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Supplementary Text S1: P-to-Rayleigh amplitude ratios and icequake depth 12 

 13 

The P-to-Rayleigh-wave amplitude ratios are calculated by taking the maximum amplitude 14 

within specified windows, as shown for the observed icequake example in Figure S1a. Figure 15 

S1c and Figure S1d show the P-to-Rayleigh-wave phase arrivals for one station ~450 m from 16 

the source. The particle motion of the inferred Rayleigh-wave is elliptical, providing us with 17 

confidence that it is indeed a surface wave arrival. P-wave and Rayleigh-wave windows are 18 

of fixed duration for all events, as in Figure S1. The uncertainty in the observed P-to-19 

Rayleigh-wave amplitude ratios is defined as the standard deviation of the noise signal 20 

observed in a window 1s prior to the P-phase arrivals. Uncertainty in the epicentral distances 21 

given in Figure 1 are defined as the epicentral uncertainty output from NonLinLoc (Lomax & 22 

Virieux, 2000). The same method of obtaining P-to-Rayleigh-wave amplitudes is employed 23 

for the 2D finite difference modelled seismograms for various source depths from E3D 24 

(Larsen et al., 2001). The model is run for various source depths from 10 m to 120 m below 25 
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surface, with the 2D interpolated field from the model runs (see Figure 2a) used to derive the 26 

likely crevasse depth from each receiver observation. These individual receiver observations 27 

are then combined for each icequake, to provide an overall estimate of the icequake depth. 28 

We independently verify crevasse depth by using S-P delay-times from receivers 29 

approximately directly above the crevasse. For the event in Figure S1, the S-P delay-time 30 

observed at a receiver approximately above the event is 0.014 s. With the velocity model 31 

shown in Figure 1b, this corresponds to an icequake depth of ~25 m below surface, compared 32 

to a depth of 29±12 m found using the P-to-Rayleigh amplitude ratios. We are therefore 33 

confident that the P-to-Rayleigh-wave amplitude ratios provide a good estimation of icequake 34 

depth. 35 

 36 

 37 
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 38 

Supplementary Figure S1 – Example of observed waveforms at seismometers from a crevasse 39 

icequake at 14:33:52 on 28th June 2014. a) Record section showing the P-to-Rayleigh-wave 40 

arrivals. The red and yellow regions show the windows used to calculate the P-to-Rayleigh 41 

amplitude ratios. b) Waveforms for an arrival 43 m from the event epicentre. P and S phase 42 

arrivals are indicated by the red and blue lines, respectively. c) Waveforms for an arrival 450 43 

m from the event epicentre. d) Particle motions associated with the P and Rayleigh phase 44 

arrivals in (c). Red is the P-wave phase and yellow is the Rayleigh wave phase. 45 

 46 

 47 
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Supplementary Text S2: Derivation of maximum-dry-crevasse-depth 51 

 52 

The maximum depth to which a crevasse can propagate without hydrofracture is governed by 53 

the tensile stress regime near the glacier surface. If the ice is under tensile stress then a 54 

crevasse can form. However, as the depth through the ice increases, the ice overburden 55 

pressure increases and acts to close the crevasse and prevent further fracture. At a certain 56 

depth, the maximum-dry-crevasse-depth, d*, the maximum principal tensile stress acting to 57 

open crevasses becomes equal to the compressive ice overburden pressure. Below this depth, 58 

the ice overburden pressure is sufficiently high to prevent opening. This crevassing model is 59 

commonly referred to as the zero stress model (Colgan et al., 2016), and has been proven 60 

effective in predicting real crevasse depths (Mottram & Benn, 2009). 61 

 62 

The above statement assumes that the ice will open under any net tensile stress, which is not 63 

strictly correct since the ice also has a tensile failure strength, that we do not account for here. 64 

Accounting for the tensile strength of the ice would simply make d* shallower and hence 65 

increase the depth difference between icequake depths and the maximum-dry-crevasse-depth 66 

equipotential, therefore increasing the likelihood of icequakes observed being associated with 67 

hydrofracture. We also assume that there is a shallow firn layer at the glacier surface, of 68 

lower density than the underlying ice. This lower-density layer acts to make the maximum-69 

dry-crevasse-depth deeper. We use the same local seismic refraction survey (Gudmundsson, 70 

