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Abstract13

The resolution of climate models is limited by computational cost. Therefore, we14

must rely on parameterizations to represent processes occurring below the scale resolved15

by the models. Here, we focus on parameterizations of ocean mesoscale eddies and em-16

ploy machine learning (ML), namely relevance vector machines (RVM) and convolutional17

neural networks (CNN), to derive computationally efficient parameterizations from data,18

which are interpretable and/or encapsulate physics. In particular, we demonstrate the19

usefulness of the RVM algorithm to reveal closed-form equations for eddy parameteri-20

zations with embedded conservation laws. When implemented in an idealized ocean model,21

all parameterizations improve the statistics of the coarse-resolution simulation. The CNN22

is more stable than the RVM such that its skill in reproducing the high-resolution sim-23

ulation is higher than the other schemes; however, the RVM scheme is interpretable. This24

work shows the potential for new physics-constrained interpretable ML turbulence pa-25

rameterizations for use in ocean climate models.26

Plain Language Summary27

The complexity of numerical models used for future climate projections is limited28

by their computational cost. Many key processes, such as ocean eddies, are not adequately29

resolved and must be approximated using parameterizations. However, parameteriza-30

tions are often imperfect and reduce the accuracy of the simulations. Machine learning31

is now opening new avenues to improve climate simulations by extracting such param-32

eterizations directly from data, rather than using idealized theories as typically done. We33

show that efficient modern machine learning algorithms can accurately represent the physics34

of ocean eddies, be constrained by physical laws, and can be interpretable. Our results35

simultaneously open the door to the discovery of new physics from data and the improve-36

ment of climate simulations.37

1 Introduction38

Turbulent processes are critical components of the climate system and influence39

the circulation of both the ocean and atmosphere. For example, ocean mesoscale eddies,40

which are turbulent features of scale 10-100 km, dominate the oceanic kinetic energy reser-41

voir (Ferrari & Wunsch, 2009) and are key for the lateral and vertical transport of trac-42

ers, such as heat, carbon, and oxygen. These turbulent processes occur on scales that43

are below the resolution of typical global climate models, which is roughly 25 km-10044

km (IPCC, 2013). Therefore, the effects of these turbulent processes on the large-scale45

must be approximated.46

These approximations, called parameterizations or closures, are often developed us-47

ing idealized theories of the bulk effect of the subgrid process on the large scale (Warner,48

2010). This approach has been used for many decades but is not necessarily optimal as49

it neglects certain physical effects. Imperfections in current parameterizations and miss-50

ing physics in climate models introduce significant biases in simulations and consider-51

able uncertainty in anthropogenic climate change projections (IPCC, 2013). For exam-52

ple, current parameterizations of ocean eddies target the effect of i) buoyancy fluxes by53

removing large-scale available potential energy (Gent & Mcwilliams, 1990), and ii) mo-54

mentum fluxes using viscous closures which dissipate momentum (Zanna et al., 2020).55

While improving certain properties of the flow (Danabasoglu et al., 1994), eddy pa-56

rameterizations are missing key energy pathways such as the conversion of available po-57

tential energy into subgrid kinetic energy, or the backscatter of kinetic energy to the large-58

scale flow (Jansen et al., 2015; Zanna et al., 2017; Bachman, 2019). In addition, these59

parameterizations spuriously dissipate kinetic energy (Jansen & Held, 2014; Kjellsson60
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& Zanna, 2017). These imperfect representations of ocean eddy physics in models can61

affect the strength and variability of large-scale ocean currents and ocean heat uptake62

(Zanna et al., 2017; Kuhlbrodt & Gregory, 2012). Increasing resolution can reduce some63

of these biases; however, due to the computational expense of running turbulence-resolving64

simulations, subgrid parameterizations will be in demand for several decades.65

Recently, the advent of machine learning (ML) has given rise to a new class of data-66

driven parameterizations. Studies rely on ML to optimally tune parameters of existing67

closures (Schneider et al., 2017; Ling et al., 2016). This approach, while useful, still ne-68

glects the missing physics not encapsulated in the current parameterizations. Instead,69

several studies have shown the promise of new ML parameterizations of subgrid processes70

in the atmosphere (Gentine et al., 2018; Rasp et al., 2018; O’Gorman & Dwyer, 2018;71

