AIC.431

MERIT. Anderson et al. (1990) defined a fit acceptable when a MERIT value,432

defined as the ratio between the weighted sum of squared errors and the number of de-433

grees of freedom (difference between the number of points and the number of the model434

free parameters), was lower than 1. For the adaptive MTM spectrum, the MERIT value435

is436

MERIT =
1

nf − nθ

∑
j

(Pj − E{Pj})2

var{Pj}
=

1

nf − nθ

∑
j

αj

(
Pj −Bj
Bj

)2

(29)437

where we use the expected value of the variance associated to the adaptive MTM (Thomson438

& Haley, 2014), that are respectively E{Pj} = Bj and var{Pj} = B2
j /αj . This value439

represents the goodness of fit for least square problems (Bevington & Robinson, 2003),440

but in our case, since the distribution of our data differ from a Gaussian distribution,441

it represents only a comparison tool. As for the AIC, the lower is the MERIT value442

the better is the representation of the background spectrum by the adopted model.443
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CKS. A Kolmogorov-Smirnov test (described in section 4.1.5) can be applied to444

the ratio between the adaptive MTM spectrum and the background model (see eq.12).445

First, we evaluate DKS that is the maximum distance between the empirical and the-446

oretical cumulative distribution functions. Then, for the null hypothesis, that is data be-447

longing to the same distribution, the significance level for DKS can be approximately448

estimated by (Press et al., 2007):449

P (D > DKS) = QKS(
√
nfDKS) with QKS(λ) = 2

∞∑
j=1

(−1)j−1e−2j2λ2

(30)450

where nf is the number of spectrum points tested. Finally, a confidence level for the fit451

is defined as CKS = 1 − P (D > DKS) so that, in a similar way to the previous ap-452

proaches, the minimum value corresponds to the model that best represent the background453

spectrum.454

In our procedure, we associate each combination of smoothings and models with455

a score, defined as the product of the three tests, namely score=AIC*MERIT*CKS . The456

best representation of the background spectrum corresponds to the smoothing+model457

pair that minimizes the score. When there are very strong enhancements in the spec-458

trum, showing clear deviation from the surrounding spectrum, the score struggles in pro-459

viding a reasonable answer. Discrete power enhancements are not parameterized in the460

implemented models, therefore, the distribution of the γ values deviate from the theo-461

retical one at the peak position. Smoothing procedures reduce this effect, but better re-462

sults can be obtained removing the portion of the power spectrum estimates above the463

99.99% confidence level (z99.99%) as defined by eq. (16), see section 4.4 for more details.464

4.4 Selection of Power Spectrum Enhancements.465

Once the background spectrum has been identified, we can search for the occur-466

rence of power spectrum enhancements related to the presence of periodic fluctuations467

in the time series. First, we consider every portion of the power spectrum above a thresh-468

old defined as the product of the background spectrum and the cutting value zc obtained469

by eq. (12), corresponding to the confidence level c. Then, we perform a narrow band470

test selecting only the peaks whose width is at least greater than W , the halfbandwidth471

of the MTM spectral window. In the MTM approach, spurious peaks exhibit a trian-472

gular shape (the width decreases for higher confidence levels) while enhancements due473

to real periodicity manifest a rectangular shape of width ≈ 2W (Thomson & Haley, 2014).474
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Due to the distortion of the enhancements shape caused by noise (especially for low sig-475

nal to noise ratio) we set a lower limit of W on the width. No upper limit is imposed476

to include also the broad enhancements possibly related to the occurrence of multiple477

signals at close frequencies (Di Matteo & Villante, 2017). For each portion of the spec-478

trum that passes the test, we identify the central frequency and the half width (narrow-479

band approach, nb). An independent test for the selection of signals is the HF test as480

described in section 2. In this case, we select all the local maxima values above the con-481

fidence level obtained by the Fisher distribution (F test approach, ft). We combine the482

results of the two tests in the last option. In this case, the selected frequencies are the483

ones identified in the HF test that are within the narrowband spectrum enhancement484

(narrowband + F test approach, nbft). Finally, for the last choice, we impose the more485

stringent criterion and allow only one signal for each narrow band, corresponding to the486

maximum value obtained from the HF test (narrowband + maximum F test approach,487

nbftm).488

5 Examples with Synthetic Data.489

We demonstrate the steps of our procedure below using synthetic time series rep-490

resenting lag-one autoregressive, power law, and bending power law processes. There are491

many methods to generate synthetic data with a specific power spectrum shape (Anderson492

et al., 1990; Timmer & Koenig, 1995; Vaughan et al., 2011). For an AR(1) process we493

use its definition as stated in section 4.2: given a random starting point x0 and the lag-494

one autocorrelation coefficient ρ, the values of the time series for the following steps are495

xn+1 = ρxn + wn in which wn is a Gaussian distributed random number (with zero496

mean and unitary variance). For the power law and bending power law processes, we use497

the approach of Timmer and Koenig (1995). Briefly, the square root of half the power498

spectrum is multiplied for two different series of Gaussian distributed random numbers.499

