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Abstract16

Recent proceedings in the radiation belt studies have proposed new requirements for nu-17

merical methods to solve the kinetic equations involved. In this article, we present a nu-18

merical solver that can solve the general form of radiation belt Fokker-Planck equation19

and Boltzmann equation in arbitrarily provided coordinate systems, and with user-specified20

boundary geometry and boundary conditions. The solver is based upon the mathemat-21

ical theory of stochastic differential equations, whose computational accuracy and effi-22

ciency are greatly enhanced by specially designed adaptive algorithms and variance re-23

duction technique. The versatility and robustness of the solver is exhibited in three ex-24

ample problems. The solver applies to a wide spectrum of radiation belt modeling prob-25

lems, including the ones featuring nonlinear wave-particle interactions.26

1 Introduction27

A widely adopted method to study the dynamics of radiation belts is to solve a ki-28

netic equation describing the evolution of particle phase space density. In quasi-linear29

theory, this kinetic equation is usually a Fokker-Planck equation that takes the general30

covariant form (Schulz, 1991)31

∂f

∂t
=

1

G

∂

∂Qµ

(
GDµν ∂f

∂Qν

)
− 1

G

∂

∂Qµ
(Ghµf) + Sf + v, (1)32

where f is the phase-averaged phase space density, G = det( ∂J
µ

∂Qν ) is the Jacobian de-33

terminant for the transformation from canonical action variables Jµ (µ = 1, 2, 3) to the34

generalized coordinates Qµ, and Dµν , hµ, S and v are coefficients of the equation. Sum-35

mation on repeated Greek indices is implied throughout this paper. In different radia-36

tion belts, the number of terms emerging on the right-hand side of Eq. (1) and their re-37

spective physical backgrounds may be different. For the Earth’s outer radiation belt, the38

second and the fourth terms are usually missing; the first term represents diffusion caused39

by wave-particle interactions, and the third term is often a loss characterized by the par-40

ticle lifetime (e.g., W. Li & Hudson, 2019, and the reference therein). In the low-altitude41

inner radiation belt where wave-particle interactions are not as significant, the first and42

the second terms are often provided by the diffusion and dynamic friction caused by inter-43

particle Coulomb collisions (e.g., Selesnick, 2012), and the fourth term may be a source44

from cosmic ray albedo neutron decay (CRAND) (e.g., Selesnick, 2015; X. Li et al., 2017).45

For radiation belts of the gas giants, all terms could be present (e.g., Horne et al., 2008;46

Lorenzato et al., 2012). The first two terms may be attributable to both wave-particle47
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interactions and inter-particle collisions, and in addition, synchrotron radiation, which48

is negligible in Earth’s radiation belts, bleeds energy for the ultra-relativistic electrons49

and thus also contributes to the second term (e.g., Bolton et al., 2002, 2004). The third50

term could represent the moon-sweeping loss, and the fourth term may come from moon51

volcanic activities as a plasma source (e.g., Nénon et al., 2017).52

The left-hand side of Eq. (1) describes the dynamical trajectory of a phase space53

volume element according to Liouville’s theorem (e.g., Goldstein, 1980, Chap. 9), and54

the absence of spatial derivatives there is due to the vanishing Poisson bracket [f,H] for55

the phase-averaged f and the phase-independent particle Hamiltonian H. In some cir-56

cumstances, it is more desirable to discern the dependence of f on certain phases φι (but57

which remains averaged over other phases), then after expanding the Poisson bracket,58

Eq. (1) becomes59

∂f

∂t
+ φ̇ι

∂f

∂φι
=

1

G

∂

∂Qµ

(
GDµν ∂f

∂Qν

)
− 1

G

∂

∂Qµ
(Ghµf) + Sf + v, (2)60

where a dot over φι indicates its time derivative, and the equation is now a Boltzmann61

equation in the context of radiation belts. The most common situation is perhaps the62

dependence of f on the drift phase, which in the Earth’s outer radiation belt may be caused63

by the wave activity dependence on magnetic local time (e.g., Shprits et al., 2009), and64

in the inner belt by the longitudinal variation of drift shell altitude (e.g., Tu et al., 2010;65

Xiang et al., 2019).66

Various numerical models have been built to solve a specific form of either Eq. (1)67

or Eq. (2) (e.g., Beutier et al., 1995; Selesnick et al., 2003; Tao et al., 2008; Albert et al.,68

2009; Subbotin et al., 2010; Tu et al., 2013; Zheng et al., 2014; Wang et al., 2017; Xi-69

ang et al., 2020, to name a few), and each of them is built with a hard-coded choice of70

coordinates and roughly fixed number of equation terms; therefore, each model is only71

applicable to a specific set of problems. Yet for some compelling problems there is not72

a numerical model known to the authors; for example, a drift-phase resolved inner ra-73

diation belt model with fully incorporated diffusion, advection and source terms may be74

the key to understanding the effects of lightning-generated and man-made very-low-frequency75

waves to the electron precipitation (e.g., Rodger et al., 2003; Sauvaud et al., 2008), or76

to assessing the relative significance of Earthward diffusion versus CRAND as the pos-77

sible electron source (e.g., Cunningham et al., 2018; Xiang et al., 2020). It is the pur-78

pose of this article to present a numerical code, named UBER (for “universal Boltzmann79
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equation solver”), that solves Eq. (1) and Eq. (2) in an arbitrarily user-specified coor-80

dinate system up to three dimensions, with great freedom in specifying boundary geom-81

etry and boundary conditions, and with various combinations of equation terms. There-82

fore, it is expected that the solver can be applied to a wide spectrum of radiation belt83

modeling problems. More importantly, it has the potential to asymptotically solve the84

nonlinear wave-particle interaction kinetic equation formulated in Artemyev et al. (2018),85

and thereby provides a viable means to incorporate nonlinear effects into global radia-86

tion belt modeling.87

The underlying mathematical theory of the solver is stochastic differential equa-88

tion (SDE) theory. The SDE method had been utilized by Tao et al. (2008), Selesnick89

et al. (2013) and Zheng et al. (2014) in their modeling of the radiation belts. The method90

is grid-free, and enjoys unparalleled advantages in dealing with cross diffusion compo-91

nents and complicated boundary geometry (e.g., Zheng et al., 2016), but is meanwhile92

notorious for low efficiency ascribed to its Monte Carlo nature. In this article, we also93

describe specially designed numerical techniques that have enhanced the computational94

speed of the SDE method by an order of magnitude, thus making the solver much af-95

fordable to large-scale simulations. Three example problems with distinct physical back-96

grounds are provided in this article to demonstrate the abilities and versatility of the solver.97

