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Introduction This document describes some technical aspects of local wave activity

(LWA) diagnostic. The formalism itself is laid out in the Supporting Information of Huang

and Nakamura (2017, hereafter S17), and that document is still a good starting point for

the reader unfamiliar with the diagnostic procedure. The present document recaps some

of the basics but mostly highlights applications specific to ERA5 (Hersbach et al., 2020).

We will also describe the formulation of a one-dimensional model to reconstruct LWA

with modified forcing (Fig. 5 of main text).
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Computing local wave activity (LWA) from ERA5 reanalysis data

The LWA diagnostic used in the present (and most previous) work is built on the quasi-

geostrophic theory, and as such, the key quantity is quasigeostrophic potential vorticity

(QGPV). It is well known that some of the assumptions for the QG theory do not hold

accurately on a sphere even in the extratropics (e.g. deviation of the Coriolis parameter

from a constant must be on the order of the Rossby number), and we do not attempt to fill

those gaps. We will keep the Coriolis parameter f a full function of latitude and use full

vorticity instead of geostrophic vorticity to define an ‘approximate’ QGPV. In practical

terms, we use the horizontal velocity and (potential) temperature from reanalysis data

(u, v, θ) to compute QGPV as

q(λ, φ, z, t) = f +
1

a cosφ

(
∂v

∂λ
− ∂(u cosφ)

∂φ

)
+ fez/H

∂

∂z

(
e−z/H(θ − θ̃)

∂θ̃/dz

)
. (1)

In the above, (λ, φ, z, t) denote longitude, latitude, pressure pseudoheight and time, re-

spectively, z = −H ln(p/1000hPa) (p is pressure and H = 7 km is assumed), f = 2Ω sinφ,

a = 6378 km and Ω = 7.29×10−5 rad s−1 are the radius and rotation rate of the planet.

θ̃(z, t) is hemispheric mean potential temperature. It is computed from instantaneous

values, but its time dependence is generally very weak, consistent with the QG theory.

To evaluate Eq. (1) we first vertically interpolate (u, v, θ) from the 37 pressure levels of

ERA5 onto uniformly spaced z-surfaces — in our case with a 500 m interval — up to

z = 48 km. (We use this coordinate to maintain sufficient details in the stratosphere, but

for the column budget this is not necessary, since the stratosphere does not contribute

much to the density weighted vertical average — one may well formulate Eq. (1) with
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the pressure coordinate in the vertical.) We then use finite difference to evaluate Eq. (1)

[S17 Eq. (5)].

LWA is defined as

A(λ, φ, z, t) = − a

cosφ

∫ ∆φ

0
qe(λ, φ+ φ′, z, t) cos(φ+ φ′)dφ′, (2)

qe(λ, φ+ φ′, z, t) = q(λ, φ+ φ′, z, t)− qREF(φ, z, t). (3)

To evaluate Eq. (2) one must first evaluate Eq. (3), and to evaluate Eq. (3) one must

evaluate qREF. We compute qREF by zonalizing the instantaneous QGPV field through

an area-preserving map. The easiest way to do this is to first evaluate Eq. (1) for

both hemispheres and create a global map of QGPV for each z-surface. With 1◦ × 1◦

horizontal resolution, there are 360×180 grid points, indexed by (i, j). At each z and t,

all grid points (i, j) are sorted according to equally spaced 181 values of q between the

minimum and maximum values on that level [Qn = (n − 1)∆Q, 1 ≤ n ≤ 181, ∆Q =

(max(qij)−min(qij))/180]. Because of f , typically the minimum value of q(λ, φ) is found

near the South Pole, and the maximum value is found near the North Pole. We then

compute the area of the region in which qij ≥ Qn [≡ An(Qn)] by conditional box counting,

weighting each grid with a fractional area a2 cosφj(∆λ)2 (∆λ = π/180). The area An(Qn)

is then mapped to equivalent latitude with the formula

φn(Qn) = sin−1
(

1− An
2πa2

)
, (4)

which effectively associates the minimum QGPV with the South Pole and the maximum

QGPV with the North Pole. Finally by inverting this one-to-one relationship between

latitude and QGPV, one obtains qREF(φ) at given z and t.
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Note that qe in Eq. (3) must be reevaluated for different φ, because qe is q relative to

a value of qREF at a certain latitude φ. Since qREF increases with latitude, qe < 0 where

the QGPV contour q(λ, φ + φ′) = qREF(φ) is displaced northward from φ (i.e. φ′ > 0),

and qe > 0 where it is displaced southward (φ′ < 0). Either way Eq. (2) is positive. Care

must be taken where ∆φ is multivalued due to an overturned or cutoff QGPV contour.