These vectors are extended with their complex conjugate to retrieve the real and imag-500

inary part of the double-sided Fourier transform of the desired data, so that the synthetic501

data are obtained as its inverse Fourier transform. Starting from the same white noise502

time series, we generate three synthetic processes representation of N=360 points with503

sampling rate ∆t = 60s, unitary variance, and parameters representative of the solar504

wind/magnetosphere environment: i) N = 25.5[(a.u.)2/Hz] and ρ = 0.90 for the AR(1);505

ii) N = 8.92×10−4[(a.u.)2/Hz1−β ] and β = 5/3 for the power law; iii) N = 0.23[(a.u.)2/Hz1−β ],506
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β = 1, γ = 4, and fb = 4 mHz for the bending power law. The values of N are esti-507

mated from the relations in table 2 considering σ2 = 1. In the following all the spec-508

tra are evaluated without zero-padding the time series and imposing the time-halfbandwidth509

product NW = 4 and K = 7 tapers.510

5.1 Smoothing.511

The primary purpose of the smoothing procedure is to reduce the fluctuations of512

the estimated spectrum around the true value in order to recover the shape of the back-513

ground spectrum even when high enhancements due to periodic signals occur. Figure514

2 show the AR(1) (left), PL (middle), and BPL (right) processes. From the top we re-515

port each time series, the raw power spectrum (black), the med (blue), mlog (dashed red),516

bin (green), and but (dashed magenta) smoothings, as described in section 4.1, on log-517

log and semi-log scales. The corresponding smoothing window percentages have been au-518

tomatically identified via the KS test. Each procedure produces different background fits,519

primarily due to their different behaviour at the edges of the frequency interval. For ex-520

ample, the med smoothing (pKS = 0.20, 0.20, 0.24, respectively for the three processes)521

provides a good representation of the spectrum except at low frequencies where it flat-522

tens due to the rapid rise of power toward lower frequencies. It therefore systematically523

underestimates the true spectrum as evident in the log-log panels (Figure 2d-f). The mlog524

(pKS = 0.22, 0.19, 0.21) fit, on the other hand, follow exactly the raw spectrum at lower525

frequencies, but flattens at high frequencies. This approach is particular well-suited for526

AR(1) processes, that exhibit high variability at low frequencies and flattening toward527

a white noise spectrum at high frequencies. In contrast, for PL and BPL processes the528

mlog fit overestimates the background spectrum as shown in the corresponding semi-log529

panels (Figure 2e-f). The but (pKS = 0.03, 0.07, 0.14 and n = 18, 13, 13) approach ap-530

pears as a smoother version of the med with a better representation of the true spectrum531

at lower frequencies for the PL (Figure 2h) and, especially, for the BPL (Figure 2i) pro-532

cesses. Decreasing the percentage of smoothing, that is increasing the pass band of the533

low pass filter, the but smoothing could give better representation of the low frequency534

spectrum, but it would rapidly reduce to the raw spectrum. Finally, the bin approach535

(pKS = 0.20, 0.24, 0.19), known to be an unbiased estimator of the true power spectrum536

in the case of power law spectrum (Papadakis & Lawrence, 1993), gives a good repre-537

sentation of the background spectrum in all the three cases. Unfortunately, since the cor-538
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responding frequency range is reduced due to the binning, the values at low and high539

frequency are extrapolated extending the fitted model to all the frequency range. In any540

case, unlike the other smoothing procedures, the bin approach is unaffected by the spec-541

trum flattening at low frequencies.542
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Figure 2. Example of the smoothing procedure for a synthetic representation of AR(1) (left),

PL (middle), and BPL (right) processes. Panels a, b, and c show the corresponding time series

with unitary variance. Panels d-i show the comparison of the raw spectrum with the smoothed

spectra obtained with the med (blue), mlog (red), bin (green), and but (magenta) approaches.