2 Mathematical Theory98

The kinetic equations (1) and (2) are parabolic partial differential equations (PDEs).99

Written in the Kolmogorov backward form (see below), a parabolic PDE corresponds to100

a multi-dimensional SDE that describes the motion of an Itô stochastic process whose101

functional expectation obeys the PDE; and the PDE can then be solved by calculating102

path integrals of the corresponding stochastic process (e.g., Freidlin, 1985; Øksendal, 1998).103

Let us consider the following partial differential problem composed of a Kolmogorov104

backward equation and a set of initial and boundary conditions:105

∂tf =
1

2
aµν(t,x)∂µ∂νf + bµ(t,x)∂µf + c(t,x)f + u(t,x), (3)106

f(0,x) = g0(x), x ∈ Ω̄, (4)107

f(t,x) = g1(t,x), x ∈ ∂1Ω, (5)108

γ̂(x) · ∇f − λ(t,x)f = 0, x ∈ ∂Ω \ ∂1Ω, (6)109
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where ∂t and ∂µ are shorthands for the partial differentials with respect to t and the µ-110

th coordinate, respectively. In Eqs. (4)-(6), Ω̄ denotes the closure of the domain and ∂Ω111

its boundary. In particular, ∂1Ω are the boundary pieces of the first type (Dirichlet) bound-112

ary condition, and ∂Ω\∂1Ω indicate the boundary pieces excluding those in ∂1Ω, which113

are of the second (Neumann, λ ≡ 0) or the third type (Robin, λ 6= 0) boundary con-114

ditions. The unit vector γ̂ points into Ω̄ and is not tangent to the local boundary.115

The mathematical theory of SDEs establishes a relation between Eqs. (3)-(6) and116

the Itô stochastic process, whose spatial positions are denoted by the random variable117

Xs in Ω, that obeys the reflected SDE118

dXs = b(t− s,Xs)ds+ σ(t− s,Xs) · dWs + γ̂(Xs)dks, (7)119

where the dot product on the right-hand side is between a rank-2 tensor and a vector,120

and the parameter s runs from 0 to t, so that the stochastic process retrogrades in time121

from t to 0. The first term on the right-hand side describes the ballistic part of its mo-122

tion. The second term describes the stochastic part, with the coefficient tensor σ sat-123

isfying σ·σT = a (whose components are aµν). Note that this condition does not uniquely124

determine σ, but all satisfying σ’s are equivalent (Levi’s theorem, Freidlin, 1985; Zheng125

et al., 2014). Ws is a vector Wiener process of the same dimensions as Xs, with each126

dimension an independent Gaussian stochastic variable that has zero mean and variance127

s. The third term describes reflection of the stochastic process in the direction given by128

γ̂ on the boundary ∂Ω\∂1Ω, and ks is a monotonic stochastic variable that only increases129

when the stochastic process is on that boundary to force Xs to stay in Ω̄. ks can thus130

be considered as a measure of the time that the stochastic process spent on ∂Ω\∂1Ω,131

and hence has the name local time. The Itô process stops either in Ω̄ when s = t, or132

on ∂1Ω at s = τ < t.133

A formal solution of the problem in Eqs. (3)-(6) is given by the Feynman-Kac for-134

mula (e.g., Kac, 1949; Øksendal, 1998; Klebaner, 2005)135

f(t,x) = E
[
F t,x[Xs]

]
, (8)136
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in which E is the expectation operator, and F t,x[Xs] is a functional of the stochastic path137

Xs started from t and x, and has the expression138

F t,x[Xs] = Iτ≥t g0(Xt) exp

[ˆ t

0

c(t− s,Xs)ds−
ˆ t

0

λ(t− s,Xs)dks

]
139

+Iτ<t g1(t− τ,Xτ ) exp

[ˆ τ

0

c(t− s,Xs)ds−
ˆ τ

0

λ(t− s,Xs)dks

]
140

+

ˆ t∧τ

0

u(t− s,Xs) exp

[ ˆ s

0

c(t− r,Xr)dr −
ˆ s

0

λ(t− r,Xr)dkr

]
ds, (9)141

where the symbol Iτ≥t is equal to one when τ ≥ t, which means the stochastic process142

has stopped in Ω̄ before it had a chance to reach ∂1Ω, and zero otherwise; and t∧τ means143

the smaller between the two. Physically, the functional F t,x[Xs] is a propagator of con-144

tribution carried along the stochastic path from either the initial condition or the first145

type boundary condition to the point of solution, and the exponential functions indicate146

how this contribution enhances or decays along this path.147

To formally solve the Fokker-Planck equation (1) by the Feynman-Kac formula (8),148

it remains to transform the equation together with its proper initial and boundary con-149

ditions into the form of Eqs. (3)-(6). To this end, directly expanding Eq. (1) and collect-150

ing terms with the same differentiation order yields its Kolmogorov backward form151

∂tf = Dµν∂µ∂νf+[(∂νD
µν +Dµν∂ν lnG)− hµ] ∂µf+[S − (∂µh

µ + hµ∂µ lnG)] f+v. (10)152

Comparing Eq. (10) with Eq. (3), we thus have the correspondences of coefficients that:153 

a = 2D,

b = ∇ ·D− h,

c = S −∇ · h,

u = v,

(11)154

where in curvilinear coordinates, the divergence operator on a tensor field Γ is155

∇ · Γ = ∂µΓµ... + Γµ...∂µ lnG, (12)156

in which the dots stand for all other indices irrelevant to the operation, and the terms157

∂µ lnG come from summation of the Christoffel symbols in a covariant derivative (e.g.,158