Brenowitz & Bretherton, 2018) and ocean (Bolton & Zanna, 2019). However, this new72

class of ML parameterizations often uses black-box algorithms (e.g., neural networks)73

such that the laws of physics are not necessarily respected unless imposed (Beucler et74

al., 2019; Ling et al., 2016), and interpreting the data-driven parameterization becomes75

intractable.76

Here, we propose a complementary or alternative route to both the traditional physics-77

driven bulk approach and the ML-black box approach of deep learning. We use ML to78

discover closed-form equations for mesoscale eddy parameterizations for coarse-resolution79

ocean models using high-resolution model data. Given some spatio-temporal dataset of80

the subgrid eddy forcing, we uncover an equation that could have produced that dataset81

(Rudy et al., 2017; Zhang & Lin, 2018). This approach has the following advantages over82

more complex methods such as convolutional neural networks: the end result is signif-83

icantly easier to interpret physically, the computational cost of implementation is lower,84

and training time of the algorithm is also lower. Data-driven discovery of equations has85

been extensively used to reveal known-equations, such as Burger’s or Navier-Stokes’ equa-86

tions (Kutz, 2017). However, unlike in these studies, we use the algorithm to discover87

unknown equations for the subgrid eddy forcings.88

2 Data and Methods89

2.1 Training Data and Coarse-Graining90

We use a primitive equation model, MITgcm (J. Marshall et al., 1997), to gener-91

ate high-resolution data and construct new eddy momentum, temperature and energy92

parameterizations. We run highly-idealized double-gyre eddy-resolving barotropic and93

baroclinic simulations in a square-domain. The simulations use a beta-plane approxima-94

tion, free-slip boundary conditions on lateral walls and no-slip boundary condition on95

the bottom, and a constant surface zonal wind forcing. These simulations are designed96

to create highly turbulent flow regimes, with mesoscale eddies shedding from the jet ex-97

tension.98

The barotropic model has a single layer of depth 500 m and length 3840 km, sim-99

ilar to Cooper and Zanna (2015). We spin-up the model from rest for 10 years, at a spa-100

tial resolution of 3.75 km. The baroclinic model comprises of 15 vertical levels, with a101

total depth of 3600 m. Due to the increased computational cost of running the baroclinic102

simulation compared to the barotropic model, we decreased the domain size from 3840103

km in length to 1920 km, with a spatial resolution of 7.5 km. The meridional temper-104

ature gradient is imposed via surface restoring to a linear profile. We spin-up the baro-105

clinic model for 100 years and then run for a further 10 years for data collection. Fur-106

ther details about the simulations are given in the Supplementary Information (SI, S1).107

After spin-up, we select 1000 time-slices of model output, with 4 days between each108

time-slice. We remove information at small-scales by applying a horizontal Gaussian fil-109

ter of width 30 km, and then coarse-grain to a 30 km grid, which is denoted by (..) (Bolton110
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& Zanna, 2019) (SI, S2). The subgrid eddy momentum and temperature forcing terms,111

for each vertical level, are then defined by112

Su =

(
Sx

Sy

)
= (u · ∇)u− (u · ∇)u, (1)113

ST = (u · ∇)T − (u · ∇)T , (2)114

respectively. Here ∇ is the horizontal 2D gradient operator, T is the temperature, and115

the horizontal velocity u = (u, v). These terms reflect the turbulent nonlinear terms116

truncated in coarse-resolution models which need to be parameterized (Berloff, 2005; Mana117

& Zanna, 2014). At every grid-point for every time-slice, we both i) calculate the tar-118

get eddy forcing, i.e, Eqs. (1) and (2), and ii) construct a library of diverse functions119

which are necessary for the RVM method described below and are relevant to the pro-120

cess being parameterized.121

2.2 Data-Driven Algorithms122

Relevance Vector Machine. Here, we employ the sparse Bayesian regression method123

used in Zhang and Lin (2018) based on relevance vector machines (RVM) (Tipping, 2001)124

to reveal new eddy parameterizations. RVM is a regression technique that assumes Gaus-125

sian prior distributions for each regression weight (Bishop, 2006). The width of the Gaus-126

sian prior of each regression weight provides a measure of uncertainty of that regression127

weight. The method relies on a library of functions, which can comprise of any function128

such as products or derivatives of relevant quantities defined as basis functions (e.g., ve-129

locity shears, temperature shears). The sparse regression is applied iteratively to the li-130

brary of functions, and then a pruning of the library of functions is carried out by dis-131

carding the functions with an uncertainty higher than a pre-specified threshold (Zhang132

& Lin, 2018). This uncertainty threshold, δ, is the only parameter that requires setting133

in the Zhang and Lin (2018) method. The algorithm finishes when the uncertainty mea-134

sures of each regression weight stop changing from iteration to iteration. We found the135

Zhang and Lin (2018) method to be more robust than the sequential threshold ridge re-136

gression (STRidge) of Rudy et al. (2017). For example, using data to discover the known137