To take care of this situation automatically, the line integral in Eq. (2) is evaluated at

each longitude by scanning the entire latitudes from the South Pole to the North Pole,

collecting all contribution from (qe < 0, φ′ > 0) and (qe > 0, φ′ < 0) (see Fig. 1 of Huang

& Nakamura, 2016).

Evaluating the column LWA budget with ERA5 reanalysis data

The column budget of LWA reads

∂

∂t
〈A〉 cosφ = − 1

a cosφ

∂〈Fλ〉
∂λ︸ ︷︷ ︸

(I)

− 1

a cosφ

∂

∂φ′
〈Fφ′ cos(φ+ φ′)〉︸ ︷︷ ︸
(II)

+
f cosφ

H

(
veθe

∂θ̃/∂z

)
z=0︸ ︷︷ ︸

(III)

+〈Ȧ〉 cosφ︸ ︷︷ ︸
(IV)

,

(5)

〈Fλ〉 = 〈uREFA cosφ〉 − a
〈∫ ∆φ

0
ueqe cos(φ+ φ′)dφ′

〉
+

cosφ

2

〈
v2
e − u2

e −
R

H

e−κz/Hθ2
e

∂θ̃/∂z

〉
,

(6)

〈Fφ′〉 = −〈ueve cos(φ+ φ′)〉. (7)

Note that the RHS terms in Eq. (5) are evaluated at φ′ = 0. In the above the angle

bracket denotes density-weighted vertical average, R is gas constant and κ = R/cp (cp

is specific heat at constant pressure). The contribution of the last term of Eq. (6) to

Term (I), plus Terms (II) and (III) constitutes the vertical average of Eliassen-Palm flux

divergence, or equivalently, cosφ〈veqe〉 via Taylor’s identity. Note also

ue(λ, φ+ φ′, z, t) = u(λ, φ+ φ′, z, t)− uREF(φ, z, t), (8)
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ve(λ, φ+ φ′, z, t) = v(λ, φ+ φ′, z, t), (9)

θe(λ, φ+ φ′, z, t) = θ(λ, φ+ φ′, z, t)− θREF(φ, z, t), (10)

where (uREF, θREF) are the reference-state zonal wind and potential temperature, and

they must be inverted (hemispherically) from qREF(φ, z, t). (uREF, θREF) is related to qREF

through

qREF(µ, z, t) = 2Ωµ− 1

a

∂

∂µ
(uREF cosφ) + 2Ωµez/H

∂

∂z

(
e−z/H(θREF − θ̃)

∂θ̃/∂z

)
, (11)

where µ ≡ sinφ. Using thermal wind balance

2Ωµ
∂

∂z
(uREF cosφ) = −R(1− µ2)e−κz/H

Ha

∂θREF

∂µ
, (12)

Eq. (11) may be transformed into an elliptic equation for uREF cosφ

∂

∂µ

[
1

2Ωµ

∂(uREF cosφ)

∂µ

]
+

2ΩHa2µ

R(1− µ2)
ez/H

∂

∂z

[
e(κ−1)z/H ∂(uREF cosφ)/∂z

∂θ̃/∂z

]
= −a ∂

∂µ

(
qREF

2Ωµ

)
.

(13)

We solve Eq. (13) hemispherically on a uniform grid in (µ, z) for z ∈ [0, 48] km, µ ∈

[0.0872, 1]. We have also solved Eq. (13) with uniform φ and obtained a virtually identical

result. Note we set the southernmost boundary of the domain at φ = 5◦N to avoid the

difficulty with a vanishing µ at the equator. Avoiding the equator proves particularly

important for high-resolution data to ensure the convergence of inversion algorithm. The

boundary conditions are:

uREF cosφ = 0 at µ = 1 and z = 0 (14)

2Ωµ
∂

∂z
(uREF cosφ) = −R(1− µ2)e−κz/H

Ha

∂[θ]