Mathews & Walker, 1970, Chap. 15). It is worth remarking that −h appears in the ex-159

pression for b, so that the Itô process travels against the advection velocity. This is in-160

deed the case since it is time-backwards. Also, from the expression for c, divergence of161

the advection serves as a loss of phase space density.162
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Initial and boundary conditions to Eq. (1) are transformed as follows. For the ini-163

tial condition and the first type boundary condition, values of f(t,x) are specified just164

as in Eqs. (4) and (5). For a flux boundary condition of the form Φ = g2(t,x)f , we note165

that the outward flux Φ across a boundary is given by (n̂·D·∇f−n̂·hf), with n̂ the166

unit inward normal vector of ∂Ω\∂1Ω. Therefore, the corresponding boundary condi-167

tion is168

n̂ ·D · ∇f − (n̂ · h+ g2)f = 0. (13)169

Comparing Eq. (13) with Eq. (6), we identify that:170 
γ̂ =

n̂ ·D
|n̂ ·D|

,

λ =
n̂ · h+ g2
|n̂ ·D|

.
(14)171

Although the SDE (7) does not prevent σ, and hence D, from being zero, the expres-172

sions in Eqs. (14) do become singular for vanishing D on ∂Ω\∂1Ω. In the region where173

D vanishes, Eq. (3) is no longer parabolic but degenerates to an advection equation (a174

first order PDE), for which imposing a Neumann or Robin boundary condition is over-175

determinant. In this case, we invoke on the boundary minimal diffusion in the eigen-direction176

of n̂ so that γ̂ = n̂, and let g2 ≡ −n̂ · h so that λ = 0, which means the advective177

flow is free to cross the boundary. The situation that D is finite but |n̂·D| vanishes is178

considered pathological to our problem.179

Up to this point, we have transformed the Fokker-Planck equation (1) and its ini-180

tial and boundary conditions to the problem in Eqs. (3)-(6), and gathered all expressions181

in Eqs. (11) and (14) for the constructing components of the SDE (7) as well as the func-182

tional (9). In order to solve the Boltzmann equation (2), it suffices for us to just trans-183

form the equation into the form of Eq. (1). To this end, we enlarge the phase space by184

concatenating the coordinates Qµ and φι, so that xξ = {Qµ, φι}, and introduce the new185

coefficients D̃ξη, h̃ξ, S̃ and ṽ that satisfy the following conditions:186 

D̃µν = Dµν , D̃ξι = 0,

h̃ξ = {hµ, φ̇ι},

S̃ = S + ∂ιφ̇
ι,

ṽ = v.

(15)187

It can be verified that Eq. (1) in the xξ coordinates with the new coefficients given by188

(15) transforms into Eq. (2) after replacing xξ by Qµ and φι. The transformation (15)189

essentially treats φι as new dimensions of the stochastic motion, except that the stochas-190
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Table 1. User input items to the UBER code

Input items Comments

∂µ lnG Vector field to specify the coordinate system

Dµν , hµ, S, v Coefficients to define the PDE

g0(xµ) Function to provide the initial condition

ψ(t, xµ) = 0 Equation to define a boundary piece’s geometry

g∗(t, x
µ) Function to provide the boundary condition,

∗ = 1 or 2 depending on the type of the boundary

n̂(xµ) Inward unit normal vector only for ∂Ω \ ∂1Ω

A set of the boundary-related items for each piece of boundary.

tic part of the motion in these dimensions is identically zero. A new type of boundary191

condition might emerge for problems involving Eq. (2), that is the periodic boundary con-192

dition for the phases φι. From the viewpoint of stochastic motion, though, such period-193

icity is not really a boundary but rather a topology of Ω. The treatment of periodic bound-194

ary condition will be exemplified in the third problem in Section 4 below.195

To summarize this section, the above mathematical theory allows us to fully de-196

fine a PDE problem involving Eq. (1) or Eq. (2) in an arbitrary coordinate system given197

the input functions and equations as listed in Table 1, which can be either analytical or198

numerical in the UBER code. The equation terms may be freely turned off by setting199

their corresponding coefficients zero. The number of boundary pieces is totally up to choice,200

which can even be zero to put the boundary at infinity. The boundary geometry may201

be time-variable for boundary pieces in ∂1Ω, but must be fixed for those in ∂Ω \ ∂1Ω.202

Solutions of this problem are obtained once we find a way to evaluate the functional in203

Eq. (9) for a realization of a stochastic path, and to estimate the expectation of the func-204

tional. These numerical techniques are the subject of the next section.205

3 Numerical Techniques206

We give an outline of the algorithms used by the UBER code in this section, with207

emphasis on the techniques that improve both its accuracy and efficiency. Lower-level208

numerical techniques, such as the generation of pseudo-random variables, linear algebraic209
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operations, and parallelized computation, are based on the works presented in Zheng (2015).210

The general idea for numerically implementing the SDE method is as follows: (i) for a211

given spatiotemporal position (t,x) where an equation solution is wanted, a number of212

stochastic paths starting from this common position are simulated; (ii) for each stochas-213

tic path, its functional value is evaluated by the path integrals as in Eq. (9); and (iii) from214

these sampled functional values, their expectation is estimated, and this gives the solu-215

tion at (t,x). Therefore, the SDE method is essentially a Monte Carlo method. It does216

not rely on a computational grid, and is able to solve the problem locally. However, in217

many occasions it is still worth obtaining global solutions on a grid, so that the solutions218

at time stamp Ti may be used as the initial condition for the solutions at Ti+1, analo-219

gous to the idea of the layer methods (e.g., Tao et al., 2009). In this way, the stochas-220

tic processes need only to be simulated for a short duration of t = Ti+1−Ti to obtain221

the new solutions, for which the calculation of functional expectation would converge much222

faster than those simulated for the full length t = Ti+1. The only operation on this grid223

would be interpolation and possibly extrapolation, therefore unlike in the layer meth-224

ods, the grid needs not to be uniform or even regular.225

Integration of the SDE (7) employs the Euler-Maruyama scheme that is order 1226

for weak convergence problems such as ours, meaning that when only the statistical dis-227

tribution of stochastic paths matters but not the individual path, the expectation of the228

schematic error is proportional to the first power of the time stepsize (Kloeden & Platen,229