2D advection-diffusion equations, we found that STRidge required substantially more138

data for training than the RVM method, STRidge has a large number of tunable hyper-139

parameters which substantially influenced the discovered equation compared to the RVM140

method which has only one hyperparameter. In addition, unlike STRidge, Zhang and141

Lin (2018) method provided an error associated with the weights discovered. Given these142

tests were performed on known equations in which we knew the answers, we opted for143

the use of Zhang and Lin (2018) RVM method to discover unknown parameterizations.144

At every grid-point for every time-slice from the MITgcm coarse-grained output145

(described above) we construct a library of diverse functions, φi, which are derived from146

a set of basis functions relevant to the process being parameterized. We build the library147

from the filtered velocities u, v, and T using up to second-order for both spatial deriva-148

tives and polynomial products, mainly due to memory limitations. The basis of func-149

tions used for the momentum and temperature eddy parameterizations differ and will150

be discussed in the next section. We normalized each function individually such that they151

have zero mean and unit variance. We use 50% of the 1000 time-slices for training and152

the other 50% for validation. For both the eddy momentum and temperature forcing,153

we impose a physical constraint for global conservation. To do so, we only specify library154

functions that can be written as the divergence of a flux (or as the divergence of a ten-155

sor T for the eddy momentum forcing, i.e. ∇·T), such that with the appropriate bound-156

ary conditions there is no net input of momentum or temperature.157

We then apply the iterative RVM algorithm to prune the library of functions and158

construct the final equation for the subgrid forcing (independently for Sx, Sy and ST )159

as a linear sum of the functions, φi, each weighted by the regression coefficient, wi. We160
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Figure 1. A) Illustration of the RVM procedure; B) Schematic of the architecture of the

physics-constrained fully-convolutional neural network (FCNN); C) Offline validation of the sub-

grid momentum forcing from the barotropic simulations for three parameterizations, denoted

as Ŝ – the physics-driven ŜAZ , ŜBT revealed by the RVM algorithm (Eq. 5), and the FCNN –

against the diagnosed forcing from high-resolution data, S. Top Row shows the mean [ms−2],

Middle Row the Standard Deviation [ms−2], and the Bottom Row the Pearson correlation of the

zonal component of the eddy momentum forcing, Sx and Ŝx (the meridional component is shown

in SI). The x- and y-axis are longitude and latitude, respectively; the extent is 3840 km in each

direction.
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estimate the performance of the final equation by calculating the R2 coefficient of de-161

termination using the withheld validation data. The full process of discovery with RVM162

is illustrated in Fig. 1A. Further details can be found in the SI.163

Convolutional neural network. We are using a fully-convolutional neural net-164

work (FCNN) on the high-resolution validation data (the truth). The authors have al-165

ready shown that CNNs are powerful at parameterizing mesoscale eddy momentum forc-166

ing and can generalize very well to different regimes, in particular to different dynam-167

ical regions and different turbulent regimes (Bolton & Zanna, 2019). Other studies have168

shown the success of neural network in representing turbulent closures from large-eddy169

simulations (Maulik & San, 2017; Ling et al., 2016; Wang et al., 2020), though none have170

been implemented in a forced-dissipative model as of yet. The FCNN used here (Fig. 1B171

and SI) is trained using the same barotropic model data as for the RVM expression, with172

the velocity components, u and v as inputs. There are four convolution layers simulta-173

neously predicting both components of the eddy momentum forcing. The architecture174

of the FCNN is physically-constrained (Beucler et al., 2019) such that the activation maps175

(i.e. the results) of the third convolution layer represent the elements of a symmetric eddy176

stress tensor T. The final convolution layer then takes the spatial derivatives of the eddy177

stress tensor elements, using fixed filters representing central-difference stencils, form-178

ing predictions Sx and Sy. By physically-constraining the architecture to form the el-179

ements of a symmetric eddy stress tensor, global momentum and vorticity conservation180

can be achieved. The hyperparameters of the architecture, such as the number of con-181

volution layers and the number of filters, were chosen by experimenting with numerous182

configurations and examining the impact of the R2 coefficient on the validation data, as183

commonly done. We do not use bias parameters in any of the convolution layers. The184

details of the FCNN architecture are in the SI for full reproducibility of the results.185

2.3 Numerical Model for Implementation186

The RVM and FCNN parameterizations are implemented in an idealized ocean model.187

