Dhruv Balwada

and 3 more

Oceanic macroturbulence is efficient at stirring and transporting tracers. The dynamical properties of this stirring can be characterized by statistically quantifying tracer structures. Here, we characterize the macroscale (1-100 km) tracer structures observed by two Seagliders downstream of the Southwest Indian Ridge (SWIR) in the Antarctic Circumpolar Current (ACC). These are some of the first glider observations in an energetic standing meander of the ACC, regions associated with enhanced ventilation. The small-scale density variance in the mixed layer (ML) was relatively enhanced near the surface and base of the ML, while being muted in the middle, suggesting the formation mechanism to be associated to ML instabilities and eddies. In addition, ML density fronts were formed by comparable contributions from temperature and salinity gradients, suggesting the dominant role of stirring, over air-sea interactions, in their formation and sustainability. In the interior, along-isopycnal spectra and structure functions of spice indicated that there is relatively lower variance at smaller scales than would be expected based on non-local stirring, suggesting that flows smaller than the deformation radius play a role in the cascade of tracers to small scales. These interior spice anomalies spanned across isopycnals, and were found to be about 3-5 times flatter than the aspect ratio that would be expected for O(1) Burger number flows like interior QG dynamics, suggesting the ratio of vertical shear to horizontal strain is greater than $N/f$. This further supports that small-scale flows, with high-mode vertical structures, stir tracers and impact tracer distributions.

Dhruv Balwada

and 3 more

Fronts, at both mesoscale and submesoscales, are generally hypothesized to play a significant role in mediating the transfer of tracers from the surface boundary layer into the interior. With the advent of computational capabilities numerous high resolution modeling studies have shown the enhancement of of vertical velocities with increasing horizontal resolution. In a carefully designed setup of an idealized channel partially blocked by meridional topography and forced by steady forcing, idealization of the Antarctic Circumpolar Current, we vary the horizontal resolution as the control parameter, and analyze the impact of enhanced vertical velocities on tracer subduction. It is found that the submesoscale-permitting simulations flux far more tracer downward than the lower resolution simulations, the 1km simulation takes up 50\% more tracer compared to the 20km simulation, despite the increased restratifying influence of the resolved submesoscale processes. A spectral decomposition of the flow and fluxes illuminated the relative importance of scales, and the inefficiency of inertia-gravity waves in influencing tracer transport. To further understand the physical dynamics in these simulations we diagnosed how energy was being transferred between the mean and eddy kinetic and potential energy reservoirs (Lorenz energy cycles), and if changing the resolution influenced this exchange. In particular we focussed on separating the dynamics of the energy cycles that are active in the interior of the water column and those that are trapped near the surface. We also analyzed the inter-lengthscale exchange of energy to understand the detailed spectral dynamics of the turbulence that is resolved. Lastly, and probably most relevant to SWOT, we looked at the energy budgets in terms of velocity and pressure structure functions, to assess the potential for the future SWOT mission to directly measure the inter-scale energy transfers at the ocean surface.