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Motivation & Main Achievements e It the measurement v(t,,11) is found to lieina set = € R, El Nifio Southern Oscillation
and the state immediately prior to ¢, 41 is p, _, the state
e Sequential data assimilation (a.k.a. filtering) is a pt,., immediately after the measurement is given by
predictor—corrector approach for state estimation and E(=)p; E(Z)
.« e . ptn—|—1
prediction of observables of dynamical systems. Among Pl = T S EE)
many applications, it is an integral part of weather and (E(=)py,,, E=)
climate forecasting systems'. This projection step is analogous to the Bayesian update
e Theoretical “gold standard” for filtering is computation of formula in classical statistics. —_—
the Bayesian posterior distribution, given the full history NASA/[PL/PODAAC, NOAA NOAA
of past observations of the system. However, this is Data-Driven Approximation e We apply QMDA to data assimilation of ENSO in the

oftentimes intractable, necessitating the use of ad hoc

. .. : Community Climate System Model Version 4 (CCSM4)3.
approximations, such as Gaussianity assumptions.

e The scheme is implemented by finite-rank approximation

o We br new method?? to address these i (i.e., matrix representation) of all operators involved in a e Training data is 1200 years of monthly-averaged
) 1© PrOpOSE d NEW METIOTT 10 GACTESS TRESE 155HES, basis of L*(j) learned from training data using kernel Indo-Pacific SST fields at 1° resolution (d ~ 10* gridpoints).
inspired from a conceptual similarity between data : s . . o .
assimilation and quantum mechanics. Namely, both are algorithms>®. e Verification data is the Nifio 3.4 index over the last 100
inherently statistical theories, alternating between e Given time-ordered training data F'(z;) taken through a years of the control integration.
evolutionary dynamics between measurements, and map F : M — R? on a dynamical trajectory x;, = ®'(xp), e Assimilated observables (/) are the Nifio 1+2, Nifio 3,
projective dynamics during measurements, we compute eigenfunctions ¢ () of a self-adjoint kernel Nifio 3.4, and Nifio 4 indices, observed monthly.

integral operator K : L*(p) — L*(p),

Probability density P; for Nifio 3.4 index
Kf@)= [ KF@), )6 du(o) -

Lead time 7= 0 months

Data assimilation

Pt 4t 2

Pt /—> correction approximating integrals with respect to i by ergodic time 3.
- N-1 £

prediction o averages, 1.c., fM g(l’) d,u(m) ~ ano g(l‘n)/N ‘.,

e Operators A on L*(;) are then represented by matrices,

observation true signal 1 N1 ?
Aij = (i AGj) () ® > ilzn) Adj(zn). £
@ @ . ®
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b bt The Koopman operator, in particular, is approximated by L AN |
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Quantum mechanics the shift operator for time series, UY="¢(2) = ¢j(2n+q)- 0

) e Given the corresponding values v(t,) = h(zy) of the 3 A

Plas l projective update assimilated observable, we also approximate the spectral ;
o /_> measure E by a discrete measure constructed through a : .
unitary evolution py,,, 11 histogram of the values of v(¢,,). S oo ot orby oror orvs oroe orr oo oo oo o o

Lead time 7 =9 months

observation Comparison with Classical Methods £ LY
¢ ¢ = e By expressing data assimilation in terms of intrinsically =] :
tn tn+1 linear operators for the dynamics (U?), state (p;), and S0 001 100 00 00 1005 005 007 008 tom om0 o1 oz
measurement (7'), QMDA avoids ad hoc approximations e s ement e
e The quantum mechanical data assimilation (QMDA) such as Gaussianity assumptions and diffusion 5 -
framework is realized by mapping the assimilated regularization. 3
dynamical system into a quantum system using Koopman e The method outputs full probability distributions (/%) in a ’ )
operator techniques. nonparametric manner, as opposed to low-order moments o oz o owe oS o G ov oo oV D o oo
¢ A data-driven formulation is also constructed using kernel (e.g., mean, covariance). The availability of F; is useful for — true signal
methods for machine learning, enabling data assimilation risk assessment and uncertainty quantification. . . . . .
without prior knowledge of the equations of motion. e Through basis projection, the cost of operator e Starting from an uninformative (climatogological)

distribution, the Nifio 3.4 distribution F; output by QMDA

representation is decoupled from the ambient data space . .
is seen to track the true signal.

dimension and /or number of training samples.

QMDA Framework e Unlike classical spectral approximation techniques, QMDA * In addition to point forecasts (e.g., through the mean), /%

preserves sign and normalization of predicted probabilities. provides meaningful uncertainty quantification.

e We consider a dynamical system @' : M — M on a
(unknown) state space M, preserving a probability
measure 4 (climatology). The system is observed at an
interval At through a function o : M — R.

e E]l Nifio/ La Nifa initiation is oftentimes captured several
months in advance. This suggests skillful seasonal
probabilistic ENSO prediction.

e Rigorous convergence results? are obtained in a limit of
infinite training data using techniques from linear operator
theory in conjunction with spectral consistency results for

L. e kernel algorithms”.
e The goal is to infer the probability distribution for future

values of v(t) = h(®(z)), given past measurements v(t,), Future Directions
tn = n Al Periodic Dynamical System

e Associated with the dynamical system is the Hilbert space

of observables (functions of the state) L?(1) and a group of o Dynamical flow is a rotation on the circle M = S,
unitary Koopman evolution operators* Ol(0) = 0+ vt mod 2r. e Forecasting of ENSO impacts on the climate (e.g.,

e Extensions to high-dimensional observation functions
using multitask learning techniques’.

. : . : : recipitation, sea ice) and socio-environmental systems.
U L (p) — L (p), Ulf(x) = f(dH(z)). e Assimilated observable is a trigonometric function, P p . ) V, , Y
h(6) = cos 0 e Applications to closure and stochastic subgrid-scale
e Following the quantum mechanical formalism, we ' modeling of unresolved dynamics.
represent the statistical state of the data assimilation system Measurement probability for 1,(6) = cos §
at time ¢ by a density operator p; on L*(y), such that @ | | - | References
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operator-valued measure I/, which generalizes the notion

. , o — true signal  * observations
of a spectral measure in time series analysis, viz.

o Between measurements, ¢, < t < ¢, 1, the state p; evolves e When the first measurement is made, F collapses to a
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() C R is then given by
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