Implementation of the FCNN into a Fortran code (e.g., MITgcm) is non-trivial, there-188

fore we opt to implement the parameterizations using Python since it was used to train189

and save the FCNN. The Python-based idealized ocean model is a shallow water model,190

which bears many resemblances to the MITgcm primitive equation barotropic model,191

including the horizontal velocities and sea surface height as prognostic variables, a double-192

gyre configuration with a constant wind forcing, and an idealized bathymetry. The pa-193

rameterizations are implemented into a 30 km resolution version of the idealized shallow-194

water Python model, which was span-up from rest for 10 years, and then run for an ad-195

ditional 10 years for analysis. Further details are available in the SI.196

3 Data-Driven Equation-Discovery for Mesoscale Eddies197

Improved parameterizations of mesoscale eddy momentum, temperature and en-198

ergy are crucial to improving the transport of tracers, as well as countering the energy199

deficit caused by scale-truncation, and viscous and diffusion parameterizations within200

coarser-resolution models. To derive new data-driven closures, we use the data gener-201

ated from idealized eddy-resolving barotropic and baroclinic simulations, with horizon-202

tal resolutions of 3.5 km and 7.5 km respectively, which emulate western boundary cur-203

rents and their jet extensions at mid-latitudes (Methods). Our target is to parameter-204

ize eddy momentum (sec. 3.1) and temperature fluxes, and an eddy prognostic equation205

(sec. 3.2) for coarser-resolution models, here chosen to be of 30 km horizontal resolution206

(eddy-permitting), similar to CMIP-class eddy permitting models. We will extract the207

subgrid forcing using the RVM algorithm.208
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3.1 Discovering Eddy Momentum Parameterizations209

For constructing the library of functions to reveal expressions for the eddy momen-210

tum forcing, we write the spatial derivatives of the velocity field using the following ba-211

sis functions212

ζ = vx − uy, σ = ux + vy, (3a)213

D = uy + vx, D̃ = ux − vy, (3b)214

where the short-hands ()x,y ≡ ∂
∂x,y are used for spatial derivatives, ζ is the relative vor-215

ticity, σ is the divergence, and D and D̃ are the shearing and stretching deformation of216

the flow field, respectively. We chose to write the library of functions using this basis be-217

cause i) initially our data-driven discovery method was automatically forming Eq. 3a-218

b, when given only velocity components and their derivatives, without a priori knowl-219

edge, and ii) the dynamical quantities defined by Eq. 3 are relevant to turbulent eddy220

parameterizations (Smagorinsky, 1963; Pope, 1975). The RVM algorithm, therefore, re-221

vealed an improved basis in which to write the library of functions. Finding the opti-222

mal physical basis is important to identify the key dynamical components from which223

to construct parameterizations in general, as well as helping with physics-discovery from224

data.225

We separately apply the RVM algorithm to data from the barotropic and baroclinic226

model. The predicted subgrid momentum forcing is denoted by Ŝu =
(
Ŝx, Ŝy

)
. We per-227

formed an extensive sensitivity analysis to the sole hyperparameter, the threshold δ, of228

the method (SI, S5). At low threshold values, the RVM algorithm selects a single func-229

tion, namely the gradients of enstrophy (ζ2)x and (ζ2)y for predictions of Sx and Sy, re-230

spectively, which captures ∼20% of the variance. As the pruning threshold increases, there231

is a large increase from ∼20% to ∼50% variance captured, with the number of functions232

only increasing from 1 to 3 for both Sx and Sy. The expression revealed by the RVM233

is then given by234

Ŝ
BT

u =

(
w0(ζ2)x − w1(ζD)x + w2(ζD̃)y
w3(ζ2)y + w4(ζD)y + w5(ζD̃)x

)
, (4)235

where w0 = −4.096× 108, w1 = −5.483× 108, w2 = −4.384× 108, w3 = −4.100× 108,236

w4 = −6.332× 108, w5 = −4.815× 108, with units of m2. Each coefficient has an un-237

certainty estimate which is on the order of a few percent, and never exceeds 10%. The238

uncertainty associated with each weigth is not listed as it is always smaller than the co-239

efficient of variation used (see below) for each parameterization discovered. The zonal240

and meridional components of the predicted RVM expression capture 55.6% and 50.6%241

of the variance, respectively. Adding six more functions would increase the R2 value to242

up to 80% but increasing the complexity of the expression (SI, Eqs. 12-13).243

To quantify the differences between the regression coefficients, we use the coeffi-244

cient of variation (i.e. relative standard deviation), which provides a standardized mea-245

sure of the dispersion of a probability distribution. For the regression coefficients wi above,246

the coefficient of variation is 14.2%. We therefore decide to write the regression coeffi-247

cients as approximately equal, i.e., wi ≈ κBT = −4.87 × 108 m2, with an average er-248

