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Abstract13

The rapidly increasing computing powers allow global atmospheric simulations with ag-14

gressively high resolutions, which challenges traditional model design principles. This15

paper presents a Low Mach number Approximate Riemann Solver (LMARS) based un-16

staggered finite-volume model for solving the shallow-water equations on arbitrary gnomonic17

cubed-sphere grids. Using a novel reference line-based grid-generation process, it uni-18

fies the representation of arbitrary gnomonic cubed-sphere grid projections and permits19

high-efficiency 1D reconstruction in the halo regions. The numerical discretization also20

extends a widely used pressure gradient algorithm with the LMARS viscous term, thus21

improves the model’s stability for various numerical applications. The solver demonstrates22

a broad range of organic diffusion control without any explicit filters, validated by a com-23

prehensive set of test cases. Lastly, a newly introduced splash on the sphere test veri-24

fies the solver’s desirable dispersion properties and consistent performance among dif-25

ferent grid types. This study paves a solid foundation for a new generation of global cir-26

culation models with kilometer horizontal scales.27

Plain Language Summary28

Computing powers and architectures historically influence the numerical algorithm29

designs of global atmospheric simulations at the fundamental levels. The next genera-30

tion of the global circulation models can push its resolution to kilometer horizontal scales,31

which requires vital capabilities in a balanced representation of all motion modes and32

handling sharp discontinuities such as topography. Here we demonstrate a new frame-33

work of a dynamical core that inherits advantages in both traditional geophysical fluid34

(GFD) modelings and versatile general computational fluid dynamics (CFD) techniques.35

This new development introduces several innovations, including the unified grid descrip-36

tion, numerical optimization, stability enhancement, and a newly designed test to illus-37

trate specific numerical properties cleanly. The desirable results of this work increase our38

confidence in creating a unique global circulation model to leverage next-generation high-39

performance computing and to improve our fundamental understanding of the atmospheric40

processes.41
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1 Introduction42

Building a dynamical core for the atmospheric model is an art of balancing the re-43

quirements between accuracy and efficiency. Although a model’s accuracy can be more44

definitive to measure in benchmark experiments - at least for smooth solutions, compu-45

tational efficiency is a relative concept that strongly associates with the computing plat-46

form characteristics. In a way, the available computational power and machine architec-47

tures have been dictating the scope of the research topics and the design of the numer-48

ical simulation. For example, coming out of the wide adoption of the massively paral-49

lel computing, many modern models prefer quasi-uniform computational grids, such as50

the icosahedral (Ringler et al., 2000; Tomita et al., 2001; Du et al., 2003; Ŕıpodas et al.,51

2009) and cubed-sphere grids (Adcroft et al., 2004; Putman & Lin, 2007), over the tra-52

ditional latitude-longitude grids to evenly distribute the computation tasks over a large53

number of processors. However, the concepts of both icosahedral and cubed-sphere grids54

were explored very early in Sadourny et al. (1968); Sadourny (1972); Williamson (1968),55

but gained very little attention. During this time, single-processor-based latitude-longitude56

or Gaussian spectral methods demonstrated excellent efficiency in delivering accurate57

results (Bourke, 1972, 1974) - a perfect example of the evolving standard of the numer-58

ical algorithm efficiency.59

The essential motivation of implementing the quasi-uniform grids is to transform60

the severe two parallel-unfriendly singular points from the latitude-longitude grid (the61

north and south poles) to less severe eight singularities in the cubed-sphere grid (cor-62

ners of the six cubed-sphere tiles) or twelve singularities in the icosahedral grid (pentagon63

cells in a Voronoi perspective). Although the quasi-uniform grids avoid polar filters and64

other numerical damping schemes due to the polar singularities, they have both pros and65

cons. In some cases, the numerical artifacts and errors caused by the twelve icosahedral66

singularities are less severe than the ones caused by cubed-sphere corners. The cubed-67

sphere grid, however, has several desirable properties. Firstly, many attractive high-order68

multi-dimensional algorithms achieved optimal computational efficiency by taking ad-69

vantage of logically Cartesian grids (i.e., rectangles) on each cubed-sphere tile (Rossmanith,70

2006; Putman & Lin, 2007; C. Chen & Xiao, 2008; Ullrich et al., 2010; Taylor & Fournier,71

2010). Secondly, the logical 3D cubic geometry on each cube-tile creates one additional72

dimension to the computational data structure, which offers more flexibility in the par-73

allel computational optimization designs in both horizontal and vertical directions. Lastly,74
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each tile of the cubed-sphere geometry has a significant similarity with computational75

grids in regional models. In fact, with separately defined metric terms, the global cubed-76

sphere dynamical core requires almost no code change to convert into a regional solver77

in orthogonal grids. This property provides exceptional convenience and flexibility in uni-78

fying real-world applications and experimenting new algorithms with idealized valida-79

tion tests.80

The global circulation models (GCMs) cover a vast range of scales and operate on81

the most powerful high-performance computers available. Therefore, geophysical fluid82

models usually discretize the governing equations with various grid staggering choices83

(Arakawa & Lamb, 1977, namely A-, B-, C-, D-Grid) to gain numerical advantages in84

resolving the smallest waves. In particular, the C-Grid results in natural pressure gra-85

dient in the momentum equations and straightforward divergence representation (Adcroft86

et al., 2019); the D-Grid forms a perfect vorticity mode (Lin, 2004; Harris & Lin, 2013),87

which dominants large-scale to mesoscale atmospheric motions. With the recent rapid88

increase of computational power, the GCM community is pushing the model resolution89

aggressively to about a globally-kilometer horizontal scale (Stevens et al., 2019; Satoh90

et al., 2019). At this scale, both divergence and vorticity play equally important roles.91

Therefore, the unstaggered discretization could be a balanced choice in global kilometer-92

scale model development.93

Although most GCMs use staggered discretization, a few influential models utilize94

the A-Grid, including NICAM (Tomita et al., 2001) with a stencil-based scheme, and the95

E3SM (Taylor et al., 2020) with a compact Spectral-Element-based algorithm. Colocat-96

ing the velocity components and scalars with a stencil-based scheme has several unique97

and attractive advantages. It allows direct coupling between the explicitly simulated dy-98

namical process and parameterized physics processes. No interpolation of the velocity99

components is required, therefore, eliminating errors associated with such practices. Fur-100

thermore, it can yield energy conservation in non-hydrostatic models. With colocated101

prognostic variables, it is possible to formulate a flux-form prognostic total-energy gov-102

erning equation, thus automatically provide energy conservation to the models. Energy103

conservation is beyond the scope of the shallow-water implementation and will be ex-104

tensively discussed in future work. Preliminary work has demonstrated promising results105

in Li and Chen (2019). Last but not least, unstaggered schemes are widely implemented106
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in traditional computational fluid dynamics applications. Many well-tested techniques107

can inspire the creation of algorithms in the geophysical fluid simulations.108

Despite many efforts, historically, the unstaggered discretization was overwhelmed109

by staggered methods due to, at least, two primary considerations. One challenge is that110

compared with the staggered schemes, the unstaggered discretization tends to produce111

severe errors in resolving phase speed for waves with very short wavelengths. Addition-112

ally, it is more challenging to design numerically robust algorithms with an unstaggered113

grid. For example, an unstaggered central-differencing of gradient term could produce114

a so-called “grid decoupling” problem and lead to checkerboard-pattern noise. Indeed,115

the long-term success of an unstaggered model depends on the proper treatment to ad-116

dress the above difficulties.117

To address the first concern, the previous installment of this work thoroughly in-118

vestigated the dispersive and dissipative relations between different grid staggering choices119

and orders of accuracy (X. Chen et al., 2018). One of the principal findings is that with120

high-order algorithms, e.g., using 3-points or 5-points stencil polynomial schemes, waves121

with problematic phase speeds will be largely pushed to four-grid-spacing and below. On122

the other hand, in practice, the smallest resolvable wavelengths are contaminated by many123

sources of errors, such as numerical diffusion, strong gradients in the solutions, and, ac-124

cordingly, heavily damped or removed by numerical techniques. Therefore, using high-125

order numerical schemes can prevent the unstaggered model from problematic phase speeds.126

X. Chen et al. (2018) also introduced simple-to-setup tests to validate the dispersion and127

dissipation properties of any sophisticated solvers.128

Unstaggered algorithms for geophysical flows can inherit various robust approaches129

from other fields. Unlike the geophysical fluid modeling field, the general computational130

fluid dynamics (CFD) community widely adopts unstaggered algorithms via the imple-131

mentation of the approximate Riemann Solvers. There is a small but growing literature132

that takes advantage of the Riemann Solvers in the A-Grid GCMs and achieved stabil-133

ity, high order accuracy, and are free of explicit diffusion (Giraldo et al., 2002; C. Chen134

