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1 Linearization of the Exner Equation

We introduce the perturbation exp(ik1x + ik2y + ωt) into the non-dimenstional Exner equation (3.3) from the manuscript.
Omitting the star notation for non-dimensional variables,

ωr′ = −ik1q′x − ik2q′y, q′ = F (S|τ|)τ̂′ + S|τ|′dF (S|τ|)τ̂. (S.1)

The non-dimensional bed stress τ = (τx, τy) and unit bed stress vectors are given by (2.8),

τi = tTi
(
∇u +∇uT

)
n, τ̂ =

τ

|τ|
, at z = r. (S.2)

The vectors tx, ty are the unit tangent vectors to the bed in the x- and y- directions respectively, and n is the normal surface
vector for the bed z = r(x, y, t),

tx =

(
1, 0, ∂r∂x

)√
1 +

(
∂r
∂x

)2 , ty =

(
1, 0, ∂r∂y

)
√

1 +
(
∂r
∂y

)2 , n =

(
− ∂r
∂x ,−

∂r
∂y , 1

)
√

1 +
(
∂r
∂x

)2
+
(
∂r
∂y

)2 . (S.3)

After introducing the perturbations, these vectors take the form,

tx = (1, 0, 0) + εik1r
′(0, 0, 1), ty = (1, 0, 0) + εik2r

′(0, 0, 1), n = (0, 0, 1) + ε(ik1r
′, ik2r

′, 0). (S.4)

We evaluate the non-dimensional stress terms and their perturbations,

τ = (1, 0), τ′ = (Du′ + ik1w
′,Dv′ + ik2w

′) , τ̂ = (1, 0), τ̂
′

= (0,Dv′ + ik2w
′) . (S.5)

Care needs to be taken for the computation for τ̂
′

=
(

τ
|τ|

)′
. The perturbation of |τ| is given by |τ|′ = 1+ε Real (Du′ + ik1w

′).

Thus,
q′ = ([Du′ + ik1w

′] SdF (S) , F (S) [Dv′ + ik2w
′]) , (S.6)

which yields the linearized Exner equation (5.10),

ωr′ = −ik1SκdF [Du′ + ik1w
′]− ik2κF [Dv′ + ik2w

′] . (S.7)

2 Numerics

For reference, we write the main system of equations (5.20 - 5.23) from the manuscript,

γω
[
D2 − k2

]
ψ = −ik1

[
uD2ψ − ψD2u− k2uψ

]
+

1

Re

[
D2 − k2

]2
ψ, (S.7)

Dψ = 0, ψ = 0, at z = 2, (S.8)

Dψ = − sin(θ)LDur′, ψ = 0, at z = 0, (S.9)

ωr′ = −ikκFD2ψ at z = 0, (S.10)
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where ψ(z) is the streamfunction, z corresponds to the coordinate along the film depth, Re is the Reynolds number, u(z) is
the steady state velocity along the x-direction, r′ is the bed-form perturbation amplitude, k is the perturbation wavenumber,
F is the steady state non-dimensional bed-load flux value, θ is the Squire angle, k1 = k sin θ and κ is a non-dimensional
variable that connects the model scaling to that of the standard bedload transport scaling. We present the details of spectral
Galerkin solver for the equations (S.7 - S.10). For the purpose of the solver, we perform the translation ζ = z− 1. We define
the modified Sobolev space,

H2
±1[−1, 1] =

{
ϕ ∈ L2[−1, 1] : ϕ(±1) = 0,

dϕ

dζ
(±1) = 0,

djϕ

dζj
∈ L2[−1, 1], 0 ≤ j ≤ 2

}
, (S.12)

where L2[−1, 1] is the space of all square-integrable functions on −1 ≤ ζ ≤ 1.
We write (S.7) in weak form by integrating against ϕ ∈ H2

1 [−1, 1],

ωM(ψ,ϕ) = A(ψ,ϕ), (S.13)

where M(ψ, φ) and A(ψ, φ) are the mass and the stiffness bilinear forms, respectively,

M = γ
[
I20 − k2I00

]
, A = ik1

[
U200 − U020 + k2U000

]
+

1

Re

[
I22 − 2k2I20 + k4I00

]
, (S.14)

and, Ij1j2(ψ,ϕ)