1992). To further reduce the schematic error, an adaptive time stepsize is used in UBER.230

It can be shown that (e.g., Zheng, 2015) the root-mean-square (RMS) distance an Itô231

stochastic process travels in infinitesimal time ds is232

dX̄s =
√

tr(a)ds. (16)233

Numerically, the first order contribution from b∆s cannot be neglected due to the finite234

∆s. Therefore, we prescribe a desired RMS spatial stepsize ∆X̄s, which is sufficiently235

small compared to the size of Ω and any scale length of the equation coefficients, and236

then choose the smaller ∆s inferred from either Eq. (16) or ∆X̄s = b∆s at every step237

of integration as the adaptive stepsize. This scheme evidently reduces to a simple adap-238

tive Euler scheme for integrating ordinary differential equations when a approaches zero.239

Oblique reflection of the stochastic process on ∂Ω\∂1Ω and the calculation of dks240

follow the projected-half-space algorithm presented in Gobet (2001), which is also or-241
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der 1 in the weak convergence sense. The idea is that, for an exact half-space boundary,242

ks can be proven to share the same probabilistic distribution with a composite stochas-243

tic variable involving Ws, coefficients of the SDE, the normal vector n̂, and an indepen-244

dent exponential random variable with parameter (2s)−1 (Lépingle, 1995), and there-245

fore ks can be explicitly calculated by these known quantities. For general smooth bound-246

ary geometry, an additional contribution to dks may also come from possible projection247

along the γ̂ direction needed to keep the stochastic process within domain. With dks ob-248

tained and the SDE (7) integrated, the functional (9) can be readily evaluated by an or-249

dinary numerical integration technique implemented along the realized stochastic path.250

Expectation of the functionals can be estimated, in principle, from an arithmetic251

mean of a number N of sampled stochastic path integrals. The error of this estimation,252

ε = |E[F t,x] − 〈F̃ t,x〉| where a tilde is used to indicate a numerical realization in this253

section and 〈· · · 〉 indicates averaging over samples, can be estimated by dividing the sim-254

ulation of stochastic processes into batches (Zheng, 2015). Although the probabilistic255

distribution of individual F̃ t,x is generally far from normal and largely unknown, that256

for the batch-wise mean of F̃ t,x approaches a Gaussian for a large enough sample num-257

ber per batch due to the central limit theorem, and thereby a confidence interval can be258

calculated for the batch-wise means using the Student t-distribution (e.g., Kloeden &259

Platen, 1992). We use this confidence interval as an approximation to ε. In this way, UBER260

adaptively stops simulating more batches of stochastic processes when the estimated er-261

ror meets a prescribed tolerance.262

In typical radiation belt problems, the functional values from various stochastic paths263

may differ by orders of magnitude, hence their contributions to the arithmetic mean also264

differ by orders of magnitude, whereas their computational efforts are of the same or-265

der. Therefore, straightforward calculation of their arithmetic mean could result in ex-266

tremely slow convergence with N and squander computational power. To reduce statis-267

tical variance in this procedure, a process-splitting technique is developed based on the268

idea of importance sampling, i.e., to make “denser” sampling in more important “regions”.269

In conventional Monte Carlo methods, the “region” is an “area” in a parameter space,270

and importance sampling effectively splits one sample point therein that would have made271

a huge contribution to the calculation into many sample points nearby, while weights of272

these samples are reduced accordingly to keep the probabilistic distribution of samples273

unbiased (e.g., Press et al., 1992). But unlike conventional Monte Carlo methods, the274
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x1

x2

t
T

O

P

R

C

A B

Q

Figure 1. Schematic illustration of process splittings in a t ⊗ R2 space. A stochastic process

travels backward in time from point P and splits into two at point Q, where its projected func-

tional value is found to be sufficiently large (see text for exact meaning). One child process splits

again at point R where its projected functional value is found to be even larger. The independent

child processes would eventually stop either in Ω̄ as at points A and B, or on ∂1Ω as at point C.

samples in the SDE method are paths which belong to a functional space. To still im-275

plement this idea, we split the stochastic path when it is projected to contribute a large276

functional value.277

Fig. 1 gives an illustration of this technique in a t⊗R2 space. As a stochastic path278

being integrated from point P , the functional value of the entire path (from s = 0 to279

s = t) is continuously predicted based on the partial path that has been realized. This280

projected functional value is compared to the value of some quantile (e.g., the 80th per-281

centile) statistically derived from all previously completed stochastic paths starting from282

the same position. When at some place Q, the projected functional value falls above this283

quantile, the stochastic process is deemed to make a significant contribution to the arith-284

metic mean. It is then split into a number of child processes at Q, and each child pro-285

cess traces down an independent path thereafter. These child paths, together with their286

common parent path segment PQ, hence constitute “nearby samples” in the functional287

space. This procedure can be further iterated if the projected functional value later falls288

into an even higher quantile (e.g., the 90th percentile), as shown at R. After all proce-289

dures finished, the eventual result is a tree structure of stochastic paths rooted at P . For290

–11–



manuscript submitted to JGR: Space Physics

the illustration in Fig. 1, the actual functional value of the path PQA will be weighted291

by 1/2, and those of PQRB and PQRC will be weighted by 1/4, when calculating their292

contributions to the mean. In the UBER code, a practical choice for the number of chil-293

dren at each splitting is 4, and that for the upper limit of offspring generations is 3, so294

that a stochastic process can be split into a maximum of 43 = 64 processes. Effects of295

the process-splitting technique are studied in the first problem in the next section.296

It still remains to find a method to project the functional value of a stochastic path297

when it is only partially realized. For this purpose, we insert a break point at s = s′ ∈298

(0, t) to the integrations in Eq. (9) and see how it transforms. We simplify the situation299

by only considering the stochastic processes stopping in Ω̄ for the moment, and denote300

the following functional integrals:301

U t0 = exp

(ˆ t

0

cds−
ˆ t

0

λdks

)
, (17)302

Vt0 =

ˆ t

0

u exp

(ˆ s

0

cdr −
ˆ s

0

λdkr

)
ds, (18)303

in which the integrand functions c, λ and u are as those in Eq. (9). Then, the functional304