ror of 14.2%. Using this approximation, we can then re-write Eq. 4 as249

ŜBT
u ≈ κBT∇ ·

(
ζ2 − ζD ζD̃

ζD̃ ζ2 + ζD

)
. (5)250

The expression now has a single scalar as a tunable parameter, κBT , which deter-251

mines the ‘strength’ of the parameterization. The expression depends only on the spa-252

tial derivatives of the vorticity and deformation terms, and is similar to the parameter-253

ization developed by Anstey and Zanna (2017) (see below). In addition, the tensor found254
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is symmetric, despite separately applying the RVM algorithm to the zonal and merid-255

ional components of the eddy momentum forcing and without imposing symmetry as a256

constraint (unlike for the FCNN).257

We perform the same procedure using data from the baroclinic model. We provide258

the RVM algorithm with data from multiple vertical layers at once. As for the barotropic259

model, a significant increase in the R2 occurs when three functions are retained, captur-260

ing over 40% of the variance. Here, the RVM algorithm constructs the same eddy mo-261

mentum forcing from the barotropic model (Eq. 4), albeit with different values for the262

regression coefficients. A second increase in the R2 occurs for larger values of the thresh-263

old parameter where five functions are retained, capturing approximately 70% of the vari-264

ance (Eq. 5 in SI). We proceed to calculate the average of the regression coefficients and265

found a mean value κBC = −8.723 × 108 m2, with a coefficient of variation of 9.8%.266

Due to the relatively low coefficient of variation, we again assume that all regression co-267

efficients are approximately equal to κBC , such that the RVM expression can be approx-268

imated as269

ŜBC
u ≈ κBC∇ ·

(
−ζD ζD̃

ζD̃ ζD

)
+ I

1

2
κBC∇(ζ2 +D2 + D̃2), (6)270

for each vertical layer. The baroclinic expression depends only on the spatial derivatives271

of the shearing deformation, the stretching deformation, and the vorticity. Like the barotropic272

expression, the tensor is symmetric. The baroclinic expression can be written as the barotropic273

expression plus the gradient of the squared deformation terms: ŜBC
u = 2ŜBT

u +I 12κBC∇(D2+274

D̃2).275

For the physical interpretation of the discovered parameterizations, we rely on pre-276

vious studies (Pope, 1975; Meneveau & Katz, 2000; Nadiga, 2008; Mana & Zanna, 2014;277

Anstey & Zanna, 2017). The RVM expressions discovered encapsulate the tensor form278

that a Reynolds stress could take assuming frame invariance and symmetry in a 2D flow279

based on Pope (1975). However, not surprisingly, the RVM did not discover the stan-280

dard viscous stress tensor (also proposed in Pope (1975) framework), given that we are281

mainly learning quasi-geostrophic effects rather than 3D turbulence. Both the expres-282

sions for ŜBT
u and for ŜBC

u contain within them the recently proposed deformation-based283

momentum parameterization of Anstey and Zanna (2017), referred to as AZ17, and de-284

fined by285

ŜAZ17
u = κAZ17∇ ·

(
−ζD ζD̃

ζD̃ ζD

)
, (7)286

therefore, ŜBT
u = SAZ17

u + κBT∇ζ2. AZ17 is also related to the Pope (1975) tensors,287

see further discussion in AZ17. Using data from a MITgcm baroclinic simulations, AZ17288

diagnosed a value of κAZ17 and found it to be on the order of −5×108 m2, similar to289

the value of κBC . AZ17 is known to capture up-gradient momentum fluxes, and to con-290

serve kinetic energy. The parameterizations, SAZ17, ŜBT
u and ŜBC

u can be related the291

non-linear gradient model (Meneveau & Katz, 2000; Nadiga, 2008), though comprising292

of additional terms (AZ17). The non-linear gradient model, which is derived as a Tay-293

lor expansion of the filtered nonlinear stresses, has shown promise in a range turbulent294

flows applications. This class of parameterizations, based on the deformation tensor of295

Pope (1975), has also been shown to generalize to different dynamical regimes and scales296

within a range of eddying resolution (AZ17; Mana & Zanna, 2014; Zanna et al., 2017).297

The vorticity-contribution of each ŜBT
u and ŜBC

u is identical to that of ŜAZ17
u (SI, S4).298

However, ŜBT
u and ŜBC

u lead to a net source or sink of kinetic energy, which depends on299

the divergence of the flow (or the potential energy of the system; Eq. 11, SI). Therefore,300

the RVM expressions capture processes not included in currently-implemented eddy pa-301

rameterizations and have revealed new parameterizations for energy pathways between302

reservoirs.303
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Before implementing the parameterizations in an ocean model, we test their per-304

formance offline with the validation data within the barotropic model (Fig. 1C). We com-305

pare ŜBT
u , ŜAZ

u , and the FCNN trained using the same barotropic model data as for the306

RVM expression, with the velocity components, u and v as inputs (Fig. 1B and SI).307