5.2 Background Estimate.543

Once the raw and/or the smoothed spectra have been evaluated, the next step is544

to fit the smoothed spectra with various models via the maximum likelihood method.545

Figure 3 shows the background selection procedure for the same time series of Figure546
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2. For each of the three cases (AR(1), PL and BPL), the background spectra (red lines)547

are estimated from the raw spectrum and its four different smoothed versions (black lines).548

The true analytical spectrum is shown by the green dashed lines corresponding respec-549

tively to a lag-one autoregressive (Figure 3a), a power law (Figure 3b), and a bending550

power law (Figure 3c) models using the parameters listed at the top of the panels. All551

the background spectrum estimation techniques provide a good representation of the true552

spectrum, but there are some differences. For the AR(1) process, the true spectrum is553

overestimated at high frequencies and underestimated at low frequencies by all the ap-554

proaches. In particular, the flattening at low frequencies is clearly visible for the med,555

bin, and but smoothings (a better representation is given by the same figure in log-log556

scale provided in the supporting information, Figure S1). For the PL and BPL time se-557

ries, the raw spectrum shows a flattening at low frequency due to the convolution of the558

spectral window of the MTM method with the steep true spectrum. Note that this ef-559

fect strictly depends on the parameters chosen for the MTM analysis; smoothing via the560

bin procedure reduces this effect. For the PL case, the fits tend to underestimate the true561

values at high frequencies and overestimate at low ones with the exception of the med562

approach, which lies below the true spectrum at all frequencies. For the BPL case, in-563

stead, the true spectrum is always underestimated except near the frequency break where564

it is overestimated. Only the mlog approach shows an opposite behaviour due to the ex-565

cessive flattening of the smoothed spectrum at high frequencies.566

In each box we also report the parameters of the estimated background spectrum567

with their 99% confidence interval, the values of the three choosing criteria (CKS , AIC,568

and MERIT ), and the root mean square error (RMSE) of the estimate with respect569

to the true spectrum. The text in red indicates the minimum values of the choosing cri-570

teria and RMSE for each panel. In the absence of signals, the best representation of the571

background spectrum is the one obtained from the raw spectrum. In all the scenarios,572

it minimizes at least one of the three criteria and the RMSE is always among the low-573

est values. We obtain better representation only for the AR(1) and PL case through the574

mlog approach according to the RMSE values. This result shows clearly that for steep575

spectra, the low frequency portion plays a fundamental role in the identification of the576

background model. The raw and mlog approaches provide a good representation of the577

low frequency range. Alternatively, this could be achieved with the other methods by578
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narrowing the smoothing window, but this will result in poor smoothing at higher fre-579

quencies, with the smoothed spectrum almost the same as the raw spectrum.580

The present discussion covers common scenarios for time series frequently observed581

in space physics environments, but it is not representative of all responses of our method-582

ology. In particular, the most critical regions are the edges of the frequencies intervals.583

For example, AR(1) time series characterize by low ρ values manifest a flatter trend at584

low frequencies that can be also be represented well by the med and but smoothings. In585

addition, the choice of the analysis parameters such as the time-halfbandwidth product586

NW, the number of tapers K, degree of zero-padding, and width of the smoothing win-587

dow might influence the results. Therefore, we always recommend a preliminary inves-588

tigation on specific sets of measurements to determine the best parameters for a robust589

spectral analysis.590

5.3 Signal Identification.591

The last step consists of the identification of periodic signals defined as combina-592

tions of power spectrum enhancements with respect to the estimated background spec-593

trum and peaks in the HF test values. Figure 4 shows two examples of an AR(1) with594

N = 25.5[(a.u.)2/Hz] and ρ = 0.90 with two different sinusoidal signals. Similar re-595

sults are obtained when using PL or BPL. In Figure 4a, we show the AR(1) noise and596

three signals (black lines), respectively at f1 ≈ 1.8, f2 ≈ 3.3, and f3 ≈ 4.8 mHz with597

amplitude A1 = 0.30 and A2 = A3 = 0.15. Figure 4b shows the raw spectrum (black598

line), the true spectrum (dashed line), and the AR(1) models obtained from each smooth-599

ing approach that is blue for med, red for mlog, green for bin, and magenta for but. A600

smaller box enlarging the 6-8 mHz frequency range shows that, due to the occurrence601

of power enhancements, the estimated background spectrum tend to be overestimated602

at high frequencies. Figure 4c shows in the top box the background spectrum based on603

the bin smoothing (green line) selected as the best fit representation of the spectrum ac-604

cording to the score defined in section 4.3. The middle box of Figure 4c shows the γ statis-605

tic, which is the ratio of the raw and background spectra, while the lower box shows the606

F statistic. The dashed lines represent the 95% and 99% confidence levels while the three607

vertical dashed lines identifies the frequencies of the synthetic signals. The power enhance-608

ment at ≈ 1.8 mHz is concealed by the background spectrum showing the same order609

of power density at these frequencies. The signals at ≈ 3.3 and ≈ 4.8 mHz exceed re-610
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a) AR(1) [N=25.5, ρ= 0.90]
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Figure 3. From the top, the black lines represent the direct power spectrum (raw) and its

four smoothed representations (med, mlog, bin, but) for the same AR(1) (column a), PL (column

b), and BPL (column c) time series showed in Figure 2. The comparison between the background

spectra (red lines), obtained via the maximum likelihood approach, and the true spectra (green

dashed lines), whose parameters are given on top of each column, is quantified with their RMSE.