F t,x with the above presumptions and notations is transformed as305

F t,x = g0(Xt)U t0 + Vt0306

= g0(Xt)Us
′

0 U ts′ +
(
Vs
′

0 + Us
′

0 Vts′
)

307

=
[
g0(Xt)U ts′ + Vts′

]
Us
′

0 + Vs
′

0308

= F t−s
′,Xs′Us

′

0 + Vs
′

0 , (19)309

where F t−s′,Xs′ is the functional for a stochastic process that starts from the break point310

(t− s′,Xs′) and continues till s = t.311

Suppose that a partial path has been realized up to s = s′, from it we can read-312

ily evaluate Us′0 and Vs′0 in Eq. (19), and therefore need an estimated F̄ t−s′,Xs′ to project313

the functional value F̄ t,x, where a bar is put over all unrealized entities. Specifically, we314

would need these three estimates: X̄t, Ū ts′ and V̄ts′ . In principle, a good estimation of X̄t315

is given by integrating along the streamline of the b(t−s,x) field through Xs′ till s =316

t, that is, projecting for X̄t along the ballistic trajectory of motion while ignoring all the317

stochasticity since the Wiener process has zero mean. However, this integration is not318

much cheaper than the realization of F t−s′,Xs′ itself, and thus is unaffordable. In an-319

ticipation that the total time length t would not be too large, especially when using a320
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solution grid, and that b(t−s,x) would not vary drastically in this time interval, map-321

ping X̄t along the constant vector b(t−s′,Xs′) is a good enough but much cheaper ap-322

proximation. If X̄t is mapped out of Ω̄ so that g0(X̄t) is unable to be evaluated, the par-323

ticular stochastic process is then disabled from splitting.324

The functional values Ū ts′ and V̄ts′ are estimated by assuming that, for all possible325

stochastic paths belonging to the same solution point, there exist mean functions c̄, λ̄326

and ū that are independent of time, and that the mean local time is proportional to the327

total time length of the stochastic process, so that k̄s = k̄s with k̄ the proportionality328

constant. Under these assumptions, Ū ts′ and V̄ts′ can be expressed by329

Ū ts′ = exp

(
c̄

ˆ t

s′
ds− λ̄

ˆ t

s′
dks

)
330

= exp
[
(c̄t− λ̄k̄t)− (c̄s′ − λ̄k̄s′)

]
331

=
Ū t0

exp

(
s′

t
ln Ū t0

) , (20)332

and333

V̄ts′ =
V̄t0
Ū t0 − 1

[
Ū t0 − exp

(
s′

t
ln Ū t0

)]
, (21)334

if Ū t0 6= 1, or by335

Ū ts′ = 1, (22)336

V̄ts′ = V̄t0
(

1− s′

t

)
, (23)337

if Ū t0 = 1. The values of Ū t0 and V̄t0 can be well estimated respectively by the medians338

of Ũ t0 and Ṽt0 that are obtained from all previously completed stochastic paths. Medi-339

ans are preferred to means here because the probabilistic distributions of these function-340

als are usually very skewed and heavy-tailed. This projection mechanism would become341

statistically more accurate as more stochastic processes having been simulated.342

4 Example Problems343

Three example problems are provided in this section. In the first problem, we solve344

a Fokker-Planck equation with two source terms, one proportional to the unknown func-345

tion and the other independent of the unknown function, in both spherical coordinate346

system and Cartesian coordinate system. Effects of the process-splitting technique are347

analyzed in this example. In the second problem, an advection-dominated Fokker-Planck348

equation is considered. We further show that, even for a pure advection equation, the349
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UBER code still gives the correct solutions, although it is not designed for such an equa-350

tion and may not be the most efficient method. In the last problem, we simulate the Earth’s351

inner radiation belt by solving its Boltzmann equation involving realistic pitch-angle dif-352

fusion and CRAND source. The treatment of periodic boundary conditions is illustrated353

in this example.354

4.1 Problem 1: Neutron Generation and Diffusion in Nuclear Material355

In this problem, we consider the diffusion and generation of neutrons in a spher-356

ical nuclear material at detonation, with an initially injected Gaussian neutron distri-357

bution from a small source at the center, and a neutron-reflecting coat that allows only358

one half of the surface neutrons to escape. In a spherical coordinate system, the equa-359

tion, initial condition and boundary conditions are (Serber, 1992)360

∂f

∂t
=

1

r2
∂

∂r

(
r2D

∂f

∂r

)
+ Sf + v(r), (24)361

f(0, r) = exp

(
− r2

0.02

)
, (25)362

∂f

∂r

∣∣∣∣
r=0

= 0, (26)363 (
D
∂f

∂r
+

1

2
f

) ∣∣∣∣
r=1

= 0, (27)364

where f is neutron density, the constant diffusion coefficient D = 0.1, the constant rate365

of neutron generation from chain reaction S = 2.5, and v(r) = 10−6/(1+r) character-366

izes a weak source of neutrons spontaneously emitted in the material. The values and367

functional forms of these coefficients are solely designed for demonstration purpose and368

are not meant to be experimentally accurate.369

UBER solutions are obtained at four time stamps, and are compared with those370

from a staggered-grid finite difference method (e.g., Ames, 2014), as shown in Fig. 2a.371

A turning point is observed in the solutions at T = 0.05, which marks the transition372

of neutron source from that dominated by the chain reaction at high background den-373

sity to that dominated by the spontaneous emission at low density. As time goes by, ef-374

fect of the spontaneous emission is overwhelmed by the fast-growing chain reaction. Even375

though the solutions span 8 orders of magnitude, the UBER results are virtually iden-376

tical to the finite difference ones, and statistical fluctuation which is a typical feature in377

Monte Carlo methods is not observed in these solutions due to the adaptive algorithms378

and the variance reduction technique.379
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(a) (b) (c)

Figure 2. (a) UBER and finite difference solutions (dashed line) to the problem in Eqs. (24)-

(27). The UBER 1D solutions (circles) are obtained in a one-dimensional spherical coordinate

system, and the UBER 3D solutions (triangles) are obtained in three-dimensional Cartesian co-

ordinates along a sphere radius. (b) Left y-axis: The relative errors of the UBER 3D solutions

at T = 0.05, respectively obtained with the same total number of stochastic processes (2048 per

batch) but different upper limits of offspring generations (ν) in the process-splitting technique.