In the time-mean maps of Ŝx (Fig. 1C, top row), the RVM expression most accu-308

rately captures the spatial patterns of the high-resolution model. The FCNN also cap-309

tures the majority of the spatial patterns of the true time-mean but exhibits a negative310

bias in the eastern part of the domain. The AZ17 parameterization loosely captures the311

negative values near the western boundary and positive values in the interior, but strug-312

gles to capture the finer small-scale patterns of the true time-mean. Similar results hold313

for the standard deviation (middle row): the RVM expression and FCNN reproduce the314

true standard deviation almost exactly, with differences only visible close to the west-315

ern boundary. Whereas the AZ17 standard deviation underestimates the true standard316

deviation by 50% in the ocean interior. The higher-order moments, skewness and kur-317

tosis (SI, S8), are also best captured by the RVM expression and FCNN, which outper-318

form the AZ17 expression. In terms of predictive skill, measured by the correlation be-319

tween the parameterized term and the true subgrid forcing (bottom row), the FCNN cap-320

tures almost all of the variance in the vicinity of the jet, but this high skill is not con-321

sistent across the domain, particularly near the eastern boundary. The predictive skill322

of the RVM expression is not as high as the FCNN within the jet region, but is signif-323

icantly more consistent across the domain, with fewer patches of zero or negative cor-324

relation. AZ17 performs poorly in a significant part of the domain. The amount of data325

for training the RVM could be reduced by half without deteriorating the results, this is326

not the case for the FCNN. Performance of the baroclinic momentum expression from327

RVM can be found in SI. Overall, the ML parameterizations perform well in offline val-328

idation, compared to a physics-based scheme.329

3.2 Discovering Eddy Temperature and Energy Forcing330

We apply the same procedure to find the eddy temperature forcing, defined by Eq. 2331

as a flux, using data from the baroclinic model. The basis functions for the eddy tem-332

perature forcing are based on derivatives of momentum and temperature. For a given333

threshold parameter, the R2 reaches 54.3% with only 4 functions, resulting in the fol-334

lowing expression for the predicted subgrid temperature forcing:335

ŜT = w0(uxuz)y + w1(vxvz)y − w2(uyuz)x − w3(vyvz)x, (8)336

with the following values for the regression coefficients w0 = 1.573, w1 = 1.495, w2 =337

1.518, w3 = 1.504, which have units of 108 Cms. The mean coefficient value is κT =338

1.523×108 Cms with a coefficient of variation of 1.7%. Approximating all the regres-339

sion coefficients as being equal to the mean, with an average error of 1.7%, yields the fol-340

lowing expression341

ŜT = κT∇ ·
(
−uyuz − vyvz
uxuz + vxvz

)
. (9)342

The zonally-averaged offline diagnostics for the upper ocean, below the mixed-layer, show343

that the RVM expression, ŜT , captures the pattern of the mean and standard deviation344

of the true ST , however, it underestimates the variance by approximately 50% (Fig. 2).345

The correlation between ŜT (the prediction) and ST (the true forcing) is vertically uni-346

form with a value of 0.6. However, near the northern boundary of the domain, the RVM347

does not capture the pattern nor the amplitude of the true ST .348

The revealed expression is tied to vertical variations in velocity, which is a reflec-349

tion of the eddy heat fluxes impacting the density field. The dependence of Eq. 9 on ver-350

tical variability can be examined by assuming that thermal wind balance holds for the351
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Figure 2. Validation, using the baroclinic model data, of the zonally-averaged predicted, ŜT

(Eq. 9; panels c, d); against the diagnosed eddy temperature forcing, ST (Eq. 2; panels a, b), as

a function of latitude and depth for the mean and standard deviation. Correlation between the

prediction and the diagnosed forcing (panel e).
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mesoscale variability. Using a linear equation of state, we can rewrite Eq. 9 as352

ŜT = −κT gα
f
∇ ·
[( vy −uy
−vx ux

)
∇ T

]
, (10)353

where α is the thermal expansion coefficient, g is gravity, f is the Coriolis parameter.354

The coefficient κT gα/f has units of m2, similarly to the coefficient for the momentum355

parameterization. The eddy temperature flux is now dependent on the lateral temper-356

ature gradient, modulated by lateral velocity gradients. We can further reformulate the357

predicted eddy temperature forcing, using the residual-mean formulation (Ferrari & Plumb,358