In each panel, we report the estimated model parameters with the corresponding 99% confi-

dence bounds, together with the values of the selection criteria CKS , AIC, and MERIT. In each

column, the red text highlights the criteria minimum value.
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spectively the 95% and the 99% confidence levels. On the other hand, via the HF test611

the ≈ 1.9 mHz signal is identified at the 95% confidence level while the ≈ 3.3 and ≈612

4.2 mHz exceed the 99% level.613

Next, we discuss the special case of multicomponent signals occurring at nearby614

frequencies within the Rayleigh bandwidth (Di Matteo & Villante, 2017). We add to the615

time series of the first example signals at nearby frequencies, i.e. f
′

1 ≈ 1.9, f
′

2 ≈ 3.6,616

f
′

3 ≈ 4.2, and f
′′

3 ≈ 4.4 mHz with amplitude respectively of A
′

1 = 0.30, A
′

2 = A
′

3 =617

A
′′

3 = 0.15. Figure 4d shows the AR(1) noise and the beating of the combined signals618

(black lines); the resultant time series corresponds to the red line. Figure 4e shows the619

raw spectrum and the AR(1) models in a similar way as Figure 4b. The smaller box, show-620

ing the details of the 6-8 mHz frequency range, indicates how the additional energy of621

the new signals further enhance the background spectrum estimates at high frequencies.622

In this case, the background spectrum obtained via the mlog approach is selected as the623

best representation of the true noise spectrum. Figure 4f show the comparison of the raw624

spectrum with the best AR(1) model, the γ statistic, and the F statistic with vertical625

dashed lines identifying the signals present in the time series. The frequencies of the sig-626

nals are at values that are often observed in the solar wind and magnetosphere with fre-627

quency separation from below to above the bandwidth of the MTM spectral window (2B =628

2NW/T ), in our simulation 2B ≈ 0.4 mHz. For the signals at ≈1.8 and ≈1.9 mHz, sep-629

arated by less than ≈0.1 mHz (25% of 2B), we observe a single enhancement both in the630

γ and in the F statistic passing the 99% confidence level. For the signals at ≈4.2 and631

≈4.4 mHz, separated by ≈0.2 mHz (50% of 2B), the power spectrum appears as a broad632

enhancement at the 95% confidence level, while only a narrow peak with bandwidth less633

than B pass the 99% confidence level (therefore discarded according to our selection cri-634

teria, see section 4.4). Two peaks at the 95% confidence level are selected by the HF test635

at the right frequency but their values are significant reduced with respect to the ones636

of other signals at similar amplitude. This result is in agreement with the previous in-637

vestigations (Di Matteo & Villante, 2017) on the identification rate of synthetic signals638

at nearby frequencies. At greater separation, for example, ≈3.3 and ≈3.6 mHz correspond-639

ing to ≈0.3 mHz (75% of 2B), we still observe a broad enhancement at the 95% confi-640

dence level but a separate step-like side lobe corresponding to one of the signals is clearly641

visible. However, according to our criteria, at least one of the two signals is selected at642

the 99% confidence level. In the HF test analysis, both the signals are identified at the643
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99% confidence level. When the frequency separation is equal or greater than the MTM644

spectral window bandwidth 2B ≈ 0.4 mHz, as is the case for the ≈4.4 and ≈4.8 mHz645

signals, then there is no mutual effect between the corresponding enhancements in both646

the γ and F statistic. The level of confidence of the ≈4.8 mHz appear to be same as in647

the previous example of isolated signals (Figure 4c). Note that the spectrum portions648

far from the power enhancements remain the same as in the first example, highlighting649

the robustness of the MTM method against leakage due to monochromatic signals.650

6 Examples with Real Observations.651

In this section, we show a case study using data taken in the solar wind, magne-652

tosphere and ground observations to demonstrate the performance of our methodology.653

We consider the periodic fluctuations identified by Viall et al. (2009) in the solar wind654

proton density and magnetic field measurements at the geostationary orbit on January655

15, 1997, extending the analysis onto a longer time interval and to ground observatories.656

In particular, we show that even though the background spectrum in these three regimes657

exhibit considerably different shapes, our technique manifests great flexibility and is able658

to provide good background estimates and identify a common periodicity between all659

of the spectra.660

6.1 Solar Wind.661

Periodic variations of the solar wind proton density were observed by the Wind space-662

craft on January 15, 1997, between 12:40 and 19:10 UT. We used proton density data663

derived from the Wind-Solar Wind Experiment (Ogilvie et al., 1995) measurements. The664

time interval of 6.5 hours, padded with zeros to reach 13 hours, determines a Rayleigh665

frequency of fRay ≈ 43 µHz and a frequency step ∆f ≈ 21 µHz, while the average sam-666

pling rate of ∆t ≈ 83 s corresponds to a Nyquist frequency of fNy ≈ 6 mHz. We choose667

