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Introduction

The supplemental data here covers a few disparate sets of material. The first two

sections provide additional technical detail on the methods of the paper that are not

necessary to understand the approach, but are useful when replicating the results. We

then share statistical breakdowns of the Loon observations which can also be derived by
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processing the data set at (Candido, 2020), but we include for convenience here. The

following three sections contain views of our results that we do not include in the main

text, but are of interest to some readers of early drafts of this paper. Finally, we present

an additional validation set that leads to similar conclusions as the results in the main

text. We include this for completeness as some of our early discussions of this work used

this validation set, rather than the newer validation set that allows us to compare against

the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble system

(ENS).

Computing the Conventional Analog Ensemble with MapReduce

A barrier to operationalizing a global analog ensemble (AnEn) system is processing the

corpus of analogs, which can easily grow to 100’s of terabytes of data for three-dimensional

global predictions over several years. The AnEn algorithm provides a natural partitioning

as execution is independent for each P (grid point and lead time). Every historical forecast

and the current prediction contain a piece of data for every grid point. The challenge is

to organize the data so that the calculations can be efficiently executed across many

datacenter computers.

Our approach is to use the MapReduce paradigm (Dean & Ghemawat, 2004), which

allows the computation to run on a distributed computing (cloud) infrastructure like

Google’s Flume (Chambers et al., 2010). The idea is to break the computation into

two subsequent Map and Reduce phases, each of which operate many times in parallel

on different portions of the data and output key-value pairs. Once written this way,

the framework can handle scheduling the program’s execution across many machines and

moving the various subsets of data to the appropriate machines.
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The above procedure is accomplished as follows. Let latitude, longitude, pressure, and

forecast lead time be the tuple k, which is unique for each grid point. The first Map

phase scans all historical forecast files and generates a key-value pair (k, tf ) → xi for each

grid point and (k, tf ) → yi for each analysis point. The k corresponds to the location

and forecast lead time for the particular xi (past forecast) and tf (calendar time being

forecast). For every yi we generate multiple key-value pairs corresponding to a k for every

lead time the system will forecast.

Notice that the above rule gives each forecast-observation pair a unique key. Prior to

the reduce phase all identical keys are grouped into one Reduce call by the MapReduce

framework. The Reduce phase joins these xi and yi pairs into a single record and saves

them as new key-value pairs k → (xi, yi). This first MapReduce gives us a historical

corpus. This corpus could be built in advance of receiving a new forecast to post-process.

The second MapReduce groups the data by grid point and runs the AnEn algorithm.

A Map phase on the forecast data file from the ECMWF generates key-value pairs k → xf

for each grid point. The historical corpus key-value pairs are used directly. Note that

xf and every set of candidate analogs {(xi, yi)} for a grid point have the same key. The

data is grouped by key and fed to the Reduce phase that has all the data needed to apply

equations (1) and (3) to generate the forecast.

Details of Training a Distilled Analog Ensemble Model

This section describes the low-level technical details of the distillation process.

Our training corpus is prepared by using a MapReduce similar to what is described

in the previous section to process the set of forecast data files (both the 00Z and 12Z

epochs) archived during the training period. Rather than running the AnEn algorithm

May 27, 2020, 10:04pm



X - 4 :

logic, i.e., equations (1) and (3), at each grid point given a new forecast, we instead save

the candidate analogs (forecast-observation pairs) for a given grid point in a single record.

These records are stored together on disk for retrieval by the training system, i.e., we have

a set of records where each record corresponds to a unique latitude, longitude, pressure,

and lead time grid point and contains all the viable forecast-observation pairs at this

location at the appropriate lead time.

This data set is used to feed the training process of our deep neural network (DNN). We

use a distributed architecture. We train our DNN based on the output of the AnEn, not

directly from these forecast-observation pairs. Thus, we need to sample a hypothetical

forecast to generate a training example of an input-output pair for the AnEn system. We

use 10 datacenter worker processes that sample uniformly among grid points in records on

disk, sample a hypothetical wind speed and wind heading forecast, and construct the input

to the DNN (corresponding to this grid point and forecast) and the output (of the AnEn

algorithm). In the results presented in this paper, we sample heading uniformly and wind

speed from a beta distribution with α = 1.2, β = 3, and a coefficient of 100. Effectively

this creates a weighted distribution of wind speeds which seems generally applicable to

the pressure altitudes ranges of interest in the stratosphere.