1989) as used to constrain the seismic velocities in Figure 1b to constrain the density profile 71 

of this layer, making the assumption that the change in velocity in the firn-layer is dominated 72 

by density rather than the bulk and shear moduli. This simplified firn density correction is 73 

assumed adequate for the purposes of this study since the weight estimation of the firn layer 74 

is conservative, therefore resulting in an overestimate of the maximum-dry-crevasse-depth. 75 
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 76 

To find d*, one has to calculate the stress field near the glacier surface. This can be 77 

approximately obtained using the glacier surface velocity field. For a given point on the 78 

glacier, the velocity is defined by, 79 

𝑣!,######⃗ = &
𝑢$,% 	
𝑣$,%
𝑤$,%

*,											(3) 80 

where u, v and w are the velocities in the x, y and z directions, and i, j denotes a particular 81 

horizontal location within the velocity field. To obtain the velocity field for the glacier 82 

surface at Skeidararjökull, we use GPS location data from the seismometers shown in Figure 83 

2. The GPS data from the seismometers is more poorly constrained compared to dedicated 84 

dual-frequency GPS instruments, and is sampled only once per hour. Therefore, in order to 85 

reduce the GPS noise, we use a seven day moving average for the latitude, longitude and 86 

elevation data. We then calculate the average velocity over the ten day period of analysis. 87 

Even after applying this processing, data from only 7 stations are of sufficient quality to use. 88 

We then perform a two-dimensional, second-order interpolation for these velocity data points 89 

in order to obtain a horizontal velocity field for the network area. Due to only one station, 90 

SKR12, constraining the velocity field for the upper half of the network area, the 91 

interpolation scheme performs poorly outside the network, so we only analyse the velocity 92 

field approximately within the network, as shown in Figure 2 and Figure S2. 93 

 94 
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 95 

Figure S2 - The estimated uncertainty in the interpolated maximum surface velocity, 96 

maximum principal tensile stress and maximum-dry-crevasse-depth fields. (a) to (c) The 97 

lower, actual and upper uncertainty associated with the surface velocity field, respectively. 98 

(d) to (f) The lower, actual and upper uncertainty associated with the maximum principal 99 

stress field, respectively. (g) to (i) The lower, actual and upper uncertainty associated with 100 

the maximum-dry-crevasse-depth, respectively. 101 

 102 
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The velocity field can then be used to obtain the strain rate field for each point on the glacier 106 

surface. The second order strain rate tensor is given by, 107 

𝜺̇ = 1
𝜀&̇& 𝜀&̇' 𝜀&̇(
𝜀&̇' 𝜀'̇' 𝜀'̇(
𝜀&̇( 𝜀'̇( 𝜀(̇(

3 =

⎝

⎜
⎜
⎜
⎛

𝜕𝑢
𝜕𝑥

1
2 ;
𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥>

0

1
2 ;
𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥>

𝜕𝑣
𝜕𝑦

0

0 0
𝜕𝑤
𝜕𝑧⎠

⎟
⎟
⎟
⎞
.				(4) 108 

𝜀&̇( and 𝜀'̇(are taken to be zero, assuming no shear with depth, a realistic approximation near 109 

the glacier surface. If one also assumes that ice is incompressible, then 𝑡𝑟(𝜺̇) = 0. 𝜀(̇( can 110 

then be found, giving, 111 

𝜀(̇( =
𝜕𝑤
𝜕𝑧 = 	− ;

𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦>.							(5) 112 

 113 

To find the maximum-dry-crevasse-depth, we require the stress tensor. In order to calculate 114 

the stress tensor from the strain tensor, we need one final piece of information, the effective 115 

viscosity, 𝜂)**, for a given horizontal location. Since ice behaves as a non-linear fluid, 𝜂)** 116 

varies with the strain rate, 𝜺̇. The effective viscosity is defined as, 117 

𝜼𝒆𝒇𝒇 =
𝐵
2 M𝜺̇𝒆𝒇𝒇N

-
./-,					(6) 118 

where B is given by, 119 

𝐵 = 𝐴/
-
.,							(7) 120 

where the temperature-dependent rate factor 𝐴 = 5.6 × 10/-0	𝑃𝑎/1	𝑎/- and 𝑛 = 3, 121 

determined from laboratory studies (Glen, 1955; Nick et al., 2010). The effective strain rate, 122 

𝜺̇𝒆𝒇𝒇, is defined by, 123 

𝜺̇𝒆𝒇𝒇 = |𝜺̇| = W
1
2 	𝑡𝑟

(𝜺̇	. 𝜺̇)X

-
2
.						(8) 124 

 125 
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The net stress tensor, 𝝈, is then defined as the difference between the opening stress and the 126 

ice overburden stress tensor by, 127 

𝝈 = 𝝈𝒐𝒑𝒆𝒏𝒊𝒏𝒈 − 𝝈𝒐𝒗𝒆𝒓𝒃𝒖𝒓𝒅𝒆𝒏	,						(9) 128 

which can be written explicitly as, 129 

𝝈 = 	1
4𝜂𝑒𝑓𝑓𝜀𝑥𝑥,𝑖,𝑗 + 2𝜂𝑒𝑓𝑓𝜀𝑦𝑦 2𝜂𝑒𝑓𝑓𝜀𝑥𝑦 0

2𝜂𝑒𝑓𝑓𝜀𝑥𝑦 4𝜂𝑒𝑓𝑓𝜀𝑦𝑦 + 2𝜂𝑒𝑓𝑓𝜀𝑥𝑥 0
0 0 0

3 − 	𝜌𝑔𝑧𝑰	,					(10) 130 

where 𝜌 is the ice density, 𝑔 is the gravitational constant of acceleration and z is the depth 131 

below the ice surface. 𝜎=>).$.?,&( and 𝜎=>).$.?,'( are zero since we have assumed no vertical 132 

shear stress with depth and 𝜎=>).$.?,(( is zero, assuming that the ice is in hydrostatic 133 

equilibrium. At the maximum-dry-crevasse-depth is where the maximum principal opening 134 

stress equals the overburden stress, at which point z is the maximum-dry-crevasse-depth, 𝑑∗. 135 

Therefore, to find 𝑑∗ we need to find the maximum principal opening stress, 𝝈𝒐𝒑𝒆𝒏𝒊𝒏𝒈∗ . To do 136 

this, we rotate 𝝈 to maximise the tensile stress, 137 

𝝈𝒐𝒑𝒆𝒏𝒊𝒏𝒈∗ = 𝑺	𝝈𝒐𝒑𝒆𝒏𝒊𝒏𝒈	𝑺𝑻,								(11) 138 

where S is a rotation matrix comprising the eigenvectors of 𝝈𝒐𝒑𝒆𝒏𝒊𝒏𝒈. The maximum-dry-139 

crevasse-depth at a given point on the glacier surface, 𝑑∗, is then given by (Nick et al., 2010), 140 

𝑑∗ =
𝑚𝑎𝑥M𝝈𝒐𝒑𝒆𝒏𝒊𝒏𝒈∗ N

𝜌𝑔 .					(12) 141 

 142 

The uncertainty associated with the maximum-dry-crevasse-depth field is proportional to the 143 

uncertainty in the velocity field. To estimate the uncertainty, we calculate the standard 144 

deviation in the average velocity data and randomly perturb the velocity data used to 145 

calculate the velocity field by gaussian distributions about the average observed velocities, 146 

with the standard deviations used to constrain the width of these distributions. These gaussian 147 

distributions are sampled 1000 times. We then calculate the strain, stress, and crevasse depth 148 
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fields from each perturbed velocity field, and define the lower and upper uncertainties for 149 

each field as the minimum and maximum values, respectively, for each point spatially within 150 

the fields. This data is shown by the red dashed lines in Figure 2d, and all the fields and their 151 

associated uncertainties are shown in Figure S2. 152 

 153 
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