NW=3 and K=4 as parameters for the MTM analysis, therefore the bandwidth for the668

spectral window is 2B ≈ 0.26 mHz corresponding to the minimum separation needed669

to distinguish two signals with close frequencies. Figure 5a shows the proton density ob-670

servations np, while Figure 5b shows the corresponding power spectrum, the γ (ratio be-671

tween the raw and background spectrum) and HF tests. Applying our spectral analy-672

sis procedure, we obtained the background power spectrum (red line), via the mlog smooth-673

ing, as a PL with parameters N ≈ 0.024[cm−6/Hz1−β ] and β ≈ 1.45. Then, we tested674
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Figure 4. Example of periodicity identification for monochromatic and multicomponent

signals. Panels a and d show the analyzed time series (red lines) obtained from the sum of an

AR(1) time series (thick black line), with parameters N=25.5 (a.u.)2/Hz and ρ=0.90, and per-

sistent monochromatic signals (top black lines). Panel b and e, comparison of the raw spectrum

(black line) with the true spectrum (dashed line) and the AR(1) model spectra fitted on the raw

(black), med (blue), mlog (red), bin (green), and but (magenta) smoothed spectra. Panel c and f,

from the top, comparison of the raw spectrum with the selected best representation of the back-

ground spectrum, their ratio γ, and the HF test. The dashed lines represent the 90% and 95%

confidence levels, while the vertical dashed lines identify the frequency of the signals.
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Figure 5. Spectral analysis of the Wind solar wind proton density (top panels) and GOES 9

magnetospheric field components in MFA coordinates (bottom panels) observed on January 15,

1997. From the left, panels a and c show the time series, panels b and d the raw power spectral

density (black line) compared with the best representation of the background spectrum (red

line), their ratio γ and the HF test. The red circles (crosses) identify the frequencies passing the

narrow band (narrow band plus HF test) at the 90% confidence level (red dashed lines).

the occurrence of periodic signals at the 90% confidence levels (red dashed lines); we placed675

circles above the power enhancements passing the narrow band (γ) test adding crosses676

at the frequencies passing also the HF test in the same frequency range. We identified677

three clear signals passing both tests at ≈0.88, ≈2.25, and ≈3.89 mHz corresponding re-678

spectively to ≈19, ≈7.4, and ≈4.3 min. An additional periodicity at f ≈0.17 mHz (≈100679

min) was identified only by the narrow band test. During part of the same time inter-680

val analyzed here, Viall et al. (2009), using the M. E. Mann and Lees (1996) approach,681

identified periodic fluctuations passing both the narrow band and the HF test at f ≈682

0.2, ≈ 0.8, and ≈ 2.8 mHz.683
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6.2 Magnetosphere.684

The solar wind described in the previous section was measured near L1, and im-685

pacted the magnetosphere after ≈ 45 min, corresponding to the time range of 13:25 and686

19:55 UT. We investigated the magnetospheric response considering the 60 s (therefore,687

fNy ≈ 8.3 mHz) averaged magnetic field components derived from the triaxial fluxgate688

magnetic field measurements (Singer et al., 1996) on the GOES 9 geostationary satel-689

lite (LT=UT-9) located in the dawn-morning sector (between 4:25 and 10:55 LT). The690

data have been rotated in the Mean Field Aligned (MFA) coordinate system at each point691

along the spacecraft trajectory. In MFA coordinates (Takahashi et al., 1990), µ̂ is along692

the average field, as defined by the N min vector running average; ϕ̂ is perpendicular to693

µ̂ and the spacecraft position vector, positive eastward; ν̂ completes the orthogonal sys-694

tem. To avoid the introduction of spurious periodicity due to the rotation procedure, the695

average magnetic field is evaluated on a running window of 6.5 hours (Di Matteo & Vil-696

lante, 2018). Figure 5c shows the three components of the magnetospheric field, while697

Figure 5d shows the corresponding power spectra, the γ and HF tests. The similarity698

of the compressive component Bµ with the solar wind density fluctuations is clear, even699

though the higher frequencies components seems to be filtered out in the magnetosphere700

at GOES 9 location. Next, we investigate the occurrence and properties of the magne-701

tospheric field fluctuations with our spectral analysis approach. For the compressive com-702

ponent Bµ, we obtained a raw/BPL background spectrum with parameters N ≈ 7.60[nT 2/Hz1−β ],703

β ≈ 0.91, γ ≈ 3.54, and fb ≈ 0.28 mHz, while for both the toroidal (Bϕ) and poloidal704