∫ 1

−1

dj1ψ

dζj1
dj2ϕ

dζj2
dζ, Uj1j2j3(ψ,ϕ) =

∫ 1

−1

dj1u

dζj1
dj2ψ

dζj2
dj3ϕ

dζj3
dζ. (S.15)

In (S.14) we use integration by parts, combined with boundary terms equaling zero due to (S.12).
We approximate the solution space for ψ by the finite dimensional subspace,

VN = Span{ψj : −1 ≤ j ≤ N}, (S.16)

where, for 1 ≤ j ≤ N , we define ψj as the double-integrated Legendre polynomial Lj+1 such that ψj(±1) =
dψj

dζ (±1) = 0,
namely,

ψj =

√
j +

3

2

(
Lj+3 − Lj+1

(2j + 3)(2j + 5)
− Lj+1 − Lj−1

(2j + 1)(2j + 3)

)
, (S.17)

and ψ0, ψ1 correspond to two low-degree polynomials, linearly independent from the other ψj , to incorporate the two
boundary conditions (S.9) at the till-water interface,

ψ0(z) = (ζ − 1)2, ψ−1(z) = (ζ − 1)2(ζ + 2). (S.18)

We write the solution as ψ =
∑N
j=−1 ajψj . Note that the ice-water boundary conditions (S.8) would be automatically

satisfied by any such ψ. We incorporate the boundary conditions (S.9) and the Exner equation (S.10) in strong form.
We approximate the test function space H2

±1[−1, 1] by the finite dimensional subspace WN , which consists of just the
standard basis functions without the low-degree polynomials.

WN = Span{ψj : 1 ≤ j ≤ N}. (S.19)

We reformulate the bilinear forms A, I, U and M in (S.13) as (N + 3) × (N + 3) matrices. The N + 3 columns stand the
unknowns represented by x = (a−1, a0, a1, ..., aN , r

′). The N + 3 rows stand for integration against the N test functions of
WN , plus three additional rows that describe the two boundary conditions (S.9) and the Exner equation (S.10). With we
obtain a finite dimensional eigenvalue problem, Ax = ωMx, which we solve using the Matlab eig routine.

3 Asymptotic Analysis

3.1 Short Wavelength Diffusion

The analytical solution of the reduced model (6.7 - 6.10) for the short wavelength diffusion-only regime is given by,

ψ(0) = −2z(0) exp(−z(0)), ω(0) = −4i, (S.20)

We compare the theoretical value of ω, given above, and the rescaled numerical results, ωnum = ω

FLk2 sin θ
in Figure S1.

The figure shows good agreement between the numerical and theoretical solutions.
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(a) Comparison for the real part, ωr. (b) Comparison for the imaginary part, ωi.

Figure S1: Analytical and re-scaled numerical solutions for the short wavelength diffusion regime.

3.2 Long Wavelength Diffusion

The analytical solution of the reduced model (6.16 - 6.19) for the long wavelength diffusion-only regime is given by,

ψ = −2z + 2z2 − 0.5z3, ω = −4i, (S.21)

We compare the theoretical value of ω, given above, and the rescaled numerical results, ωnum = ω

FLk sin θ
. Figure S2

suggests that the numerical result converges to the theoretical value as k → 0.

(a) Comparison for the real part, ωr. (b) Comparison for the imaginary part, ωi.

Figure S2: Analytical and re-scaled numerical solutions for the long wavelength diffusion regime. (a) exhibits ill-conditioning
as k → 0.
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3.3 Short Wavelength Advection

The analytical solution of the reduced model (6.21, 6.8 - 6.10) for the short wavelength advection-diffusion regime is given
by,

ψ =
2
∫ z
0

∫∞
v
e2v−s−zAi(c−1s+ c2)dsdv∫∞

0
e−sAi(c−1s+ c2)ds

, ω =
−2iAi(c2)∫∞

0
e−sAi (c−1s+ c2) ds

, (S.22)

where c = 1
3
√
2ia2

with arg(c) = −π6 , and Ai(z) is one of the two standard linearly independent solutions of the system

D2f = zf . The integrals in (S.22) converge due to the exponential decay rate of Ai(z) for −π3 < z < π
3 .

We compare the theoretical value of ω, given above, and the rescaled numerical results, ωnum = ω

FLk2 sin θ
in Figure S3.