2003; D. P. Marshall et al., 2012; Greatbatch & Lamb, 1990), into a vertical flux of hor-359

izontal momentum with a magnitude that depends on the velocity gradient (Eq. 15, SI)360

– the flux can be up- or down-gradient.361

To further improve the energetics of the model, an additional prognostic equation362

for the eddy energy can be solved to account for all sources and sinks of energy within363

the system. However, the prognostic eddy energy equation is unknown and must there-364

fore be constructed (Cessi, 2008; Eden & Greatbatch, 2008; D. P. Marshall & Adcroft,365

2010; Jansen et al., 2015; Mak et al., 2016). For both the barotropic and baroclinic mod-366

els, the RVM algorithm constructs a prognostic equation which is the advection of eddy367

kinetic energy (EKE), and captures 50-60% of the variance in the validation data (SI,368

S7). Changing the pruning threshold, the target equation, or the spatial-scale of the Gaus-369

sian filter for defining the eddy scale, did not modify the equation revealed by the al-370

gorithm.371

4 Implementation into a Coarse-Resolution Ocean Model372

Online performance, meaning when the parameterizations are coupled to a coarser-373

resolution model, is an important test for future implementation in global climate mod-374

els. A key issue of any parameterizations is that diagnostic (offline) performance does375

not translate into prognostic (online) performance due to both the underlying model struc-376

ture to be integrated forward (e.g., subgrid parameters, numerics) and the nonlinear na-377

ture of the equation of motions, in which the parameterizations continuously interact with378

the resolved scales. Here, the physics-driven parameterization from AZ17, ŜAZ17, and379

the data-driven barotropic momentum expression (Eq. 5) revealed by the RVM, and the380

data-driven FCNN are implemented into a 30 km resolution version of a very idealized381

shallow-water model (Methods and SI). It is the first time that a CNN parameterization382

for ocean turbulence is implemented into an ocean model, therefore for easy implemen-383

tation and testing we chose a model coded in Python. Choosing a model that is differ-384

ent than the model used for learning provides also a stronger (and more difficult) test385

for the success of the parameterizations. For all three parameterizations, conservation386

of global momentum and vorticity are satisfied. The goal of the parameterizations is to387

reduce model biases and in particular energize the flow, to replace the energy lost due388

to truncation of small-scales and large viscosity coefficients at coarse resolution.389

We compare the 30 km-parameterized simulations, with the 30 km-simulation with-390

out parameterization and a 3.75 km high-resolution (the truth). We initially set the same391

parameter for both the RVM and AZ17 expressions to κ = −4.87×108 m2. However,392

this implementation led to issues of numerical stability for both the RVM and AZ17 pa-393

rameterizations, while to the implementation of the FCNN led to over-energized flow,394

with an efficient inverse cascade and velocities reaching large values of O(10 m s−1). To395

alleviate these issues, we attenuate the strength of each parameterization, i.e., at each396

time-step we simply multiply Ŝu by a coefficient τ between 0 and 1. Through trial and397

error, we use values of τ of 0.5, 0.5, and 0.7 for the RVM, AZ17, and FCNN parameter-398

izations, respectively (SI, S8).399

All three parameterizations increase the amount of kinetic energy in the model (Fig. 3A).400

Both the RVM and AZ17 expressions increase the kinetic energy to approximately halfway401
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Figure 3. Kinetic energy diagnostics in the following idealized ocean simulation: high-

resolution, 3.75 km (cyan), coarse-resolution 30 km without parameterizations (grey), coarse-

resolution 30 km with FCNN (purple), coarse-resolution 30 km with RVM (red), and coarse-

resolution 30 km with AZ17 (yellow). A) Time series of globally-averaged kinetic energy as a

function of time; B) Kinetic Energy Spectrum as a function of wavenumber; C) Snapshot of

kinetic energy in the high-resolution simulations, indicated three regions of interest (1-3) for

extreme event diagnostics using probability distribution functions (PDF). E-D) PDF of kinetic

energy for Regions 1-3.
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between the 30 km and 3.75 km models, at a value of 0.038 m2s−2. It is not surprising402

that the RVM and AZ17 parameterizations lead to similar results in a shallow-water barotropic403

model, as their contributions to the vorticity budget are identical (SI, S4). The FCNN404

parameterizations increase the kinetic energy of the model to within approximately 5%405

of the high-resolution model at 0.056 m2s−2.406

The kinetic energy power spectrum (Fig. 3B) shows evidence of increased kinetic407

energy for the parameterized simulations at all spatial scales, compared to the low-resolution408

unparameterized simulation. At spatial-scales larger than 300-400 km, all parameteri-409

zations increase the kinetic energy to approximately the same level as the high-resolution410

simulation, therefore implying a more efficient backscatter or inverse energy cascade. The411