(Bν) component we found PL background spectra respectively combined with a raw smooth-705

ing, obtaining N ≈ 11.7 × 10−7[nT 2/Hz1−β ] and β ≈ 2.29, and a bin smoothing, ob-706

taining N ≈ 9.0 × 10−7[nT 2/Hz1−β ] and β ≈ 2.48. At the 90% confidence level (red707

dashed lines), we identify power spectrum peaks passing the narrow band test at f ≈708

8.16 mHz for Bµ, at f ≈ 0.45 and f ≈ 7.69 mHz for Bϕ, and at f ≈ 0.49 and f ≈709

0.90 mHz for Bν . In addition, both the γ and HF tests selected signals at f ≈ 0.88 mHz710

in Bµ, at f ≈ 8.08 mHz in Bϕ, and at f ≈ 7.60 mHz in Bν . Note that the power spec-711

tra of both the compressive and poloidal component manifest an enhancement at f ≈712

0.9 mHz (≈ 20 min) clearly observed also in the solar wind proton density. In the toroidal713

and poloidal component, the signals at f ≈ 0.45 and ≈ 0.49 mHz, corresponding to714

oscillations of about ≈ 37 and ≈ 34 min, are mostly related to the first three oscillations715

observed at the beginning of the time interval (≈ 26, ≈ 32, and ≈ 36 min). Similar716
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fluctuations appear also in the solar wind proton density (≈ 26, ≈ 40, and ≈ 36 min),717

even though there is no clear enhancement in the power spectrum. In fact, other stronger718

fluctuations at nearby frequencies dominate the low frequency range of the solar wind719

density power spectrum making it difficult to distinguish additional signals.720

6.3 Ground Observatories.721

We extended the analysis to ground magnetic field observations from two stations722

located near the GOES9 magnetic field line footpoint in both latitude and longitude: Yel-723

lowknife (YKC, λ = 62.48◦ and φ = 245.52◦) and Fort McMurray (FMC, λ = 56.66◦724

and φ = 248.79◦), where λ and φ are the geographic latitude and longitude, respectively.725

For these examples, we used the 60 s data from the SuperMAG collaboration providing726

the three components of the magnetic field in the NEZ coordinate system where BN and727

BE are directed toward the locally magnetic north and east, respectively, and BZ is ver-728

tically down. We analyzed the BN component after the removal of the daily variations729

and yearly trend determined by the Gjerloev (2012) algorithm. Figure 6a shows the mag-730

netic field observations from the two stations, while Figure 6b shows the corresponding731

power spectra, the γ and HF tests. Applying our procedure, we obtain as background732

spectrum a raw/BPL with N ≈ 0.06[nT 2/Hz1−β ], β ≈ 1.76, γ ≈ 9.51, and fb ≈ 6.67733

mHz at YKC, and a raw/PL with N ≈ 0.02[nT 2/Hz1−β ] and β ≈ 1.56 at FMC. As734

in the previous section, we classified the signals identified at the 90% confidence level.735

We observed four power spectrum peaks at YKC, one passing only the narrow band test736

at f ≈ 7.90 mHz and three at f ≈ 0.86, ≈ 4.92, and ≈ 5.18 mHz passing both the γ737

and the HF test. The spectral analysis at FMC identified two signals satisfying both the738

γ and the HF test at f ≈ 0.88 and f ≈ 6.04 mHz. The two ground observatories clearly739

observed the same f ≈ 0.9 mHz oscillations identified in the magnetospheric field at740

geostationary orbit, in turn, driven by the solar wind density fluctuations.741

6.4 Additional Remarks.742

Viall et al. (2009), using the M. E. Mann and Lees (1996) approach, identified, dur-743

ing part of the same time interval, periodic fluctuations passing both the narrow band744

and HF test, with the 95% confidence level, at f ≈ 0.2, ≈ 0.8, and ≈ 2.8 mHz in both745

the solar wind proton density and Bz magnetospheric field component at the geostation-746

ary orbit. We find correspondence with our results at f ≈ 0.17, ≈ 0.88, and ≈ 2.25747
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a) Ground Observatories
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Figure 6. Spectral analysis of the BN magnetic field component from two ground observato-

ries on January 15, 1997. From the left, panels a show the time series, panels b the raw power

spectral density (black line) compared with the best representation of the background spectrum

(red line), their ratio γ and the HF test. The red circles (crosses) identify the frequencies passing

the narrow band (narrow band plus HF test) at the 90% confidence level (red dashed lines).
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mHz in the solar wind and at f ≈ 0.9 mHz at the geostationary orbit and in the two748

ground observatories. The time series of Bµ at GOES9 show clearly that the longer timescales749

are directly driven by the solar wind density fluctuations. In addition, paying attention750

to the low frequency range of the normalized power spectra (γ statistic), we note that751

three enhancements centered at f ≈ 0.2, ≈ 0.4, and ≈ 0.9 mHz occur in all the ob-752

servations, but our procedure is able to automatically identify only the strongest com-753

ponent at f ≈ 0.9 mHz. The difficulty in the identification of peaks at nearby frequen-754

cies and at the edges of the frequency interval are two known limitation of our method.755