& Xiao, 2008; Ullrich et al., 2010; Yang et al., 2010). However, compared with state-of-135

science GCMs, the traditional Riemann solvers can be less efficient or more diffusive. More-136

over, the Riemann solvers with carefully designed mathematical expressions are most ef-137

fective in simulating generic flow types, including the vacuum, shock, sharp discontinu-138
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ities. Therefore, it is not easy to understand the Riemann solvers’ inherent numerical139

properties and make the comparison to traditional GCM implementations. Lastly, tra-140

ditional Riemann solvers require careful adjustments to make them accurate on the unique141

geometry on the Earth’s surface with the gravity and the Coriolis forces.142

The Low Mach number Approximate Riemann Solver (LMARS) introduced in X. Chen143

et al. (2013) is a highly efficient tool in the finite-volume method based GCMs. The de-144

sign of LMARS bases on the fact that the geophysical flows do not create any vacuum145

or sharp discontinuities and the subsonic flows Mach number is always less than 1. The146

resulting simple mathematical expression of LMARS requires only one approximation,147

which assumes the sound wave speed (or gravity wave speed in a shallow-water model)148

is continuous at the finite volume interfaces. The LMARS discretization in a full 3D at-149

mosphere takes the gravity into account and results in better accuracy than traditional150

Riemann solvers (Li & Chen, 2019). Previous work has implemented LMARS in many151

atmospheric applications, including hydrostatic and non-hydrostatic flows with either152

vertical Lagrangian coordinates or Eulerian coordinates (X. Chen et al., 2013). It is also153

implemented in the multi-gas planet atmosphere environment with an intrinsic energy-154

conserving framework (Li & Chen, 2019). As a promising candidate for a new unstag-155

gered GCM, LMARS is not yet tested with a cubed-sphere geometry.156

This study aims to develop an LMARS-based unstaggered finite-volume shallow-157

water solver on the gnomonic cubed-sphere grids. The shallow-water equations offer a158

standard testbed to validate the horizontal advection algorithms. Whereas previous stud-159

ies implemented various cubed-sphere grids in different solvers, this work is the first to160

unify arbitrary gnomonic cubed-sphere grid generation processes. Although the numer-161

ical discretization of LMARS on the cubed-sphere grid does not contain any explicit fil-162

ter, this solver can still exhibit a broad range of diffusion properties by controlling the163

polynomial reconstructing methods and the strength of the forward-backward techniques164

(Mesinger, 1977). Lastly, various model numerical properties are illustrated and gauged165

by a comprehensive set of idealized tests, including the traditional famous Williamson166

et al. (1992) shallow water test suite, and a recently introduced colliding modons test167

(Lin et al., 2017). Given the traditional discussions about unstaggered grid dispersion168

uncertainties, this study designs a new “splash on the sphere” test to illustrate and war-169

rant satisfactory dispersion and dissipation properties on specific wavelengths.170
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The remainder of the paper is organized as follows. Section 2 provides a brief primer171

of the gnomonic cubed-sphere grids, in which a unified grid generation process is intro-172

duced. Section 3 describes both spatial and temporal numeric discretization. The model173

is validated in section 4. In this section, a novel splash on the sphere test is introduced174

to gauge the dispersion and dissipation properties. Finally, the main findings and dis-175

cussions are concluded in Section 5. Appendix A collects all major symbols to make the176

notations consistent and clear. Appendix B provides a mathematical description of the177

grid generating process. The governing equations in the cubed-sphere grids are provided178

in Appendix C. In this section, some optimizations are discussed to yield more efficient179

mathematical expressions.180

2 A brief primer on gnomonic cubed-sphere grids and the duo-grid181

system182

The FV3 (Finite-Volume Cubed-Sphere Dynamical Core) (Lin, 2004; Putman &183

Lin, 2007; Harris & Lin, 2013) has strongly influenced the development of this work. Al-184

though being different in staggering choices, the new unstaggered dynamical core is de-185

signed to be a seamless evolution within the existing FV3 framework. Therefore, this work186

follows a significant amount of naming conventions from the existing FV3 code base, in-187

cluding grid type names and dynamical parameter definitions and symbol names.188

The cubed-sphere grid is obtained from projecting a gridded cube onto the surface189

of the sphere, which avoids the polar singularities due to the convergence of the merid-190

ians from the traditional latitude-longitude coordinate system. The cubed-sphere grid191

shifts the severe polar convergence of meridians to eight weaker singularities at the cor-192

ners where cube tiles intersect. Figure 1 illustrates the mapping from the cube to the193

sphere in a C8 resolution. The naming convention C[N ] denotes that each tile of the cube-194

sphere has N by N cell distribution, which results in N×N×6 total cells on the sphere.195

196

2.1 Interlock patterns197

There are two conventional logical arrangements to interlock the six cubed-sphere198

tiles. Figure 2a illustrates the first pattern (Ronchi et al., 1996; Rossmanith, 2006; Yang199

et al., 2010) with four tropical tiles and two polar tiles, denoted by the “tropic-belt” log-200

ical arrangement. Unfortunately, the interlock between the tiles is not symmetric and201

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 1. C8 (8 × 8 × 6) cubed-sphere grid with three layers of ghost cells. When aligned on

the same great circle, a simple 1-D polynomial interpolation from the red dots can provide the

green dots’ values with optimum accuracy and speed.
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Figure 2. The logic arrangement of the six cubed-sphere tiles. a) the “tropic belt” arrange-

ment has four tropic tiles and two polar tiles, the local coordinate directions are as illustrated

at the lower-left corners. b) the “staircase” arrangement and the local coordinates illustration.

The “staircase” arrangement simplifies the determination of the neighbor tile indices and orien-

tations into c) odd-index-tile and d) even-index-tile cases. Note if the number n + l > 6, the

corresponding tile number is n+ l − 6 .

require separate distinction for each of the tile. The second pattern (Adcroft et al., 2004)202

is illustrated in Figure 2b, and denoted by the “staircase” logical arrangement. The “stair-203

case” logical arrangement has better symmetry when exchanging information between204

tiles. For example, the calculation of fluxes between two adjacent tiles needs to deter-205

mine the tile numbers and the tile-local coordinates rotations. The “staircase” arrange-206

ment simplifies the neighbor tile-number and rotation patterns into two odd-index-tile207

(tiles 1, 3, 5) and even-index-tile (tiles 2, 4, 6) scenarios, illustrated by Figures 2c, and208

d. Both logical arrangements are valid for cubed-sphere applications. This work imple-209

ments the “staircase” arrangement to gain some programming simplicities.210
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2.2 Unified gnomonic projections211

The grid lines connecting the grid points are continuous great circles on the sphere.212

Therefore, the locations of vertices can uniquely determine the full grid system on each213

cube-sphere tile. On each tile, e.g., the tile centered at (λ, φ) = (0, 0), the vertices can214

be generated by either the gnomonic (Sadourny, 1972; Ronchi et al., 1996) or the con-215

formal (McGregor, 1996; Rančić et al., 1996) projections. The gnomonic projection projects216

a Cartesian grid from six straight-lines-meshed cube surfaces to the sphere surface. The217

conformal projection maximizes the orthogonality of the coordinates. Putman and Lin218

(2007) examined the most popular approaches: the equidistant projection (Sadourny,219

1972), the equiangular projection (Ronchi et al., 1996), the more orthogonal conformal220

mapping (Rančić et al., 1996), the numerical modification to analytical mappings by an221

elliptic solver (Khamayseh & Mastin, 1996) or the spring dynamics generator (Tomita222

et al., 2001). Considering the eight singularities at cube corners remain nonorthogonal223

in the conformal grid, and the cell size distribution in conformal grids is usually less uni-224

form than the gnomonic choices, this work implements the gnomonic grid.225

Figure 3 illustrates a typical gnomonic projection between a grid point on the cube-226

tile and the sphere-tile. Let the grid points on a cube-tile be indexed by [i, j], with lo-227

cal coordinate [X,Y ]. In a gnomonic projection, each row of grid points [i, :] shares the228

same Y value, and each column of grid points [:, j] shares the same X value. The pro-229

jection of the rows and columns on each cube face forms great circles on the sphere. Fur-230

thermore, the coordinates on the sphere converge to a pair of local north-/south-poles,231

and “west-/east-poles” for each sphere tile (Rossmanith, 2006, Figure 1).232

This work offers a novel approach to unite generic gnomonic grid descriptions. Al-233

though previous work demonstrated different ways to create various gnomonic grids, the234

gnomonic grids share distinct properties. Given the orthogonality and symmetry of the235

gnomonic projected grid points on each cube-tile, the locations of grid points in a sin-236

gle row or column can fully determine the entire gnomonic cubed sphere. Therefore, Fig-237

ure 3 can determine three widely used gnomonic projections in the literature by three238

pairs of reference lines with grid points equally distributed. The red reference lines stand239

for the most traditional equidistance projection (Sadourny, 1972). The equiangular grid240

(Ronchi et al., 1996) can be obtained by projecting the green lines with grid points equally241

distributed back to the cube tile and populating them to the entire [X,Y ] space. Lastly,242
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eq-dist ref
eq-angular ref
eq-edge ref
tile-corner ref
gnomonic projection

Figure 3. The gnomonic projection. The blue shaded surface is a cube-tile, and the green

shaded surface is a sphere-tile. The solid black line from the sphere center to the sphere surface

illustrates a gnomonic projection between a grid point on the cube-tile and a grid point on

the sphere-tile. The dotted lines define the corners of the bounds to one of the six surfaces of the

cubed-sphere grid. The red lines are the gnomonic projection reference lines of the equidis-

tance projection, and the green and blue lines are of the equiangular and equi-edge projections.