Unlike many applications, we do not simply loop over the dataset on disk a fixed number

of times or until training error stabilizes. This is because every time we touch a record we

sample a new forecast and generate a new input-output pair. Saving these pairs on disk

versus generating them online during training is an engineering trade-off, and we have

chosen the latter approach.
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These examples from the 10 worker processes are injected into a reservoir datacenter

process, whose job is essentially to receive new examples, store them in a limited size

buffer, and respond to requests (from the learning process) for samples. Rather than

choosing a circular buffer or some other first-in, first-out structure, we use a flat data

array of 1 million examples and, for each new example, sample an index in the array at

random to replace. This means some examples will persist in the buffer longer, and some

for a shorter period of time. The typical dwell time of an example in the buffer can be

characterized probabilistically. The learning process repeatedly queries the reservoir for

batches of training examples, which are selected uniformly at random from examples in

the data array. A slowly changing flow of examples where each batch (on average) tends

to be drawn from disparate parts of the function mapping being learned is conceptually

similar to the replay buffer in deep reinforcement learning (Lin, 1992; Mnih et al., 2015).

We use the Tensorflow (Abadi et al., 2015) library to create and train our DNN. Our

network has inputs of latitude, longitude, pressure altitude, forecast lead time, forecast

direction, and forecast speed. We transform these into a graph layer that is normalized

using the following code snippet where the array ‘domain’ represents the inputs described

above.

nlat = tf.multiply(domain[:, 0], 1. / 90.0)

coslng = tf.cos(tf.multiply(domain[:, 1], np.pi / 180.0))

sinlng = tf.sin(tf.multiply(domain[:, 1], np.pi / 180.0))

npre = tf.multiply(tf.subtract(domain[:, 2], 4799.), 1. / (14432. - 4799.))

nlea = tf.multiply(tf.subtract(domain[:, 3], 43200.), 1. / (864000. - 43200.))

coshead = tf.cos(domain[:, 4])
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sinhead = tf.sin(domain[:, 4])

nspeed = tf.multiply(domain[:, 5], 1. / 100.)

normalized_domain = tf.transpose(

tf.stack([nlat, coslng, sinlng, npre, nlea, coshead, sinhead, nspeeed]))

We do this to avoid the discontinuity in longitude being present in our DNN, and to

make our inputs have roughly the same order of magnitude (which is a domain trick to

decrease training time).

At this point the network consists of 10 fully-connected hidden layers with ReLu activa-

tion functions. Each layer has a width of 50 elements. These plus an ultimate layer con-

taining the ultimate post-processed speed and heading forecast (width 2, fully-connected,

no activation function) comprise the trained layers of the DNN. We can also include ad-

ditional network outputs such as forecast uncertainty (standard deviation of the forecast)

or ensemble members. This is not discussed in this paper.

To train the network we use stochastic gradient descent with a learning rate of 0.0001

and batch size 100. We train until the root mean square error between the DNN forecasts

and the AnEn mean forecasts (from the training examples) stabilizes. In the distilled

AnEn used to generate the results in this paper, we trained the DNN with about 6 billion

examples.

This network architecture was not tuned for efficiency, but instead chosen to demon-

strate how a fairly standard and basic deep learning approach could be used to implement

this algorithm.

Statistics of the Loon Data Set
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The following plots show the distribution of Loon’s approximately 10.5 million observa-

tions used for one of the comparisons between algorithms shown in the main text of the

paper. This is the intersection of Loon’s dataset of observations of stratospheric winds

from Loon (http://www.loon.com) high altitude balloons (Candido, 2020) and the region

and time period for the validation paper used in our study.

Figure S1 shows the distribution of the data over pressure altitude and latitude.

Figure S2 shows the geographical distribution of the data.

Probabilistic Evaluation Metrics for Wind Speed

In the main text of the paper we presented the CRPS, Spread Skill, and Rank Histogram

plots for comparing the ensemble systems predictions on wind direction, an omitted plots

for wind speed given a similar pattern on skill between the approaches. We include the

figures for wind speed in Figure S3.

Confidence Intervals on Deterministic Evaluations

Figures S4 and S5 show the same data as in Figure 2(a) in the main text, but include

box plot views of the 90% bootstrap confidence intervals.