Identification of low frequency signals may be improved by increasing the frequency res-756

olution, that is decreasing 2B, the width of the spectral window main lobe, either by re-757

ducing the NW parameter, or increasing the length of the time interval.758

7 Discussion.759

We presented a new spectral analysis procedure, based on the MTM method, for760

the robust modeling of the background spectrum and identification of signals at discrete761

frequencies. One major challenge in analysis of the power spectra of space physics time762

series is the wide range of variations observed in them. The adaptive multitaper was specif-763

ically introduced by Thomson (1982) to investigate colored power spectra when common764

spectral analysis techniques might suffer from strong energy leakage, especially for short765

time series. We use the statistical properties of the adaptive multitaper method to de-766

velop a maximum likelihood determination of the background spectra. In addition, ex-767

tending the M. E. Mann and Lees (1996) approach, we combine different smoothings meth-768

ods (raw, med, mlog, bin, and but) and models (WHT, PL, AR(1), BPL) representative769

of the power spectra usually obtained from space physics time series. This is also reflected770

by the choice of the parameters range reported in table 2, constrained to represent red771

power spectra. Finally, objective criteria select the best representation of the background772

spectrum as well as power spectrum and F values enhancements at defined confidence773

levels.774

We discuss the critical issues in the identification of the background spectrum, for775

each step of our procedure, with respect to three synthetic time series representing a lag-776

one autoregressive, a power law, and a bending power law process. The first step, the777

smoothing of the estimated adaptive multitaper spectrum, is used as a first estimate of778

the shape of the background spectrum when large enhancements due to geophysical pe-779
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riodic signals are present. We can perform the smoothing via four different approaches,780

each of which has its own advantages and disadvantages for fitting red spectra. The med781

approach systematically underestimate steep spectrum at low frequency on an interval782

comparable to the width of the running window. However, it might give a better rep-783

resentation of the background when strong clear peaks occur at very low frequency. The784

mlog approach, instead, reproduces the raw spectrum at low frequency, while at high fre-785

quencies, due to the running window covering a large portion of the frequency interval,786

returns almost constant values. This behaviour is optimal for a AR(1) process, whose787

spectrum flattens at high frequency, but determines an overestimation of the background788

spectrum for power law processes, critical for very steep spectra. The but approach pro-789

vides results similar to the med one with better estimates in the low frequency range.790

The bin approach define the smoothed spectrum on a limited range of frequency, there-791

fore the background spectrum at the edge of the frequency interval is extrapolated. How-792

ever, this procedure provides good representation of the background spectrum in all the793

three case, especially for power law processes.794

When we fit the different models to the smoothed spectra, we obtain a good rep-795

resentation of the true spectrum in most of the smoothing+model combinations. In the796

absence of a signal, the use of the raw spectrum ensures good results in all of the sce-797

narios, as expected. In the examples with synthetic time series, we show that for steep798

spectra, especially for power law process, the low frequency portion plays a fundamen-799

tal role in the identification of a reliable background model. This is mainly a concern800

for short time series that might have few points in the low frequency range. For bend-801

ing power laws, additional complications might arise when the frequency break is too close802

to the edges of the frequency interval or when the two spectral indices have close val-803

ues; in these scenarios the BPL will collapse into a PL. Therefore, a necessary condition804

for the BPL is to have enough points in each of the two frequency intervals that exhibit805

different spectral slopes. Both problems might be resolved by considering time series long806

enough to ensure adequate coverage for both regimes of the power spectrum. When there807

is a lack of information about the properties of the background model, our technique al-808

lows for the smoothing+model combinations to be calculated and the best representa-809

tion selected according to objective statistical criteria. This is particularly helpful when810

power enhancements due to periodic fluctuations are present.811
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As we demonstrated with the synthetic example, the background model is system-812

atically overestimated when the time series consists of a stochastic process and periodic813

signals. This is due to the additional amount of energy that the periodicity introduces.814

When such signals are present, a preliminary analysis to find the right combinations of815

smoothing and model to be probed should be performed. The systematic overestima-816

tion of the background spectrum results in a lowering of the confidence levels of the power817

enhancements relative to the artificially higher background. A similar situation occurs818

when two periodicities have frequency separation comparable to the width of MTM spec-819

tra window main lobe, that is ∆f ≈ 2B = 2NW/T . In our examples we discuss dif-820

ferent scenarios:821

1. ∆f ≈ 25% of 2B, only one power enhancement present, and the HF test identi-822

fies only one of the two signals;823

2. ∆f ≈ 50% of 2B, broad band power enhancement combined with two peaks in824

the HF test at the correct frequencies, both at a significant reduced confidence level;825