The extension of the green surface indicate the ghost cell region for a finite-volume application.
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although not formally documented, FV3 (Putman & Lin, 2007; Harris & Lin, 2013; Har-243

ris et al., 2016) introduced a gnomonic projection with more uniformly distributed cells244

on the tile interfaces, and is now adopted in the Next Generation Global Prediction Sys-245

tem (NGGPS) project (Zhou et al., 2019). The FV3 grid is denoted by the “equi-edge”246

grid and can be obtained similarly by populating the grid-points-equally-distanced blue247

lines on the sphere. The following procedures describe the process to populate the ref-248

erence line grid points to the full gnomonic projections:249

1. Project the equally distributed grid points from the reference lines onto the gray-250

color cube-tile (this procedure is redundant for the red line).251

2. Mesh the gray cube-tile with the projected 1D distribution of the grid points from252

the cube surface.253

3. Project the fully meshed grid points from the gray cube tile to the green sphere254

tile.255

The equidistance grid produces less uniformly distributed volumes on the sphere. There-256

fore, most modern cubed-sphere models do not implement the equidistance grid. Although257

the equiangular projection yield slightly more uniform grid point distribution on the sphere,258

the equi-edge grid distributes grid points evenly near the sphere tile connections, which259

are the primary sources that cause grid imprinting with a cubed sphere. Additionally,260

in a stretched grid (Harris et al., 2016), the equi-edge grid produces the focused tile with261

more evenly distributed cells. This work only discusses the equi-edge and the equian-262

gular grids, namely grid type 0 and 2, following FV3 naming convention.263

2.3 The duo-grid system to handle tile-edge connections264

This work implements a maximum 5-point-stencil polynomial reconstruction for265

the finite volume scheme. Therefore each tile requires three more layers of ghost cells by266

the wave propagation method (X. Chen et al., 2013, 2018; Li & Chen, 2019). Unfortu-267

nately, a main numerical challenge with the gnomonic cubed-sphere grid is that the grid268

coordinates are not continuous across tile interfaces. Figure 1 illustrates the ghost cells269

on the local west-side of the green tile, which creates a west halo region. The native neigh-270

bor cell centers in the halo region are the red dots, which forms “kinks” in coordinates271

between the green tile and its west halo. Therefore, the name “kinked grid” denotes this272

halo type constructed by directly copying values from the neighboring tiles. A natural273
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extension of the green tile coordinates (green dashed lines) into the halo region results274

in green dots, denoted by the “extended grid.”275

There are two reasonable choices for the ghost cell numerical algorithms. FV3 pow-276

ered models, for example, directly employ the red dots in the kinked-grid to form one-277

sided flux calculations to the tile boundaries. This method has several advantages. The278

operations in the halo region (e.g., west halo of the green tile) can be identical to the na-279

tive calculations on the neighboring tile (red tile) from different calculating processors280

(Putman & Lin, 2007; Harris & Lin, 2013). Additionally, calculations associated with281

halo create almost no computational overhead, a valuable property to massively paral-282

lel computing. This work implements the other approach, which is to remap the red dots283

from the kinked-grid to the green dots on the extended grid (Rossmanith, 2006; Yang284

et al., 2010; Ullrich et al., 2010; Katta et al., 2015). Therefore, the halo operations are285

a natural extension from the interior calculations, and no extra adjustment is required286

for the ghost cells. The second approach can effectively reduce the cubed-sphere grid im-287

printing at the tile edges, but creates undesired overhead in the parallel calculations. The288

extra calculations are mainly: 1. tile-interface flux synchronization between different tiles;289

2. remapping of the prognostic variable values from the kinked grid to the extended grid.290

The first synchronization overhead is due to inconsistent coordinate directions be-291

tween tiles. The fluxes at the same interfaces by different tiles need to be sent to the ad-292

jacent tile and get averaged for conservation properties. This operation is only performed293

at the end of a full cycle of integration to minimize the message passing.294

The interpolating algorithm must be at minimum complexity to alleviate the duo-295

grid remapping overhead. Most equiangular projection applications take advantage of296

that the green dots and red dots are aligned on the same great circle. Thus 1-D inter-297

polation is sufficient for the remapping procedure. This property is denoted by duo-grid298

1D alignment. Unfortunately, this 1D alignment only applies to equiangular projection.299

A direct halo generation with equidistance or equi-edge projections (i.e., by extending300

three more layers into the halo during the interior grid creation) does not produce the301

duo-grid 1D alignment. A few extra steps by the following procedures can solve this prob-302

lem and warrant the duo-grid 1D alignment for arbitrary gnomonic projections:303

1. Populate the non-halo gnomonic projection grid points based on the reference lines304

(red for equidistance, blue for equi-edge, and green for equiangular).305
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2. Identify the grid points on the resulting sphere tile center lines (i.e., the green lines306

in Figure 3).307

3. Mirror the outermost three points from the green lines to the ghost region.308

4. Populate ghost cell grid points in the halo region base on the mirrored points on309

the green lines.310

To minimize the remapping overhead, in this work, the minimum 1D piecewise linear in-311

terpolation is used to remap values from the red to the green points. No discernible degra-312

dation is observed compared with high-order 1D polynomial remapping algorithms. De-313

tailed mathematic procedures in the gnomonic cubed-sphere generation are described314

in Appendix B.315

3 The numerical discretization316

3.1 The governing equations discretization317

A standard mathematical derivation of the governing equations on the cubed-sphere318

is included in Appendix C. Before rearranging and discretizing the governing equations,319

denote η an arbitrary variable, the following finite-volume (FV) operators are defined:320

δx [η]i,j = ηi+0.5,j − ηi−0.5,j , (1)321

322

δy [η]i,j = ηi,j+0.5 − ηi,j−0.5, (2)323

where ηi±0.5,j are the values of η evaluated at cell interfaces in the x-direction, and ηi,j±0.5324

are the values of η evaluated at cell interfaces in the y-direction. Unless specifically spec-325

ified, the subscripts (i, j) are omitted for cleaner mathematical expressions, and the vari-326

ables without subscripts are evaluated at the cell centers at location (i, j).327

The continuity equation can be rearranged in the flux form:328

∂h

∂t
= − 1

∆A
(δx (hux⊥∆y) + δy (huy⊥∆x)) , (3)329

Define the flux coefficient:330

fxi+0.5,j (ux⊥,∆t) = ux⊥∆t∆yi+0.5,j , (4)331

332

fyi,j+0.5 (uy⊥,∆t) = uy⊥∆t∆xi,j+0.5. (5)333

Therefore, the final discretization of the continuity equation is:334

hn+1 = hn − 1

∆A
(δx (fxh) + δy (fyh)) , (6)335
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and a straightforward discretization to update the cell center velocity components is:336

un+1 = un +

(
√
gv̂ (ζ + f)− 1

∆x
δx (Π + Φs +K)

)
∆t, (7)337

338

vn+1 = vn +

(
−√gû (ζ + f)− 1

∆y
δy (Π + Φs +K)

)
∆t, (8)339

The relative vorticity ζ at cell centers can be numerically evaluated by:340

ζ =
1

∆A

(
δx

(
ux‖∆y

)
− δy

(
uy‖∆x

))
, (9)341

and the kinetic energy K can be numerically evaluated at cell interfaces by:342

K =
1

2

(
u⊥u⊥ + u‖u‖

)
. (10)343

Note that K or u⊥, u‖ are all defined at the cell interfaces, and the labels in x and y di-344

rections are omitted.345

All cell-center or cell-averaged variable values are straightforward to calculate. The346

next step is to determine the values at the cell interfaces using an efficient approximate347

Riemann solver and evaluate the terms in the δx and δy operators.348

3.2 Calculation of cell-interface values by LMARS349

The remaining variables to be determined at the cell interfaces are: u⊥, h, Π, Φs,350

and K (i.e., u⊥, u‖).351

Following the naming conventions in X. Chen et al. (2018), ηWi,j and ηEi.j denote the352

“west” and “east” volume boundary values of arbitrary variable η calculated by poly-353

nomial reconstruction within volume (i, j). Therefore, the mismatching ηEi,j and ηWi+1,j354

are evaluated at two sides of the interface between cell (i, j) and (i+ 1, j). The first step355

of LMARS is to evaluate cell interface values of Π and u⊥. In the x-direction:356

(ux⊥)i+0.5,j =
1

2

(
(ux⊥)

E
i,j + (ux⊥)