ν = 0 means the process-splitting is turned off. Right y-axis: The percentage of stochastic pro-

cesses undergone splitting for ν = 4. (c) The reduction of relative errors with increasing number

of stochastic processes at the slowest converging solution point (r = 0.76), for ν = 0 (dashed line

and squares) and 4 (solid line and triangles). Colors denote different numerical experiments.

To demonstrate UBER’s ability in multiple dimensions with a complicated bound-380

ary geometry, the same problem is also solved in a three-dimensional Cartesian coordi-381

nate system along a sphere radius. In this coordinate system, the diffusion coefficient382

becomes a rank-3 tensor with each diagonal component equal to D, and the boundary383

condition in Eq. (27) is applied to the only boundary that is a sphere with unit radius.384

The solutions are over-plotted in Fig. 2a. Consistence between the one-dimensional and385

the three-dimensional results is quite evident.386

To analyze the effects of the process-splitting technique, we repeated the three-dimensional387

solutions at T = 0.05, but with a fixed number of stochastic processes (2048 samples388

per batch, 200 batches) for each solution point and with various upper limits of the off-389
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spring generations ν. ν = 0 indicates that process-splitting technique is disabled. For390

a fixed number of samples, the relative error of a solution is proportional to the square-391

root of the variance of sampled functional values, and determines how fast the calcula-392

tion of expectation converges. The relative errors as functions of r are plotted against393

the left y-axis of Fig. 2b, and each curve is in fact formed by the medians from eight in-394

dependent and identical numerical experiments to be more statistically representative.395

In the range 0.4 < r < 0.9, the relative errors are consistently reduced with higher396

offspring generations. At the slowest converging point r = 0.76, the process-splitting397

technique with a maximum of 4 offspring generations could reduce the relative error by398

an order of magnitude compared to that without splitting. For this curve (ν = 4), the399

percentages of stochastic processes undergone splitting are plotted as shaded area against400

the right y-axis. For r < 0.4, the relative errors are small and computational conver-401

gence is fast enough, process-splitting is automatically suppressed by the code to achieve402

an optimal speed. When the relative errors would have been large, usually a small frac-403

tion of split stochastic processes could be rather effective.404

To further reveal the behavior of the process-splitting technique, Fig. 2c plots how405

the relative error reduces with increasing number of samples (N) in the Monte Carlo pro-406

cedure for the solution point at r = 0.76. There are eight independent and identical407

numerical experiments respectively for ν = 0 and 4, and each line represents the results408

from one numerical experiment. The general trend is that the relative error reduces lin-409

early in a log-log scale plot, resembling its dependence on N−1/2. However, without process-410

splitting, the relative error often jumps up sharply due to the occurrence of a very low411

probability sample that made a very large contribution, which severely slows down the412

computational convergence. With process-splitting, such jumps are largely avoided; and413

on average, the code uses just a little more than 1/100 of the samples without process-414

splitting to achieve the same relative error of 0.1.415

In practical UBER usage, solutions are achieved with a prescribed tolerance of rel-416

ative error and an adaptive number of samples. Therefore, the fast convergence with process-417

splitting technique could save a significant amount of computational effort even with its418

extra computational burden. Table 2 lists the normalized wall clock time consumed by419

UBER for obtaining the solution curve in three dimensions at T = 0.05 with a relative420

error tolerance of 0.1 and a range of maximum offspring generations in process-splitting.421

Again, each of these numbers is the median from eight independent and identical numer-422
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Table 2. Normalized wall clock time versus maximum offspring generations (ν) for the UBER

3D solutions at T = 0.05

ν Normalized wall clock time*

0 1

1 0.40

2 0.18

3 0.13

4 0.13

* Median value from eight independent numerical tests.

ical experiments. With ν = 3 and 4, the code is nearly an order of magnitude faster423

than that without process-splitting. The same wall clock time in these two cases indi-424

cates that the faster convergence with more offspring generations starts to be traded off425

by the computational overhead associated with more complicated splitting, and there-426

fore further increasing ν would not be optimal.427

4.2 Problem 2: Magnetized Plasma Evolution Under Instability428

In the second problem, we consider a Fokker-Planck equation for the pitch-angle429

distribution of a magnetized plasma (e.g., Dendy, 1990). Suppose that the electrons are430

initially in a sin2(x) background pitch-angle distribution where x is the pitch angle. An431

electron beam is injected into the system centered at pitch angle x = 0.4. In addition432

to pitch-angle diffusion, the injected beam excites some kind of plasma instability that433

kinetically transports the distribution toward π/2 pitch angle. The equation, initial con-434

dition and boundary conditions are written as:435

∂f

∂t
=

1

G

∂

∂x

[
GD(t, x)

∂f

∂x

]
− 1

G

∂

∂x
[Gh(x)f ] , (28)436

f(0, x) = sin2(x) + exp

[
− (x− 0.4)2

0.02

]
, (29)437

f |x=0.05 = 0, (30)438

∂f

∂x

∣∣∣∣
x=π/2

= 0, (31)439

where f is the electron distribution function, the Jacobian determinant G = sin(x), the440

diffusion coefficient D(t, x) = (1/2π2) erf(t/2)[1 + sin2(2x)], and the advection coeffi-441
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(a) (b)

Figure 3. (a) UBER (circles) and staggered-grid finite difference (dashed line) solutions to the

problem in Eqs. (28)-(31). (b) UBER (circles) and Lax-Wendroff (dashed line) solutions to the

same problem but with zero diffusion.

cient h(x) = cos(x). Note that, in most of the x range, the advection coefficient is about442

an order of magnitude larger than the diffusion coefficient. Eq. (30) indicates a loss cone443

at pitch angle x = 0.05. UBER solutions for this problem are plotted in Fig. 3a as cir-444

cles, and are in excellent agreement with those from the staggered-grid finite difference445

method. In these solutions, the beam evolves toward x = π/2 because of the kinetic446

advection. As the system relaxes, the beam eventually merges into the background, and447

a final stable distribution is then approached.448

Eq. (28) degenerates to a continuity equation if pitch-angle diffusion is turned off449

by setting D(t, x) to zero. Even for such a pure advection problem, UBER can still ob-450

tain accurate and robust solutions as compared to the widely used Lax-Wendroff method451