3. ∆f ≈ 75% of 2B, highly confident broad enhancement with a separate step-like826

side lobe, corresponding to one of the signals, at a lower confidence level, both con-827

firmed in the HF test;828

4. ∆f ≈ 2B, power enhancements and HF test peaks are resolved separately.829

Note that this classification is for reference only, as in the analysis of real signals, with830

more complicated spectra, the situation can be more complex (e.g. more than two sig-831

nals at nearby frequencies).832

We demonstrated the techniques by applying them to observations of solar wind833

proton density, magnetospheric field at geostationary orbit, and ground stations at dif-834

ferent latitudes. We analyzed a previously studied time interval during which the solar835

wind density directly drove compressional fluctuations in the magnetospheric field at geo-836

stationary orbit and the magnetic northward component at ground observatories (Viall837

et al., 2009). The best background representations identified by our procedure corresponded838

to a power law (for np at Wind; Bϕ and Bν at GOES 9; BN at FMC) and bending power839

law models (for Bµ at GOES 9; BN at YKC); in this event study, AR(1) was not found840

to be the best fit background model for any of the data. This demonstrates the neces-841

sity of utilizing different models for a correct evaluation of the background spectrum, es-842
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pecially in case like the YKC observatory where only the BPL provided reasonable re-843

sults.844

We note that if the goal of the spectral analysis is to identify the nature of the back-845

ground spectrum and there are no discrete periodicities present, or only weak ones, then846

our procedure performs best with the background model fitted to the raw spectrum, and847

no smoothing is performed.848

8 Conclusions.849

We have developed an automated method for identifying both the background power850

spectrum and power enhancements in the spectra of time series. We start with the adap-851

tive multitaper method, a sophisticated non-parametric spectral analysis tool suitable852

for the analysis of colored spectra. A priori knowledge of the statistical properties of the853

power spectral density allows a robust maximum likelihood fitting of models on the es-854

timated spectrum and the definition of confidence levels. Combining the raw spectrum855

and its four smoothed representations with four models, the best representation of the856

background spectrum is selected via robust statistical criteria. Lastly, confident thresh-857

olds are used to determime statistically significant discrete power enhancements and, when858

combined with a harmonic analysis, robustly identifies the frequency of the periodic os-859

cillations occurring in the time series.860

The analysis of synthetic time series demonstrates how different combination of smooth-861

ings and models influence the determination of the background spectrum, and hence the862

confidence levels of the power enhancements. In addition, different scenarios on the iden-863

tification of signals at nearby frequencies show that our method, primary designed to iden-864

tify isolated monochromatic signals, is still able to distinguish two signals separated by865

a frequency interval down to half the width of the spectral window main lobe.866

The inherent flexibility of our method was demonstrated by the analysis of real mea-867

surements in different environments. The analysis of solar wind density and magneto-868

spheric fields observations at geostationary orbit and ground show that the PL and BPL869

models, combined with the smoothing procedure in occurrence of power enhancements,870

give the best representation of the background spectra for this event study and frequency871

range. In addition, the identification of power enhancements at the 90% confidence level872

in both amplitude and F-tests in our example shows that low frequency magnetospheric873
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field fluctuations are directly driven by solar wind density oscillations clearly at f ≈ 0.9874

mHz and possibly at f ≈ 0.2 and ≈ 0.4 mHz. This is in agreement with previously pub-875

lished results (e.g. Viall et al., 2009; Kepko et al., 2002; Kepko & Spence, 2003; Villante876

et al., 2007).877

The approach developed here is applicable to a broad range of research fields that878

have a need to distinguish between continuous power spectrum and discrete power en-879

hancements. Such applications range from analyzing time-series for statistically signif-880

icant periodicities to robustly characterizing the spectral background of geophysical sys-881

tems. Our procedure can fit a given model to provide a robust estimate of the model pa-882

rameters and their uncertainties. In the case that the user is interested in the nature of883

the background model, the raw spectrum itself should first provide a reasonable repre-884

sentation of the continuous spectrum associated with the process generating the time885

series. The modular structure of our methodology allows the introduction of new smooth-886

ing methods and models to cover additional types of time series. The flexibility and ex-887

tensibility of the technique makes it broadly suitable to any discipline.888

Generally speaking, this technique provide a good representation of the background889

spectrum thanks to the different smoothing+model pairs covering more scenarios than890

previous spectral analysis methods. When combined with an independent harmonic anal-891

ysis, this allows the robust identification of power enhancements related to coherent per-892

sistent monochromatic fluctuations occurring in the time series.893
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