FCNN parameterization increases the kinetic energy to above that of the high-resolution412

model. At length-scales smaller than 300 km, while all parameterizations increase the413

kinetic energy, it remains lower than that of the high-resolution simulation, likely due414

to viscosity.415

In addition to the global mean kinetic energy, we consider the impact of the pa-416

rameterizations on the statistics and extremes in kinetic energy. In the three represen-417

tative regions selected (Fig. 3C), the high-resolution probability density function (PDF)418

has more probability in the tails compared to the 30 km model without parameteriza-419

tion (Fig. 3D-F). The effect of all parameterizations is to increase the probability in the420

tails, with little shift in the position of the peak. Therefore, the primary effect of the pa-421

rameterizations is increasing the frequency of extreme kinetic energy values, as opposed422

to solely increasing the mean kinetic energy. In regions 1 and 2 (Fig. 3D-E), the FCNN423

is the best performing, with the kinetic energy PDF of the FCNN parameterization al-424

most indistinguishable from the high-resolution model. AZ17 and the RVM expressions425

are almost indistinguishable from each other. However, in region 3 (Fig. 3F), all three426

parameterizations cause too much probability to be redistributed in the tails, as evident427

by the peaks of the RVM, AZ17, and FCNN kinetic energy PDFs all being below the high-428

resolution peak.429

5 Summary430

Machine learning algorithms can facilitate the discovery of physical processes, em-431

bedded within data from high-resolution simulations or observations. However, physi-432

cal intuition remains critical to explain the physics discovered by these algorithms. We433

have introduced the data-driven equation discovery method of Zhang and Lin (2018),434

namely the RVM algorithm, for ocean eddy parameterizations, rather than for discov-435

ering fundamental equations of motions already known (Rudy et al., 2017). The math-436

ematical expressions discovered by the RVM algorithm show that eddy momentum pa-437

rameterizations should include up-gradient momentum fluxes and potentially a trans-438

fer between potential energy and kinetic energy. In addition, the RVM revealed that eddy439

temperature fluxes can act on vertical gradients of horizontal momentum with a mag-440

nitude that depends on the velocity gradient, and that eddy energy advection accounts441

for half of the time tendency of eddy kinetic energy. A CNN, constrained with physi-442

cal conservation laws, appears to be an excellent representation of the eddy momentum443

forcing, leading to vastly improved coarser-resolution simulations which, under certain444

metrics, are indistinguishable from the high-resolution target, confirming results from445

Bolton and Zanna (2019). Yet, the reasons for the success of the CNN parameterization446

are difficult to extract. All parameterizations presented here have been shown to gen-447

eralize well to other regimes (e.g., dynamical regions, Reynolds numbers or resolution;448

Pope, 1975; Mana & Zanna, 2014; Anstey & Zanna, 2017; Holm & Wingate, 2005; Bolton449

& Zanna, 2019). Unfortunately, the parameterizations, presented here are also subject450

to tuning when implemented in an ocean models, as all parameterizations in use in cur-451

rent climate models are. The parameterizations, when implemented in a very idealized452

model, did not vastly improved the mean state (SI, Figs. S10-11) , but tests in more com-453
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plex models have showed that they have the ability to do so (Zanna et al., 2017). Here,454

the RVM (and the physics-based) expression, which performs well offline, does not show455

as good performance as the FCNN online due to numerical instabilities developing dur-456

ing the implementation. This result suggests that the complexity of a deep neural net-457

work may be more numerically stable compared to implementing a closed-form equation458

(Rasp et al., 2018), yet it is subject to heavy tuning (Brenowitz & Bretherton, 2019).459

However, we cannot rule out that improving the RVM expression by adding more func-460

tions, or by adding memory or stochasticity, which have been shown to drastically im-461

prove stability (Zanna et al., 2017) or finally by coupling the momentum parametriza-462

tion to an eddy energy equation (Jansen & Held, 2014).463

While the implementation of eddy forcing remains to be properly tested in more464

complex models, our results suggest that progress can be made using ML for physics dis-465

covery and interpretable parameterizations, which are more computationally efficient than466

running high-resolution simulations (Fig. S12). We hope that this manuscript provide467

a new road map for data-driven parameterizations to be developed, tested, interpreted,468

and implemented in ocean climate models in the future. A new strategy, which combines469

the interpretability of equation discovery with the predictive skill of complex neural net-470

works, could be an effective approach to improving ocean models, and perhaps climate471

models in general.472
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