W
i+1,j

)
+

1

2ai+0.5,j

(
ΠE
i,j −ΠW

i+1,j

)
, (11)357

358

Πi+0.5,j =
1

2

(
ΠE
i,j + ΠW

i+1,j

)
+
ai+0.5,j

2

(
(ux⊥)

E
i,j − (ux⊥)

W
i+1,j

)
, (12)359

where a is the gravity wave speed (group velocity) estimated at cell interface:360

ai+0.5,j =

√
1

2

(
ΠE
i,j + ΠW

i+1,j

)
. (13)361
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Once the velocity normal to the cell interface determined, the values of the vari-362

ables to be transported are chosen using upwind values:363

hi+0.5,j =


hEi,j if (ux⊥)i+0.5,j > 0

hWi+1,j else

, (14)364

365

(
ux‖

)
i+0.5,j

=


(
ux‖

)E
i,j

if (ux⊥)i+0.5,j > 0(
ux‖

)W
i+1,j

else

, (15)366

and the operations on the y-direction is symmetric and analogous.367

Although algebraically h and Π are interchangeable with the relation Π = Gh,368

they play different roles in the governing equation. Π stands for pressure forcing term,369

and h is associated with material transportation. Therefore, their treatments are differ-370

ent in the LMARS solver. In a fully compressible model, their corresponding terms are371

the density and pressure (X. Chen et al., 2013; Li & Chen, 2019).372

The last piece for a single sub-cycle update is to reconstruct the prognostic vari-373

ables’ values at four horizontal cell edges. Following X. Chen et al. (2018) conventions,374

assuming an Nc-point stencil polynomial reconstruction for an arbitrary variable η:375

ηWi,j =

Ng−1∑
l=1−Ng

W (l)ηi+l,j , (16)376

377

ηEi,j =

Ng−1∑
l=1−Ng

E(l)ηi+l,j , (17)378

379

ηSi,j =

Ng−1∑
l=1−Ng

W (l)ηi,j+l, (18)380

381

ηNi,j =

Ng−1∑
l=1−Ng

E(l)ηi,j+l, (19)382

where W (l) = E(−l), Nc = 2Ng − 1, and Ng is the layers of ghost cells required at the383

tile edges. The lookup coefficient tables for point-value reconstruction and finite-volume384

reconstruction from X. Chen et al. (2018) is repeated in Tables 1 and 2 for reference. Al-385

though this work does not implement any monotonic filters, most filtering schemes can386

be considered equivalent to altering the reconstruction coefficient values locally accord-387

ing to the shape of the solutions.388
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Table 1. The coefficient to calculate “east” side midpoint value on a stencil number of

Nc = 2Ng − 1 from Point-Value variables

Ng E
(−2)
pt E

(−1)
pt E

(0)
pt E

(1)
pt E

(2)
pt

1 1

2 -1/8 3/4 3/8

3 3/128 -5/32 45/64 15/32 -5/128

Table 2. the coefficient to calculate “east” side midpoint value on a stencil number of

Nc = 2Ng − 1 from Volume-Mean variables

Ng E
(−2)
vm E

(−1)
vm E

(0)
vm E

(1)
vm E

(2)
vm

1 1

2 -1/6 5/6 1/3

3 1/30 -13/60 47/60 9/20 -1/20

3.3 Extension of the pressure gradient algorithm in L97 with LMARS389

viscous terms and the forward-backward algorithm390

Up to this part, the numerical discretization closely follows the original LMARS391

approach described by X. Chen et al. (2013, 2018), which is sufficient for this shallow392

water solver. Alternatively, Lin (1997) (L97) introduces an innovative spatial discretiza-393

tion to the pressure gradient term. Although mathematically equivalent to this work,394

the L97 pressure gradient algorithm considerably simplifies the discretization in a full395

3D compressible model and makes the numerical expression backward compatible with396

a shallow-water solver. One drawback of L97 is that the expression is a geometric real-397

ization of the volume interface pressure force integration. Therefore, it lacks the implicit398

diffusion calculated by a Riemann solver, and extra filters are required to stabilize the399

model. Fortunately, LMARS simple expression allows the separation of the geometric400

derivative terms and viscous terms. It is straightforward to extend the L97 pressure gra-401

dient algorithm with the LMARS viscous contribution and result in a fast and stable pres-402

sure gradient scheme.403
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As discussed previously, the volume interface pressure force obtained by LMARS404

described in Eq. 12 can be represented by an averaging term and a viscous term:405

Πi+0.5,j = Π̄i+0.5,j + Πvis
i+0.5,j , (20)406

where407

Π̄i+0.5,j =
1

2

(
ΠE
i,j + ΠW

i+1,j

)
, (21)408

409

Πvis
i+0.5,j =

ai+0.5,j

2

(
(ux⊥)

E
i,j − (ux⊥)

W
i+1,j

)
. (22)410

Therefore, the pressure gradient with the topographic contribution, for example, in the411

x-direction is discretized:412

∂

∂x
(Π + Φs) =

1

∆x
δx
(
Π̄ + Φ̄s

)
+

1

∆x
δxΠvis. (23)413

Note that X. Chen et al. (2018) explained that the viscous term Πvis in 1D is equiva-414

lent to a 2Ng-order diffusion term, which automatically matches the stencil size of the415

reconstruction schemes. The same function evaluates the surface geopotential at cell in-416

terface to warrant numerical consistency:417

(
Φ̄s
)
i+0.5,j

=
1

2

((
Φ̄s
)E
i,j

+
(
Φ̄s
)W
i+1,j

)
. (24)418

The following equivalent expressions are defined to simplify the expression:419

ηx(±,±) ≡ η̄i±0.5,j,k±0.5, (25)420

and the first term in pressure gradient can be rearranged in L97 format:421

422

δx
(
Π̄ + Φ̄s

)
=423

−

(
Φx(−,+) − Φx(+,−)

)(
px(+,+) − p

x
(−,−)

)
+
(

Φx(−,−) − Φx(+,+)

)(
px(−,+) − p

x
(+,−)

)
px(−,+) + px(+,+) − p

x
(−,−) − p

x
(+,−)

. (26)424

425

The expression in the y-direction is analogous. With this expression, the SWE and 3D426

compressible pressure gradient numerical discretization can share the identical code.427

Another expansion of the pressure gradient calculation is to implement the forward-428

backward (FB) technique (Mesinger, 1977) to enhance the stability of the model. X. Chen429

et al. (2018) conducted several numerical analysis on the FB technique. One of the key430

findings in the 1D linearized environment is that the FB operation is equivalent to a second-431

order diffusion term on the velocity components, which is vital for the stability of a single-432

step scheme. In this model with multi-step schemes, the FB scheme is not a necessary433
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component but can be useful in the future fully coupled 3D model as a diffusion mod-434

erator. Considering the FB is almost computationally equivalent to an explicit scheme,435

a relaxed-FB scheme is implemented by setting a parameter β ∈ [0, 1] to the geomet-436

ric pressure gradient term following Harris and Lin (2013):437

δx
(
Π̄ + Φ̄s

)
= (1− β) δx

(
Π̄ + Φ̄s

)n+1
+ βδx

(
Π̄ + Φ̄s

)n
. (27)438

Therefore, the parameter β in the FB scheme is an implicit control coefficient of a 2nd-439

order diffusion term. The response to various beta values will be validated in the test440

section.441

3.4 Temporal discretization442

The linearized two-step and three-step Runge-Kutta schemes (rk2 and rk3) are im-443

plemented for time integration. In each substep, denote prognostic variable array U and444

right-hand-side term RHS(U,Ng, β), where the dynamical parameters Ng controls the445

stencil size of the reconstruction scheme and β controls the strength of the FB algorithm446

in the pressure gradient evaluation. Therefore, the numerical properties of each subcy-447

cle update can be tailored to various purposes. Unless explicitly declared, the dynam-448

ical parameters in rk2 scheme is:449

U∗ = Un +
1

2
∆tRHS (Un, Ng = 1, β = 0) , (28)450

451

Un+1 = Un + ∆tRHS (U∗, Ng = 3, β = 0) . (29)452

The default rk2 configuration represents a dynamical core with the least operation counts453

in each time step and most implicit diffusion.454

The default rk3 scheme is:455

U (1) = Un +
1

3
∆tRHS (Un, Ng = 3, β = 1) , (30)456

457

U (2) = Un +
1

2
∆tRHS

(
U (1), Ng = 3, β = 1

)
, (31)458

459

Un+1 = Un + ∆tRHS
(
U (2), Ng = 3, β = 1

)
. (32)460

The default rk3 configuration represents dynamical core with minimized implicit diffu-461

sion.462

Although the rk2 scheme cost fewer operations in each full cycle, the rk3 scheme463

allows larger time steps. In practice, a fully optimized rk2 should still maintain better464
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computational efficiency over rk3, majorly due to the first-order substep is significantly465

cheaper than the standard high-order substep. The linearized Runge-Kutta schemes can466

highly optimize the computational memory storage cost since the values of RHS terms467

in each substep are not retained, and the storage of updated prognostic variables can be468

reused. Lastly, linearized rk3 only improves the CFL conditions and is 2rd-order accu-469

rate in time. Standard high-order accurate Runge-Kutta schemes can be found in X. Chen470

et al. (2013); Ullrich et al. (2010); C. Chen and Xiao (2008).471

4 Tests and results472

4.1 Testing Plan473

Table 3 introduces the naming convention to label the model configurations for a474

shallow water test simulation. For example, a run label C48.g2.rk3.b1.00 stands for a475

simulation of a 48×48×6 cubed-sphere grid with equiangular grid point distribution,476

and the discretization configuration is the rk3 scheme described in the previous subsec-477

tion. The value of the forward-backward parameter is 1, which is fully explicit. As de-478

scribed above, the default rk2 configuration not only uses fully implicit forward-backward479

pressure gradient evaluation but also minimizes the first substep complexity by using a480