(e.g., Ames, 2014), as shown in Fig. 3b. Before T = 2, an advection of the beam to-452

ward x = π/2 is seen in the solutions without dispersion, and UBER results are almost453

identical to the Lax-Wendroff ones. The system, however, is unstable due to the posi-454

tive advection velocity at x < π/2 and the zero advection velocity at x = π/2, so that455

the electron distribution will be piled up near x = π/2 and ultimately evolve into a sin-456

gularity. For this reason, the Lax-Wendroff method begins to fail at T = 2 by gener-457

ating unphysical negative solutions near x = 1.3, and will be divergent henceforth. UBER458

nontheless gives the correct results that still resolve the peak height and position of the459

beam.460
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4.3 Problem 3: Earth’s Inner Radiation Belt Simulation461

In the last problem, we demonstrate UBER’s ability to solve a radiation belt Boltz-462

mann equation by performing an inner radiation belt simulation involving both the sta-463

bly trapped (out of the drift loss cone) and the quasi-trapped (in the drift loss cone) elec-464

tron populations. Inspired by Xiang et al. (2020), we consider the 304-keV electrons at465

McIlwain’s LM = 1.25, which are subject to pitch-angle scattering caused by Coulomb466

collisions with upper atmospheric neutrals and ionospheric ions and electrons. The equa-467

tion, initial condition and boundary conditions are:468

∂f

∂t
+ ωd

∂f

∂φ
=

1

G

∂

∂α0

(
GDαα

∂f

∂α0

)
+
Se
p2
, (32)469

f(0, φ, α0) = 0, (33)470

f |φ=0 = f |φ=2π, (34)471

f |α0=αL = 0, (35)472

∂f

∂α0

∣∣∣∣
α0=π/2

= 0. (36)473

In Eq. (32),474

ωd =
3cLRE
eµE

p2

me

D(sinα0)

T (sinα0)
(37)475

is the drift frequency evaluated using dipole-field approximation (Schulz, 1991), in which476

c is the speed of light in vacuum, L is dipole L-shell, RE is the radius of Earth, e is the477

elementary charge, µE is the magnetic moment of Earth’s intrinsic dipole field, me is elec-478

tron mass, p is electron momentum, α0 is electron equatorial pitch angle, and the func-479

tions D(sinα0) and T (sinα0) are bounce motion integrals in dipole field that are given480

in Schulz (1991, pp. 205-210). For simplicity, we ignore the dependence of ωd on drift481

phase φ, so that the drift phase becomes equivalent to geomagnetic longitude. The Ja-482

cobian determinant G = T (sinα0) sin(2α0). The bounce-averaged pitch-angle diffusion483

rate is empirically given by484

Dαα = 10−5 exp
{

92.55
[
cos4 α0 − cos4 αL(φ)

]}
+ 10−9 (s−1), (38)485

which features quantitative resemblance with that calculated by realistic atmosphere and486

ionosphere models in Xiang et al. (2020). In this expression, αL(φ) is the bounce loss487

cone angle dependent on geomagnetic longitude that is determined by drift-shell trac-488

ing in the International Geomagnetic Reference Field (IGRF, Finlay et al., 2010). Dαα489

as a function of φ and α0 is plotted in Fig. 4a: it is only significant near the bounce loss490
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cone and in the South Atlantic Anomaly (SAA) centered at about 20◦ geomagnetic lon-491

gitude, due to the closer proximity of the drift shell to the upper atmosphere in these492

regions. The CRAND source rate Se/p2 is approximated by (Lenchek et al., 1961; Se-493

lesnick, 2015)494

Se
p2
≈ 1.7× 10−12

(Emax − E)2

L2.7 sinα0
(c3cm−3MeV−3s−1), (39)495

where Emax is the maximum kinetic energy (782 keV) available to electrons from neu-496

tron β-decay and E is the electron kinetic energy in question, both are measured in unit497

of the electron rest energy (511 keV), and L is the dipole L-shell, which is a variable de-498

pendent on geomagnetic longitude due to multipoles of the Earth’s magnetic field. Fig. 4b499

plots the CRAND source rate as well as the dipole L-shell values corresponding to McIl-500

wain’s LM = 1.25 obtained from drift-shell tracing in IGRF, which vary from less than501

1.2 in the SAA to above 1.3 near 180◦ geomagnetic longitude.502

Eq. (34) specifies the periodic boundary condition for the drift phase φ. In the UBER503

code, the periodic boundary condition is not really considered a boundary condition; rather,504

it is dealt with by extending the computational domain to include multiple periods, so505

that the Itô stochastic processes would not move out of the domain within the given time506

duration, except for stopping on other first type boundaries. For this specific problem,507

the time stamp for obtaining solutions is every 2 hours, and the 304-keV electrons drift508

eastwards with drift periods a little longer than 2 hours. Therefore, the computational509

domain is extended for one extra period of φ from −2π to 0 since the stochastic processes510

retrograde in time. However, solutions are only sought in the right half of the domain511

for φ between 0 and 2π at each time stamp, and after that, they are copied to the left512

half to form the entire initial condition for the next time stamp.513

The simulation is performed with an initially empty radiation belt as indicated by514

Eq. (33), and electrons are gradually generated by the CRAND source and meanwhile515

lost to the bounce loss cone. Fig. 4c and 4d show the solution electron fluxes calculated516

from j = fp2 after 2 hours and 10 hours, respectively. The characteristic west-east elec-517

tron flux gradient is formed for the quasi-trapped population (α0 < 60◦) within the first518

2 hours, and does not change much over time because the SAA sweeps these electrons519

out every drift period. Weak pitch-angle diffusion of electron fluxes from the quasi-trapped520

population toward the stably trapped population can be observed at T = 2 hours, when521

the stably trapped fluxes are still low; at T = 10 hours, direction of the pitch-angle dif-522
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(a) (b)

(c) (d)

Figure 4. (a) Bounce-averaged pitch-angle diffusion coefficient Dαα (s−1) for 304-keV

electrons. Blank area is in the bounce loss cone. (b) CRAND electron source rate Se/p2

(c3cm−3MeV−3s−1) for 304-keV electrons. Black line plots the variation of dipole L-shell ver-

sus geomagnetic longitude against the right y-axis, corresponding to the McIlwain’s LM = 1.25.

