
Aquatic vegetation provides a variety of
ecosystem services, including the protection
of shorelines from storms and erosion.
Shoreline vegetation slows down wave motion
and keeps sediments from being kicked up,
such that the erosion due to wave impact can
be reduced. However, the benefit of
vegetation has not been incorporated into
coastal management, because a universal
physical model of wave damping over aquatic
vegetation has not been developed.

The project will develop such a model to
characterize the wave energy dissipation
based on the flexibility and geometry of the
vegetation. Using the model, costal engineers
and scientists will be able to estimate how
much the wave impact diminishes.
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Two dimensionless parameters govern the blade motion in waves
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The impact of reconfiguration of the blades is
addressed through the effective blade length,
𝑙𝑒 , which is the length of a rigid, vertical blade
that generates the same drag as the flexible
blade of length 𝑙.

 Verify (modify) existing scaling laws for
individual strap-like blades
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 Extend the scaling laws to predict wave
damping

 Consider wave-current conditions and 
vegetation of more complex morphology

Figure 1. Zostera marina blades under current. 

Photo taken by Dr. Eduardo Infantes Oanes. 
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METHODS and MATERIALS

Figure 2. Range of motion of individual model 

blades becomes wider as 𝐶𝑎𝑤𝐿 increases.

𝑪𝒂𝒘𝑳 increasing

LDPE Blade
Wave period T = 0.5 – 2s
Wave amplitude A = 0.5 – 5cm 
𝑪𝒂𝒘 = 𝟎. 𝟐 𝒕𝒐 𝟏 × 𝟏𝟎𝟒

𝑳 = 𝟎. 𝟓 𝒕𝒐 𝟒𝟓

1. Materials and Wave Parameters
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2. Experimental setup for drag force measurement

3. Experimental setup for wave damping measurement
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RESULTS and DISCUSSION

1. Drag force on individual blades

 Verify (modify) existing scaling laws
for individual strap-like blades
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2. Extend the scaling laws to predict wave decay coefficient, 𝑲𝑫
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There are three regimes of the wave-
vegetation interaction.

Regime 1: Stiff blade, 𝑪𝒂𝒘 < 𝟏,
𝒍𝒆

𝒍
≈ 𝟏

Regime 2: Short waves, flexible blade, 
𝑪𝒂𝒘 > 𝟏, 𝑳 ~ 𝟏
Regime 3: Long waves, flexible blade, 
𝑪𝒂𝒘 > 𝟏, 𝑳 < 𝟏 (not included in 
experiments)

Linear-fit of 𝐾𝐷 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 versus 

𝐾𝐷 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 yields

𝐾𝐷 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 0.83 ± 0.04𝐾𝐷 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
with a correlation coefficient of 𝑟2 = 0.97

Overall, the predicted 𝐾𝐷 has good 

agreement with the measurement (error < 

20%).

4. Future work 

Extend the proposed model to combined wave-current conditions and to vegetation of more complex
morphology.

3. Other findings

• Wave-induced current makes blades in meadow more pronated than blades in isolate; 
however, it does not play an important role in wave damping.

• Wave damping is similar for regular and random shoot arrangement in meadow.