1st-order accurate reconstruction scheme. The rk3 configuration implements a fully ex-481

plicit pressure gradient algorithm and uses 5-point-stencil reconstruction for all three sub-482

steps. Therefore, the rk2 and rk3 configurations represent the two extremes of the nu-483

merical diffusion and performance properties spectrums, with rk2 at the more compu-484

tationally efficient, more diffusive end, and vice versa. The diffusivities of other config-485

urations lie between the two ends.486

Most conventional tests require the simulation data on a traditional latitude-longitude487

grid for analysis. Therefore, all cubed-sphere simulation results are remapped by a 1st-488

order conservative algorithm onto a 144x72 spherical grid, which is about 2.5-degree grid489

spacing to minimize regridding introduced artifacts.490

The validation of this model contains three stages. The first stage employs the widely491

adopted Williamson et al. (1992) shallow-water test suite (W92) to match the conver-492

gence of the results to the literature. The smooth solutions in W92 also allow the val-493

idations of the order of accuracy and model’s overall response to diffusion. The sensi-494

tivities of the model-specific parameters, such as grid choices, discretization configura-495
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Table 3. Naming convention to label the model configurations of a shallow water test simula-

tion. For example, a run label C48.g2.rk3.b1.00 stands for a simulation with a 48x48x6 cubed-

sphere grid with equal-angular tile grid point distribution, and the time advancing is a 3-step

Runge-Kutta scheme, the value of the forward-backward parameter is 1, which is fully explicit.

Notation Description

C[N ] Cubed-sphere grid with N cells along each side of the cubed sphere tile.

N ×N × 6 total grid cells. N ∈ [48, 96, 192, 384, 768].

g0 Equi-edge grid

g2 Equiangular grid

rk2 2-substep time scheme with 1-point- and 5-point-stencil polynomial

reconstruction in two substeps.

rk3 3-substep time scheme with 5-point-stencil polynomial reconstruction in

all substeps

b[β] The forward-backward pressure gradient algorithm control parameter

β ∈ [0, 1]. (only appear when β value is non-default)

tions, beta values, are tested. In GCM development, the rotational mode plays a dom-496

inant role in large to mesoscale motions. Therefore in stage 2, the recently proposed modon497

test (Lin et al., 2017) is implemented to check the model’s quality in representing the498

vorticity. Last but not least, a new “splash test” inspired by X. Chen et al. (2018) is pro-499

posed in stage 3 to validate the model’s dispersion and dissipation properties. Minimiz-500

ing the phase speed errors at short wavelengths and maintaining scale-selective diffusion501

properties are vital for unstaggered algorithms.502

The time step in each run configuration is set at the maximum allowed values that503

the simulations are stable in all resolutions. The courant number for LMARS based solver504

is estimated by:505

cCFL =
(amax + amin) ∆t

(∆A/∆x)min

, (33)506

where amax and amin stand for the highest and lowest gravity wave speed evaluated at507

the initial condition, and (∆A/∆x)min is the shortest distance across a grid cell. Grant-508

ing that the maximum flow speed in LMARS should be less than the lowest gravity wave509

speed, the estimated courant number is an upper bound in the simulations. This def-510
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Table 4. Time step parameter n split and the corresponding courant number in each test case.

The courant numbers are associated with equi-edge grid configuration.

Test label Test description n split

(rk2)

cfl

(g0.rk2)

n split

(rk3)

cfl

(g0.rk3)

case1 Advection of a cosine bell 8 8

case2 Steady-state geostrophic

balanced flow

10 0.7 7 1

case5 Zonal flow over an isolated

conical mountain

13 0.85 9 1.22

case6 Rossby-Haurwitz wave 19 0.81 13 1.18

modon Colliding modons 11 1.02 7 1.61

splash Splash on the sphere 2 2

inition can be extended to the compressible 3D model by replacing the gravity wave speed511

with acoustic wave speed. In all simulations, the dynamic time step ∆t is calculated via:512

∆t = dt atmos/ (k split× n split), where dt atmos=3600 s is a base time step, the cy-513

cling parameter n split is unchanged in all resolutions, and k split scales with resolutions514

with values [1, 2, 4, 8, 16] corresponding to [C48, C96, C192, C384, C768]. Among all515

parameters, the choice of the time-marching scheme is the most dominant factor in de-516

termining the maximum allowed time steps. The equiangular grid allows slightly larger517

time steps than the equi-edge grid. Table 4 lists the time step parameter n spit and the518

corresponding courant numbers for all test cases.519

Error norm measures follow the W92 in the height field h:520

l1 (h) =
I (|h− hT |)
I (|hT |)

, (34)521

522

l2 (h) =

√√√√I
(

(h− hT )
2
)

I (h2T )
, (35)523

524

l∞ (h) =
max |h− hT |

max |hT |
, (36)525

with global mean operator:526

I (η) =

∑
η∆A∑
∆A

, (37)527
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where ∆A is the discretized area of the cell that variable η occupies, hT is the true so-528

lution of fluid depth, which is estimated by most accurate C768.g2.rk3.b1.00 results if529

no analytical solution is available.530

4.2 W92 shallow-water tests531

In W92, test cases 1, 2, 5, 6 (See test names in Table 4) are widely used in global532

shallow-water solver development. These four tests are conducted with various config-533

urations and resolutions, as described in the testing plan. In particular, case 1 and 2 usu-534

ally tests different rotating angles. Since the solutions do not show significant dependency535

on the rotation directions, only 45-degree rotation results are presented for brevity. The536

45-degree advection of the cosine bell and the solid body rotation tests are labels as case1a45537

and case2a45.538

Figure 4 is the l1, l2, and linf error norms plotted against the simulation time at539

C48 resolution. A general finding is that the errors of most non-stationary runs depend540

mostly on rk2 and rk3 differences rather than the grid type choices, indicating diffusion541

properties are the dominant factor in error growth. Case 1 uses constant flows, which542

do not evaluate the pressure gradient. Therefore, the results represent the errors solely543

due to advection schemes. Additionally, no sudden error spike is observed when the co-544

sine bell travels across cube-sphere tile boundaries in case 1. Thus, the singularities in545

a cubed-sphere geometry are sufficiently handled, and no grid imprinting is observed. In546

the solid-body rotation tests with stationary solutions, which are different from other547

tests, all the runs produce similar magnitudes of errors. In particular, the equi-edge grid548

(g0) produces slightly larger errors than the equiangular grid (g2). Lastly, in case 6, the549

error growth curves do not saturate to a steady number, indicating that the solutions550

remain in-phase (X. Chen et al., 2018) even after a significant period of simulation time.551

552

To determine the general order of accuracy in different configurations, Figure 5 plots553

the l2 error against different resolutions at specific dates. The results indicate that rk3554

runs consistently maintain second-order overall accuracy, which is expected since no high-555

order multi-dimension scheme is employed in this work. The previous section explains556

that the forward-backward scheme (FB) is numerically equivalent to adding a 2nd-order557

stabilizing term to the advection equation, which will degrade the overall 2nd-order ac-558
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Figure 4. l1, l2 and linf error norms growth with the simulation time of W92 test cases 1, 2, 5

and 6 at the C48 resolution.

curacy. Therefore, in cases 5 and 6, rk2 runs, which employ a fully forward-backward559

pressure gradient algorithm, demonstrate lower than 2nd-order overall accuracy. Case560

1 does not involve the pressure gradient. Thus, it is not affected by FB settings. It ap-561

pears that the balanced stationary case 2 is also free of FB accuracy degradation.562

A more in-depth analysis of FB impact is demonstrated in Figures 6 and 7. Inter-563

estingly, the overall order of accuracy gradually increases with higher beta values in Fig-564

ure 6. In figure 7, although all results have good convergence towards C768 high-resolution565

solutions, FB parameter β has a significant influence on the solver’s diffusion properties.566

The fully explicit C48.rk3.b1.00 run produces even higher maximum values (the small567

circle at the eastern equator) than the C768.rk3.b0.00 run with fully implicit pressure568

gradient evaluation.569

The Rossby-Haurwitz test (case6) with a wavenumber four is adopted in various570

works. This test can validate the solvers’ robustness in preventing the instability due to571

truncation error in the initial conditions. Figure 8 shows the height field at day 14, 40,572

80 at resolutions C48 and C768 with rk2 and rk3 configurations. Only the equal-angular573
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Figure 5. l2 error against different resolutions at specific dates with different resolutions. The

the value of s in the legends are slopes of each line that indicates the overall order of accuracy.