(c) Calculated electron fluxes (cm−2s−1sr−1MeV−1) at T = 2 hours. (d) Calculated electron

fluxes (cm−2s−1sr−1MeV−1) at T = 10 hours.

fusion is reversed. Even with atmospheric loss, the CRAND source is strong enough to523

continuously contribute to the trapped electron fluxes, which are increased by one or-524

der of magnitude in 8 hours. These results are quantitatively comparable to those of Xiang525

et al. (2020).526

5 Conclusion and Discussion527

In conclusion, we have built a numerical solver for the general form of kinetic equa-528

tions that appear in radiation belt studies. Based on the SDE method, the solver is coded529

to work in arbitrarily provided coordinate systems up to three dimensions, with user-530
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specified boundary geometry, boundary conditions, and equation terms. We have also531

designed adaptive algorithms and a variance reduction technique for the SDE method,532

which had enhanced its computational speed by one order of magnitude in our test. The533

example problems in this article demonstrated the solver’s versatility and robustness in534

dealing with a range of problems that might each require a different solver in other meth-535

ods. The solver, named UBER, has been programmed into a FORTRAN library that536

can be easily incorporated with other more complicated space physics models.537

Several other forms of radiation belt kinetic equation should also be solvable by the538

method presented in this article. In formulating the Boltzmann equation (2), we have539

assumed that the particle Hamiltonian H is independent of phases of particle motion.540

For lower-energy ring current particles, the convective electric field potential energy is541

not negligible in their Hamiltonian, and therefore H would be dependent on the drift phase.542

As such, expanding the Poisson bracket [f,H] on the left-hand side of the Boltzmann543

equation will result in additional terms involving partial differentials with respect to the544

generalized momenta Qµ. For a radiation belt model including ring current particles, the545

general form of Boltzmann equation will be546

∂f

∂t
+ φ̇ι

∂f

∂φι
+ Q̇µ

∂f

∂Qµ
= . . . , (40)547

in which the omitted right-hand side of the equation is exactly the same as that of Eq. (2).548

The Boltzmann equations of the so-called four-dimensional radiation belt models, such549

as the CIMI model (Fok et al., 2014), the VERB-4D model (Aseev et al., 2016), and the550

K2 MHD-particle model (Elkington et al., 2019) are of this type. Similar to the treat-551

ment of Eq. (2), Eq. (40) can be transformed into the form of Eq. (1) by concatenating552

the coordinates into xξ = {Qµ, φι}, and performing the following transformation of equa-553

tion coefficients:554 

D̃µν = Dµν , D̃ξι = 0,

h̃ξ = {hµ + Q̇µ, φ̇ι},

S̃ = S + ∂ξẋ
ξ + Q̇µ∂µ lnG,

ṽ = v.

(41)555

Therefore, the Boltzmann equation (40) can also be solved by the method presented in556

this article in principle. However, such four-dimensional simulations are beyond the cur-557

rent scope of the UBER code since it is only coded for up to three dimensions in space.558

Nonlinear evolution of phase space density occurs when the particle scatterings are559

not only small-scale but also large-scale, usually as a result of trapping by intense plasma560
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waves (e.g., Bortnik et al., 2008; Albert et al., 2013). In this case, the right-hand side561

of the kinetic equation must include terms of non-local transport of phase space density562

by these large-scale scatterings, and the equation is formulated as (Artemyev et al., 2018;563

Zheng et al., 2019)564

∂f

∂t
=

1

G

∂

∂Qµ

(
GDµν ∂f

∂Qν

)
− 1

G

∂

∂Qµ
(Ghµf)−

(ˆ
PQ→Q̃G̃dQ̃

µ

)
f +

ˆ
PQ̃→Qf̃ G̃dQ̃

µ,

(42)565

in which f̃ is a shorthand for the function f(t, Q̃µ), and G̃ is the Jacobian determinant566

evaluated at Q̃µ. With nonlinear wave-particle interactions, phase bunching effect gives567

rise to the advection characterized by the coefficients hµ. The function PQ→Q̃ is the trap-568

ping probability density from Qµ to Q̃µ, that is, particles are trapped by the wave field569

at Qµ and subsequently escape from trapping at Q̃µ, and is considered a known func-570

tion which can be evaluated from single particle behaviors by either perturbation the-571

ory of Hamiltonian mechanics (e.g., Artemyev et al., 2016) or test-particle simulations572

(e.g., Vainchtein et al., 2018). Note that, since the unknown function is contained in the573

last integral term, Eq. (42) is an integro-differential equation. However, formal similar-574

ity between Eq. (42) and the Fokker-Planck equation (1) suggests that an asymptotic575

solution of Eq. (42) may be achieved by Taylor expanding f̃ as576

f̃ = f̃0 + f̃ ′0t+ . . . , (43)577

where f̃0 = f(0, Q̃µ) and f̃ ′0 indicates its time-derivative function evaluated at t = 0.578

When applying the SDE method with a solution grid, the functions f̃0 and f̃ ′0 can be ob-579

tained from solutions of previous time stamps. Then, by defining the following coeffi-580

cients581

S(Qµ) = −
ˆ
PQ→Q̃G̃dQ̃

µ, (44)582

v(t, Qµ) =

ˆ
PQ̃→Qf̃0G̃dQ̃

µ + t

ˆ
PQ̃→Qf̃

′
0G̃dQ̃

µ + . . . , (45)583

which are now known functions, Eq. (42) is transformed into the form of Eq. (1), and584

is readily solvable by the UBER code. In this way, the simulations of nonlinear wave-585

particle interactions in the radiation belts could hence be unified with the well-developed586

simulations in the quasi-linear theory.587
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