Algorithm Skill Comparison By Geography

Figure S6 show the CRMSE averaged across all lead times grouped by geography. One

can observe that the Distilled AnEn has higher skill (lower CRMSE) than the baseline

ECMWF HRES generally across the stratosphere globally.

Results for an Earlier Validation Period

Our original analysis of the methods included a comparison of AnEn mean against

the ECMWF high-resolution deteriministic forecast (HRES) and, for the probabilistic

predictions, against a persistence ensemble (PeEn) over a year long validation period
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from October, 2017 to September, 2018. However, to add a comparison to the ECMWF

ENS in a revised version of the manuscript, we changed our validation period in the main

text due to data availability.

The PeEn is a simple way to generate an ensemble that consists of selecting the last N

available ground-truth values to generate an N -member ensemble. It has been used in,

e.g., Alessandrini, Delle Monache, Sperati, and Cervone (2015) and Cervone, Clemente-

Harding, Alessandrini, and Monache (2017), as a probabilistic baseline forecast and can

be interpreted as the probabilistic extension of a deterministic persistence forecast.

For the results shown in in Figures S7 and S8 the training dataset is the HRES forecasts

produced from July, 2016, to September, 2017. We use this to choose weights used in the

analog matching process. The validation period is over the HRES forecasts produced from

October, 2017, to September, 2018. The data available in the AnEn matching includes all

the forecasts in the training dataset plus any additional forecasts between the beginning

of the validation time period but prior to the current forecast. This simulates operational

use of an AnEn system. To evaluate the distilled AnEn we only use a DNN distilled from

the training dataset.

Please refer to the main text of the paper where the relevance of the metrics shown in

the below figures are explained in greater detail, albeit for a different validation period.
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Figure S1. Distribution of Loon’s measurements as a function of pressure altitude and

latitude.

Figure S2. Geographical distribution of Loon’s measurements.
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              (a)               (b)  

Figure S3. Probabilistic forecast evaluation metrics comparing the AnEn forecast of

wind speed to forecasts produced by a ENS. Results with HRES analysis as ground truth

are shown on the left (a), while results against Loon’s measurements are on the right (b).

From top to bottom, the metrics shown are CRPS, rank histogram, and binned-spread

skill. May 27, 2020, 10:04pm
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Figure S4. CRMSE for wind direction predictions including boxplots showing the

bootstrap 90% confidence intervals.

May 27, 2020, 10:04pm



X - 14 :

Hour 12

1.00

1.05

1.10

1.15

1.20

Hour 24

1.35

1.40

1.45

1.50

1.55

1.60

1.65

Hour 36

1.6

1.7

1.8

1.9

2.0

ECMWF HRES ECMWF ENS Mean AnEn Distilled AnEn

Hour 48

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Hour 60

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

Hour 72

2.0

2.2

2.4

2.6

2.8

Hour 84

2.0

2.2

2.4

2.6

2.8

3.0

Hour 96

2.2

2.4

2.6

2.8

3.0

3.2

Hour 108

2.4

2.6

2.8

3.0

3.2

3.4

Hour 120

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Hour 132

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Hour 144

3.0

3.5

4.0

Hour 156

3.0

3.5

4.0

4.5

Hour 168

3.0

3.5

4.0

4.5

5.0

Hour 180

3.5

4.0

4.5

5.0

Hour 192

3.5

4.0

4.5

5.0

5.5

Hour 204

3.5

4.0

4.5

5.0

5.5

6.0

Hour 216

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Hour 228

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Hour 240

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

C
R

M
S
E
 [

m
/s

]

Wind Speed CRMSE by lead time

Figure S5. CRMSE for wind speed predictions including boxplots showing the boot-

strap 90% confidence intervals.
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Figure S6. Geographical distribution of CRMSE for the distilled AnEn prediction of

wind speed with HRES analysis as ground truth.
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Figure S7. A deterministic wind speed and direction forecast skill comparison between

the HRES, AnEn, and Distilled AnEn over all lead times is shown using as ground truth

(a) HRES analysis and (b) Loon observations of stratospheric winds.
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Figure S8. Probabilistic forecast evaluation metrics comparing the AnEn forecast

of wind direction to forecasts produced by HRES, AnEn mean, and PeEn using HRES

analysis as the ground truth. From top to bottom, the metrics shown are CRPS, rank

histogram, and binned-spread skill.
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