(a) Comparison for the real part, ωr. (b) Comparison for the imaginary part, ωi.

Figure S3: Analytical and re-scaled numerical solutions for the short wavelength advection regime.

3.4 Long Wavelength Advection

We reduce the re-scaled OS equation (6.13) for long wavelengths ,

b1ω(D∗2 − k2)ψ∗ = −ib2
[(

2z∗ − z∗2
)

(D∗2 − k2) + 2
]
ψ∗ + (D∗2 − 1)2ψ∗, (S.23)

by b1 → 0 to suppress acceleration, and an asymptotic expansion around k = 0 for the long wavelength regime,

ib2

[
z(0)

(
2− z(0)

)
D2 + 2

]
ψ(0) = D4ψ(0), b2 = Rek sin θ. (S.24)

We find a semi-analytic solution for (S.24), and the associated boundary conditions for the long wavelength regime (6.17
- 6.19) on 0 ≤ z ≤ 2 via a Taylor expansion at z = 0. We solve the reduced model for the coefficients of 1, z, z2, ..., zn−1,
n = 12 using the Matlab sybolic toolbox. We compute D2ψ(0)(0) to first order,

D2ψ(0)(0) =
1436400ib22 + 18711000b2 − 98232750i

−14336b52 + 280704ib42 + 2106720b32 + 476280ib22 + 7484400b2 − 49116375i
+ 2. (S.25)

We assume b2 � 1, which is justified for θ � 1. We compute ω(0) by approximating D2ψ(0)(0) with a first-order Taylor
expansion at b2 = 0,

ω(0) = D2ψ(0)(0) ≈ 4 + 0.762ib2. (S.26)

We compare the theoretical value of ω, given above, and the rescaled numerical results, ωnum = ω

FLk sin θ
. Figure S4

highlights that the numerical result converges to the theoretical value as k → 0. For small wavenumbers, the figure also
displays ill-conditioning effects.
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(a) Comparison for the real part, ωr. (b) Comparison for the imaginary part, ωi.

Figure S4: Analytical and re-scaled numerical solutions for the long wavelength advection regime.

3.5 Short Wavelength Acceleration

The analytical solution for the reduced model (6.23, 6.8 - 6.10) is given by,

ψ(0) =
2i
(
e−z

(0)(1−ia1) − e−z(0)
)

a1
, ω(0) = −2a1 − 4i, (S.27)

where a1 = FLReγκ sin θ.
We compare the theoretical value of ω, given above, and the rescaled numerical results, ωnum = ω

FLk2 sin θ
in Figure S5.

(a) Comparison for the real part, ωr. (b) Comparison for the imaginary part, ωi.

Figure S5: Analytical and re-scaled numerical solutions for the short wavelength advection regime.

3.6 Long Wavelength Acceleration

We reduce the re-scaled OS equation (6.13) for long wavelengths,

b1ω(D∗2 − k2)ψ∗ = −ib2
[(

2z∗ − z∗2
)

(D∗2 − k2) + 2
]
ψ∗ + (D∗2 − 1)2ψ∗, (S.28)
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by b1 → 0 to suppress acceleration, and an asymptotic expansion around k = 0 for the long wavelength regime,

b1ω
(0)D2ψ(0) = D4ψ(0). (S.29)

This linear ordinary differential equation has characteristic roots, 0, 0,±
√
b1ω(0). We use the Matlab symbolic toolbox

to solve the above equation. along with associated boundary conditions in the long wavelength regime (6.17 - 6.19), for

0 ≤ z ≤ 2. We then symbolically compute D2ψ(0) as a function of
√
b1ω(0). Assuming b1 < 1, which is justified since L� 1,

we perform a second-order Taylor expansion of D2ψ(0)(0) around
√
b1ω(0) = 0 to get,

D2ψ(0)(0) ≈ A0 +A2

(√
b1ω(0)

)2
, A0 = 3.7584, A2 = 2.2014. (S.30)

The Exner equation yields,

ω(0) =
A0

i−A2b1
. (S.31)

We compare the theoretical value of ω, given above, and the rescaled numerical results, ωnum = ω

FLk sin θ
in Figure S6.

(a) Comparison for the real part, ωr. (b) Comparison for the imaginary part, ωi.

Figure S6: Analytical and re-scaled numerical solutions for the long wavelength acceleration regime.
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