Figure 6. Same as Figure 5, but different beta values in case 5 are compared.
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Figure 7. The final day flow height field of case 5 with C48 and C768 resolutions. Different

configurations of rk2, rk3 and different strength of FB parameter β values are also compared.

The dashed circle is the location of the conical mountain. The contour interval is 50 m.
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Figure 8. Height field at day 14, 40, 80 at resolutions C48 and C768 with rk2 and rk3 config-

urations. Only the equal-angular grid (g2) is displayed because no strong dependency from the

grid type choices is found. The contour interval is 200 m.

grid is displayed because no strong dependency from the grid type choices is found. The574

solver achieves optimum symmetry for an extended simulation time of over 80 days. Al-575

though both being symmetric, the high-resolution C768 reference solutions maintain much576

better initial modal structures and intensity than the low-resolution solutions.577

4.3 Colliding modons578

The recently proposed colliding modons test (Lin et al., 2017; Zhang et al., 2019;579

Wang et al., 2019) evaluates the solver’s ability to simulate vorticity dynamics, which580

plays a dominant role in large to mesoscale motions. The colliding modon pairs can fully581

reach steady shapes after one day and travel back to approximately their original loca-582

tions at around day 100.A successful cycle can produce four symmetrical tracks in four583

quadrants, namely Qsw, Qse, Qnw, Qne. The quality of the results can be evaluated by584

comparing the travel distances and amplitudes of the vortex.585

Figure 9 demonstrates the colliding modons simulations with g2.rk3 configuration586

at various resolutions. The results show that the symmetry is well maintained in all runs.587

The simulations with C192 and better resolutions show good convergence. Figure 10 com-588

–27–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 9. Colliding modons simulations with g2.rk3 configuration at various resolutions.

pares the travel distance and amplitude of the modons in the northwest quadrant at day589

100. Note that the travel distance is measured starting at the end of day 1 to ignore ini-590

tial adjustments. Although the grid choices, discretization configurations have impacts591

on both values, the resolution is the deterministic factor to resolve the modons move-592

ment correctly, and C192 and better resolutions result in converged values. The bar plots593

in Figure 10 provide a quantitative baseline for future development.594

The colliding modons test provides an interesting perspective in atmospheric mod-595

eling applications. The spatial scale of each modon is at around 1000 km. The exper-596

iments show that although a 200 km resolution (C48) model can capture the motion of597

the modon, the speed is not correctly simulated, and the strength of the vortex is rapidly598

dissipated by model internal diffusion. Considering that many rotational processes that599

are of interest in global circulation models are of horizontal scales less than 1000 km, in-600
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Figure 10. The travel distance and amplitude of the modons in the northwest quadrant at

day 100. Note that the travel distance is measured starting at the end of day 1 to ignore initial

adjustments.

creasing the model resolution may be the most effective way to improve the accuracy in601

simulating many rotational events such as cyclones and storms. Recent studies also sug-602

gest significant improvements in simulating atmospheric vortices by enhancing the model603

resolution. For example, Murakami et al. (2015) found that by improving resolution from604

50 to 25 km, the model can better capture categories 4 and 5 hurricanes. Gao et al. (2019)605

showed better hurricane structures by locally increasing the model resolution from 25km606

to 8km.607

4.4 Splash on the sphere608

Previous subsections cover a comprehensive range of numerical model properties609

such as the correctness, orders of accuracy, faithful vortex representation. This section610

validates the dispersion and dissipation properties at various wavelengths by introduc-611

ing a “splash on the sphere” test. Historically, unstaggered solvers are considered infe-612

rior in representing the short wave propagation due to poor dispersive properties. How-613

ever, such conclusions usually are based on the low-order linearized analysis, which does614

not reflect high-order complex real-world applications. By discretizing the high-order lin-615
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Figure 11. Exaggerated height field of the splash on the sphere test at Days 0, 2, 5, and 7.

earized analysis in Courant numbers and numerical phase, X. Chen et al. (2018) found616

the grid staggering choices have negligible phase speed influence in high-order algorithms.617

Furthermore, X. Chen et al. (2018) also introduced a simple 1D test to visualize the dis-618

persion behavior at short waves and the diffusion control of grid-scale noise. Inspired by619

this work, this section presents an extended 2D version of a “splash on the sphere” test620

to evaluate solver capabilities in faithfully represent short wave propagations.621

The test has a simple physical process to splash a sinusoidal droplet at the North622

Pole and freely propagate on the non-rotational sphere. The choice of the sinusoidal sig-623

nal is to limit the waves in a single modal mode and test the sharp gradient between the624

perturbation and the background when a monotonic algorithm is implemented in the fu-625

ture. The Coriolis coefficient f and the topography are both zero, and the initial veloc-626

ity field is stationary. The height field with the initial splashing perturbation is defined:627

Φ =


Φ0 + Φ′ cos

(
π
2
r
R

)
if r < R,

Φ0 else,

(38)628

where r is the distance from the north pole, and Φ0 = 50 m × G ≈ (πRe/10 Day)
2
,629

Φ′ = 1 m × G, and R = 500 km. The design of a 50 m background flow height allows630

the propagating waves to reach the South Pole at approximately ten days, which is an631

arbitrary choice. Figure 11 illustrates the exaggerated height field at Days 0, 2, 5, and632

7.633
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Figure 12. Day-5 snapshots in the meridional direction of g2.rk3 runs at various resolutions.

The analysis of this work focuses on day-5 snapshots when the splash waves prop-634

agate to the equatorial region. The results in all resolutions are regridded to 144×72635

latitude-longitude resolution. Figure 12 shows the day-5 snapshots in the meridional di-636

rection of g2.rk3 runs at various resolutions. All simulations propagate the splash at the637

same location, indicating no phase error is observed. The C48 run shows an obvious spread-638

ing of the wave due to the excessive diffusion at this wavelength. Since this work does639

not implement any monotonic algorithm, overshoots and undershoots are also observed640

in the results.641

Figure 13 quantitatively compares day-5 snapshots of distances to the north pole642

(NP), peak flow height, and maximum zonal wind absolute values with different discretiza-643

tion settings, gird choices, and resolutions. The identical distances to NP indicate the644

solver’s excellent dispersive properties, which is highly desired with the unstaggered al-645

gorithm. In contrast to the modon tests, the peak flow height comparison shows an in-646

triguing observation that the model’s intrinsic diffusion properties have an even more647

significant influence on the results than the resolution differences. In the last column,648

a perfect numerical solver should not produce any zonal wind in this test. The non-zero649

values are due to the imperfect representation of the curvilinear cubed-sphere geome-650

try. Therefore, it is an excellent test to check the grid discretization performance. It is651
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Figure 13. Day-5 snapshots of distances to the north pole (NP), peak flow height, and maxi-

mum zonal wind absolute values with different discretization settings, different gird choices, and

resolutions.

reassuring to find that the different grid choices do not produce excessive discrepancies652

in geometric errors. The resolutions and discretization play more critical roles than grid653

choices.654

This work only tests one splash configuration for brevity. In X. Chen et al. (2018),655

a square wave is also an informative setup to investigate sharp gradient handlings. In656

future work, a “square splash” can be an appealing option once more sophisticated lo-657

cal monotonic algorithms are included. The tracking of maximum zonal wind absolute658

values can be a useful gauge of high-order multi-dimension algorithms.659

4.5 Discussion660

The model demonstrates competitive performance in all numerical tests. Even with-661

out any explicit filter, the solver exhibits a broad range of organic implicit diffusion prop-662

erties, mainly controlled by reconstruction stencil size and strength of forward-backward663

pressure gradient settings. Considering a full-fledged GCM is an interplay between nu-664

merical methods and highly uncertain physics parameterization, flexibility in diffusion665

control is helpful.666
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The results provide some perspectives in faithfully simulating various processes.667

The rotational motions in the colliding modon tests and the propagation of character-668

istics in the splash tests are both about a 1000-km spatial scale. Although the C48 sim-669

ulations can capture both events, the qualities are significantly less reliable than those670

of higher resolution counterparts. C96 is the recommended minimum resolution to ac-671

curately represent these processes, which is about ten times grid-spacing. This guide-672

line also indicates the unstaggered solver has balanced capabilities in resolving the ro-673

tational mode, and the divergence mode.674

Lastly, with the duo-grid system and the tile-edge remapping, the solver is free of675

any grid imprinting issues. The grid-type choices show negligible differences in the so-676

lutions compared to discretization differences and resolutions, which indicates the de-677

sired consistency in grid choices for various purposes.678

5 Conclusions and future work679

In this work, we have successfully demonstrated the LMARS-based shallow-water680

solver on two gnomonic cubed-sphere grids with controllable variations of computational681

efficiency and diffusion properties. We use the W92 test suite to warrant the model to682

produce results that converge to the literature. The model illustrates a broad range of683

diffusion and controls the delicate balance between the order of accuracy and the robust-684

ness by various dynamical core parameters. In particular cases, numerical tests demon-685

strate that many resolvable processes are not necessarily reliable. We also designed a test686

to isolate numerical properties by visualizing the dissipation and dispersion. Lastly, Griffies687