∂µ
at z = 48 km (15)

uREF cosφ = (K − 2πΩa2 cos2 φ)/2πa at µ = 0.0872 (φ = 5◦N). (16)
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In the above, [θ] denotes the zonal-mean potential temperature at z = 48 km, and K(z, t)

is Kelvin’s circulation at 5◦N equivalent latitude. K is evaluated as the surface integral of

absolute vorticity over the domain where QGPV is greater than qREF at 5◦N. Since Kelvin’s

circulation around the QGPV contour is nearly conservative, this boundary condition

does not introduce spurious eddy forcing. We have tested different boundary conditions

at 5◦N and found that they do not affect uREF in the extratropics very much. The no-slip

boundary condition at the lower boundary is chosen because uREF represents an eddy-free

reference state: a nonzero surface wind requires eddy momentum flux in the presence of

surface friction and incompatible with the notion of eddy-free state (Nakamura & Solomon,

2010).

Once we obtain uREF, we reconstruct θREF using the thermal wind balance [Eq. (12)].

At each altitude a constant value is added to θREF so that its hemispheric mean matches

θ̃(z, t). After obtaining (uREF, θREF) we can compute (ue, θe) from Eqs. (8) and (10)

and finally evaluate the terms in Eq. (5). We approximate the density weighted vertical

average 〈· · ·〉 as

〈(· · ·)〉 =

∫
(· · ·)e−z/Hdz

H
≈
∑96
k=2(· · ·)ke−zk/H∆z∑96

k=2 e
−zk/H∆z

=

∑96
k=2(· · ·)ke−zk/H∆z

6.745km
, ∆z = 500 m.

(17)

Note that H = 7 km in the denominator is replaced by 6.745 km due to discretization.

With this approximation, Term (III) in Eq. (5) consists of contributions from k = 1 and

2 (z = 0 and 500 m) due to the form of the vertical discretization of QGPV [S17 Eq. (5)]:

f cosφ

H

(
veθe

∂θ̃/∂z

)
z=0

≈ 2Ω sinφj cosφj
6.745km

(
e−z2/Hveij2θeij2

θ̃3 − θ̃1

+
veij1θeij1

2(θ̃2 − θ̃1)

)
∆z. (18)
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In S17 we conducted several different methods to evaluate the lowest level temperatures in

reanalysis and found the result to be insensitive to the chosen methods except for regions

with high topography.

Formulation of one-dimensional model for reconstructing LWA with modified

forcing

To evaluate the impact of upstream forcing on the downstream block formation, we first

evaluate the terms in Eq. (5) using data at a given latitude φ for a given period. We can

then estimate the zonal transport velocity for column LWA C(λ, t) and forcing coefficient

γ(λ, t) from the observed 〈Fλ〉, 〈A〉, 〈Ȧ〉, using the following relationships:

〈Fλ〉 = C〈A〉 cosφ, 〈Ȧ〉 cosφ = γ〈A〉 cosφ. (19)

With Eq. (19), Eq. (5) may be rewritten as

∂

∂t
〈A〉 cosφ = − 1

a cosφ

∂ (C〈A〉 cosφ)

∂λ
+ Term (II)+Term (III) + γ〈A〉 cosφ. (20)

Now we perturb γ to γ+ ∆γ, and as a result 〈A〉 is also perturbed to 〈A〉+ ∆〈A〉, but for

simplicity we assume that C, Term (II) and Term (III) do not change. (We found little

correlation between C and 〈A〉 during 20-26 June at 49◦N.) The above equation is then

modified to

∂

∂t
(〈A〉+ ∆〈A〉) cosφ = − 1

a cosφ

∂ [C (〈A〉+ ∆〈A〉) cosφ]

∂λ
(21)

+Term (II)+Term (III) + (γ + ∆γ) (〈A〉+ ∆〈A〉) cosφ.

Subtracting Eq. (20) from Eq. (21) and dividing by cosφ,

∂

∂t
∆〈A〉 = − 1

a cosφ

∂ (C∆〈A〉)
∂λ

+ (γ + ∆γ) ∆〈A〉+ 〈A〉∆γ. (22)
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We solve Eq. (22) for ∆〈A〉 with the knowledge of C, γ, ∆γ and 〈A〉. In practice, we

interpolate these four parameters onto a smaller time interval of 10 minutes, and add

a small second-order diffusion with a diffusion coefficient of 2 × 105 m2s−1 to keep the

solution smooth.
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