(2004, Chap 17) discussed that explicit frictional operators might alter pressure gradi-688

ent and angular momentum due to imbalanced design. With no explicit damping, the689

control of implicit diffusion in this model is organic and does not cause artifacts in pres-690

sure gradient calculations.691

There are several new ideas in this work. We introduced the duo-grid system that692

unifies arbitrary gnomonic cubed-sphere grid representations. It also provides the 1D align-693

ment for arbitrary gnomonic grids at halo regions. This work also extends the L97 pressure-694

gradient integration technique with LMARS diffusion contribution, resulting in a fast695

and stable discretization. In the numerical test section, the extension of more quanti-696

tive metrics to the modon tests allows straightforward comparison between different mod-697
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els and configurations. The splash on the sphere test offers an economical way to get 1D698

dispersion and dissipation properties of the model without extracting the schemes into699

a 1D testbed.700

Balancing the computational performance and numerical accuracy is one of the top701

motivations in this development. Therefore, this work implements several optimizations.702

Some improvement does not sacrifice numerical accuracy. For example, the choice of unit-703

length basis vectors significantly simplifies the mathematical expressions of the curvi-704

linear system, thus avoiding the computational storage of redundant vector transforma-705

tion matrices. On the other hand, although halo region 1D remap can be made more so-706

phisticated with higher-order schemes, we choose the simple piecewise linear reconstruc-707

tion to maintain a minimum unbalanced workload in parallel computing. Lastly, a shallow-708

water testbed cannot determine the most optimal solver diffusion properties in a fully709

coupled GCM. Therefore, this work provides a guideline for a controllable range of or-710

ganic numerical properties once integrated into a full model.711

The next step is the extension of this work to a 3D compressible atmosphere with712

the cubed-sphere grid. Previous work has implemented LMARS in a vertical 2D com-713

pressible atmosphere with both Eulerian and Lagrangian vertical coordinates (X. Chen714

et al., 2013). Li and Chen (2019) demonstrated an energy-conserving model with sim-715

ple microphysics under the LMARS Eulerian framework. Therefore, the LMARS 3D ex-716

tension on the cubed-sphere grid has several core components validated in various en-717

vironments. Another future topic is to include more sophisticated advection components,718

such as monotonic constraints (van Leer, 1979), high-order multi-dimension transport719

schemes (Lin & Rood, 1996) in the horizontal direction. With the vertical Lagrangian720

coordinates, this development shares substantial similarities with the FV3 framework,721

which can guide future research.722

Appendix A List of constants, symbols and their values and units723

To make the notations consistent and clear, Table A1 summarizes all important724

constants, symbols, their values and units in this work for reference.725

Symbol Description Values Units

G Gravitational constant 9.80665 ms−2

Ω Rotational speed of the Earth 7.292e-5 s−1

–34–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

R Radius of the Earth 6.3712e6 m

êλ Unit vector in zonal direction 1 NA

êφ Unit vector in meridional direction 1 NA

ê1 Unit vector in x-direction (local to cubed-sphere tile) 1 NA

ê2 Unit vector in y-direction (local to cubed-sphere tile) 1 NA

k̂ Unit vector in sphere radius direction 1 NA

λ Longitude rad

φ Latitude rad

i, j Indices to label grid points in x- and y-directions NA

α angle between two curvilinear coordinates rad

gij Covariant 2D metric tensor of the curvilinear grid

system, note the ij in this context is the dimension

iteration in Einstein Notation

NA

gij Contra-variant 2D metric tensor of the curvilinear

grid system

NA

h Thickness of the fluid m

Π Thickness of the fluid in term of geopotential m2s−2

Φ Geopotential m2s−2

Φs Surface geopotential m2s−2

~u 2D velocity vector ms−1

f Coriolis parameter s−1

ζ Vertical component of the relative vorticity s−1

u Covariant wind component in x-direction ms−1

v Covariant wind component in y-direction ms−1

ũ Contra-variant wind component in x-direction ms−1

ṽ Contra-variant wind component in x-direction ms−1

g Metric coefficient of the curvilinear geometry NA

uλ Wind component in zonal direction ms−1

uφ Wind component in meridional direction ms−1

Jc2l Matrix to convert (u, v) to (uλ, uφ) NA

J l2c Matrix to convert (uλ, uφ) to (u, v) NA

ux⊥ Wind projection perpendicular to cell interface in

x-direction

ms−1
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ux‖ Wind projection parallel to cell interface in x-

direction

ms−1

uy⊥ Wind projection perpendicular to cell interface in

y-direction

ms−1

uy‖ Wind projection parallel to cell interface in y-

direction

ms−1

a Gravity wave speed (group speed of the fluid) ms−1

Table A1: List of parameters and symbols used throughout this

document

Appendix B Gnomonic projection initialization algorithms726

This section provides a detailed mathematical reference-line based gnomonic cubed-727

sphere generation process for reference.728

B1 Basic geometric algorithms729

Each gnomonic projection can be described by a 3D Cartesian vector ~p (x, y, z), which730

is uniquely determined by a point on the sphere or a 3D vector on the spherical coor-731

dinate with unit length ~p (λ, φ). The valid information is the direction of the vector, and732

the length of the vector is trivial. The conversion can be written:733

x = cosφ cosλ, (B1)734

735

y = cosφ sinλ, (B2)736

737

z = sinφ, (B3)738

and739

λ = arctan
y

x
, (B4)740

741

φ = arcsin
z√

x2 + y2 + z2
, (B5)742

where the Fortran intrinsic functions atan2() is used to place λ in the range of −π <743

λ ≤ π.744

To calculate the great circle distance between two points:745

dist (~p1 (λ1, φ1) , ~p2 (λ2, φ2)) = R arccos

(
~p1 · ~p2
|~p1| |~p2|

)
, (B6)746
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or747

dist (~p1 (λ1, φ1) , ~p2 (λ2, φ2)) = R arccos (cosφ1 cosφ2 cos (λ1 − λ2) + sinφ1 sinφ2) . (B7)748

To calculate the area of a grid cell:749

area (~p1, ~p2, ~p3, ~p4) = R2 (α412 + α123 + α234 + α341 − 2π) , (B8)750

where αijk is the angle between three points (~pi, ~pj , ~pk) with “right-hand rule” from ~pj ,751

and can be calculated by:752

αijk = arccos

(
(~pi × ~pj) · (~pj × ~pk)

|~pi × ~pj | · |~pj × ~pk|

)
. (B9)753

The mid-point of two vectors ~p1 and ~p2 is:754

mid (~p1, ~p2) =
~p1 + ~p2

2
. (B10)755

B2 Initializing gnomonic projection with reference lines on tile one756

As illustrated in Fig. 3, the eight corners of the tiles in 3D Cartesian coordinates757

are (x, y, z) = (±1,±1,±1). The resolution of the cubed-sphere grid is denoted by C [N ],758

which indicates N × N × 6 total grid cells. Let the first tile be centered at (λ, φ) =759

(0, 0) or the cube-tile with vertices (x, y, z) = (1,±1,±1) and denote (X,Y ) the local760

coordinates on this cube-tile, the 3D Cartesian coordinates can be written by:761

(x, y, z) = (1, X, Y ) , (B11)762

and the projection vector can be also written ~p (X,Y ). Additionally, let (i, j) be the in-763

dices of the grid points on tile one, and the indices start counting from 1. Therefore, the764

coordinate sets (x, y, z), (λ, φ), (X,Y ) and (i, j) are interchangeable and representing the765

same gnomonic projection vector. The vertices on the tile can be uniquely determined766

by a column of Y values on the cube tile surface.767

B21 Equidistance projection768

To get the Y values of the red reference column:769

Y (iref, j) = −1 + (j − 1) δh, (B12)770

where δh = 2/N , iref = N/2 + 1. Then the red reference row is:771

X (i, jref) = Y (iref, i) , (B13)772
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where iref = N/2 + 1, and the grid mesh on the cube tile can be populated from the773

two reference lines accordingly:774

X (i, j) = X (i, jref ) = Y (iref, i) , (B14)775

776

Y (i, j) = Y (iref, j) . (B15)777

Therefore, ~p (X,Y ) can be easily converted to ~p (x, y, z) and ~p (λ, φ), and the grid points778

on the cubed-sphere tile is generated. One may observe that the values of iref and jref779

are trivial780

B22 Equiangular projection781

Comparing to equidistance projection, the equiangular grid generation requires an782

extra first step to project grid points from the green reference column to the cube tile783

and get the Y values. The angular step of the grid points on the green row is:784

δζ =
2αref

N
, (B16)785

where αref = π/4. Then the Y values are:786

Y (iref, j) = Rref tan ((j − 1) δζ − αref) , (B17)787

where Rref = 1. Then the entire set of grid points on the tile can be populated follow-788

ing the same procedure as the equidistance projection.789

B23 Equi-edge projection790

The procedures to generate the equi-edge projection are identical to the equian-791

gular projection except different parameters: αref = arcsin
(√

3
)
, Rref =

√
2.792

B3 Populating grid points to six tiles793

Once the grid points on tile one are generated, the points on the rest of the tiles794

can be populated using the “staircase” tile-interlock pattern. The basic rotations to any795

3D vector can be decomposed by the combination of the rotations about each axes of796

the Cartesian coordinate system. The rotation about each axes by an angle β following797

right-hand rule:798

Rx (β) =


1 0 0

0 cosβ − sinβ

0 sinβ cosβ

 , (B18)799
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Ry (β) =


cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 , (B19)800

801

Rz (β) =


cosβ − sinβ 0

sinβ cosβ 0

0 0 1

 . (B20)802

In particular,803

Rx (90◦) =


1 0 0

0 0 −1

0 1 0

 , (B21)804

805

Ry (90◦) =


0 0 1

0 1 0

−1 0 0

 , (B22)806

807

Rz (90◦) =


0 −1 0

1 0 0

0 0 1

 . (B23)808

Therefore, the rotations for each tile:809

~p (i, j; tile = 2) = Rz (90◦) ~p (i, j; tile = 1) , (B24)810

811

~p (i, j; tile = 3) = Rx (90◦)Rz (90◦) ~p (i, j; tile = 1) , (B25)812

813

~p (i, j; tile = 4) = Rx (90◦)Rz (180) ~p (i, j; tile = 1) , (B26)814

815

~p (i, j; tile = 5) = Ry (90◦)Rz (270) ~p (i, j; tile = 1) , (B27)816

817

~p (i, j; tile = 6) = Ry (90◦) ~p (i, j; tile = 1) , (B28)818

or:819

~p (i, j; tile = 1) = [1, X, Y ] , (B29)820

821

~p (i, j; tile = 2) = [−X, 1, Y ] , (B30)822

823

~p (i, j; tile = 3) = [−X,−Y, 1] , (B31)824

825

~p (i, j; tile = 4) = [−1,−Y,−X] , (B32)826

827

~p (i, j; tile = 5) = [Y,−1,−X] , (B33)828

829

~p (i, j; tile = 6) = [Y,X,−1] . (B34)830
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Appendix C The governing equations831

This shallow water model employs the vector-invariant form governing equations:832

∂h

∂t
= −∇ · (h~u) , (C1)833

834

∂~u

∂t
= − (ζ + f)~k × ~u−∇

(
(Π + Φs) +

1

2
~u · ~u

)
, (C2)835

where836

Π = Gh, (C3)837
838

ζ = k̂ · (∇× ~u) , (C4)839
840

f = 2Ω sinφ. (C5)841

The definition of the variables, constants, and their values are summarized in Table A1.842

C1 Generic form in a curvilinear grid system843

This solver uses covariant wind components as the prognostic variable. The covari-844

ant wind components are the projections of the wind vector on the curvilinear coordi-845

nates:846

u = ~u · ê1, (C6)847
848

v = ~u · ê2, (C7)849

and the corresponding contra-variant wind components satisfy:850

~u = ũê1 + ṽê2. (C8)851

A covariant 2D metric tensor gij of the curvilinear grid system on a tile of the cubed-852

sphere is defined by Einstein Notation:853

gij = êi · êj , (C9)854

with the metric coefficient:855

g = det(gij). (C10)856

Note êi and êj in the Einstein Notation are iterations along dimensions ê1 and ê2. The857

contra-variant 2D metric tensor gij is the inverse of gij , and the conversions between co-858

variant and contra-variant vector component are:859  u

v

 = gij

 ũ

ṽ

 , (C11)860
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861  ũ

ṽ

 = gij

 u

v

 . (C12)862

C2 The choice of the basis vectors and the optimizations863

The choice of the definition of ê1 and ê2 are flexible. Modelers made various def-864

initions of these terms in the literature. To yield concise mathematical expressions in nu-865

merical discretization, the covariant unit vectors are set to unit length in space, or |ê1| =866

|ê2| = 1. Thus, the values at the each grid point (i, j) on a cubed-sphere tile can be cal-867

culated in a discretized form:868

(ê1)i,j =

(
k̂i,j × k̂i+1,j

)
× k̂i,j∣∣∣(k̂i,j × k̂i+1,j

)
× k̂i,j

∣∣∣ , (C13)869

870

(ê2)i,j =

(
k̂i,j × k̂i,j+1

)
× k̂i,j∣∣∣(k̂i,j × k̂i,j+1

)
× k̂i,j

∣∣∣ , (C14)871

with:872

k̂ (λ, φ) =


cosφ cosλ

cosφ sinλ

sinφ

 . (C15)873

This algorithm to determine ê1 and ê2 offers better flexibility when constructing vari-874

ous implementations of the cubed-sphere grids.875

Define α the angle between two local curvilinear coordinates, or the unit vectors876

ê1 and ê2 on a cubed-sphere tile, it yields:877

sinα = k̂ · (ê1 × ê2) , (C16)878

879

cosα = ê1 · ê2. (C17)880

Note that discrete grid subscripts i, j are omitted for cleaner expression, since all vari-881

ables are co-located.882

This set of basis produces concise mathematical forms of the metric tensors:883

gij =

 1 cosα

cosα 1

 , (C18)884

885

gij =
1

sin2 α

 1 − cosα

− cosα 1

 , (C19)886

887 √
g = sinα. (C20)888
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C3 Conversions of vector components to the regular latitude-longitude889

coordinates890

The latitude-longitude basis vectors are:891

êλ (λ, φ) =
1

cosφ

∂k̂

∂λ
=


− sinλ

cosλ

0

 , (C21)892

893

êφ (λ, φ) =
∂k̂

∂φ
=


− sinφ cosλ

− sinφ sinλ

cosφ

 , (C22)894

and define the regular zonal and meridional wind components uλ and uθ. The conver-895

sion matrices are:896

Jc2l =

 ê1 · êλ ê2 · êλ

ê1 · êφ ê2 · êφ

 gij , (C23)897

898

J l2c =
gij

det (Jc2l)

 Jc2l11 −Jc2l12

−Jc2l21 Jc2l22

 , (C24)899

with the conversion relations:900  uλ

vφ

 = Jc2l

 u

v

 , (C25)901

902  u

v

 = J l2c

 uλ

vφ

 . (C26)903

C4 Conversions of vector components to the local orthogonal coordi-904

nates at cell interfaces905

The preparation of the Riemann solver requires the wind vectors to be projected906

to the local orthogonal coordinates at the cell interfaces. Therefore, at cell interfaces in907

x-direction:908

ux⊥ = ũ sinα, (C27)909

910

ux‖ = ũ cosα+ ṽ = v, (C28)911

or:912  ux⊥

ux‖

 =

 sinα 0

cosα 1


 ũ

ṽ

 , (C29)913
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with inversion:914  ũ

ṽ

 =

 1
sinα 0

− cosα
sinα 1


 ux⊥

ux‖

 (C30)915

At cell interfaces in y-direction:916

uy⊥ = ṽ sinα, (C31)917

918

ux‖ = ṽ cosα+ ũ = u, (C32)919

or:920  uy⊥

uy‖

 =

 0 sinα

1 cosα


 ũ

ṽ

 , (C33)921

with inversion:922  ũ

ṽ

 =

 − cosα
sinα 1

1
sinα 0


 uy⊥

uy‖

 (C34)923

A small optimization can be observed from the above subsections. With basis vec-924

tors ê1 and ê2 being restricted to unit length, many vector conversions can be carried925

out with simple operations using pre-calculated values of sinα and cosα. Therefore, the926

model saves considerable memory storage and computational cost by dropping many met-927

ric matrices and reducing operation counts. Moreover, the metric terms generation are928

more flexible in arbitrary gnomonic projections and simpler than most of the literature.929

C5 Projecting the governing equations to the curvilinear coordinates930

Projecting the continuity equation and the vector-invariance form momentum equa-931

tion to the curvilinear coordinates yields:932

∂h

∂t
= − 1
√
g

(
∂

∂x
(
√
ghũ) +

∂

∂y
(
√
ghṽ)

)
, (C35)933

∂u

∂t
=
√
gv̂ (ζ + f)− ∂

∂x
(Π + Φs +K) , (C36)934

935

∂v

∂t
= −√gû (ζ + f)− ∂

∂y
(Π + Φs +K) , (C37)936

with the relative vorticity and the kinetic energy defined by:937

ζ =
1
√
g

(
∂v

∂x
− ∂u

∂y

)
, (C38)938

939

K =
1

2
(uũ+ vṽ) . (C39)940
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These two terms can be further rearranged and optimized with better finite-volume941

representations in the numerical discretization process.942
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