
Supplementary Information 1 

A. Predicted seismic structures for non-deforming oceanic upper mantle 2 

For an oceanic upper mantle that is not deforming, we assume that the grain size is 3 

constant. We consider different grain sizes (1 mm – 10 cm) and calculate their 4 

respective seismic structures (blue lines, Figure S1). As expected, Q values (Figure S1a) 5 

within the upper mantle are larger for larger grain size, resulting in faster seismic 6 

velocities (Figure S1b) than for smaller grain size. Notably, a LVZ can be produced 7 

(Figure S1b) but not the low Q zone (Figure S1a).  8 

B. Analytical solution for 1-D rheology-dependent mantle flow in N layers 9 

To implement composite rheology in the upper mantle, we must combine both 10 

Newtonian Poiseuille flow (PFn1) and plug flow (PFn3) models. For an assigned 11 

Newtonian rheology for the mantle transition zone, we only use the PFn1 model. We 12 

Figure S1. Seismic structures for oceanic upper mantle that is not deforming. (a) The seismic Q structures 

are calculated using Faul and Jackson’s (2010) formulation for 100 s period, where Q is sensitive to a chosen 

grain size (values given), which is assumed constant in the absence of deformation. The global KR18 model is 

from Karaoglu & Romanowicz (2018). (b) The associated forward shear wave velocities are estimated using 

Karato’s (1993) formulation, again for constant chosen grain size. The global ND08 model is from Nettles & 

Dziewonski (2008). 



apply Equations (3) and (6.2) and the boundary conditions shown in Figure S2 and 13 

summarized below: 14 

𝑣𝑥,1(𝑧0) = 𝑈𝑝     (S1) 15 

𝑣𝑥,𝑁(𝑧𝑁) = 0     (S2) 16 

at 𝑧𝑖:  𝜏𝑖(𝑏𝑜𝑡𝑡𝑜𝑚 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑜𝑓 𝑖𝑡ℎ 𝑙𝑎𝑦𝑒𝑟) = 𝜏𝑖+1(𝑡𝑜𝑝 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑜𝑓 𝑖𝑡ℎ + 1 𝑙𝑎𝑦𝑒𝑟) (S3) 17 

at 𝑧𝑖:   𝑣𝑥,𝑖(𝑏𝑜𝑡𝑡𝑜𝑚 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑜𝑓 𝑖𝑡ℎ 𝑙𝑎𝑦𝑒𝑟) = 𝑣𝑥,𝑖+1(𝑡𝑜𝑝 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑜𝑓 𝑖𝑡ℎ + 1 𝑙𝑎𝑦𝑒𝑟) (S4) 18 

This yields a set of equations: 19 

𝜕𝑝

𝜕𝑥
𝑧𝑖  +  𝐶𝑖 =

𝜕𝑝

𝜕𝑥
𝑧𝑖  +  𝐶𝑖+1  𝐶𝑖 = 𝐶𝑖+1    (S5) 20 

𝐴𝑃𝐹𝑛1,𝑖 [
1

2

𝜕𝑝

𝜕𝑥
𝑧𝑖

2 + 𝐶𝑖𝑧𝑖] + 𝐴𝑃𝐹𝑛3,𝑖

[
 
 
 
1

4
(
𝜕𝑝

𝜕𝑥
)

3

𝑧𝑖
4 + 𝐶𝑖 (

𝜕𝑝

𝜕𝑥
)

2

𝑧𝑖
3

+
3

2
𝐶𝑖

2 𝜕𝑝

𝜕𝑥
𝑧𝑖

2 + 𝐶𝑖
3𝑧𝑖 ]

 
 
 

+ 𝑘𝑖 = 21 
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] + 𝑘𝑖+1  (S6) 22 

We linearize the equations by grouping the terms in Equations (S5) and (S6) such that 23 

the terms with first degree C’s and k’s (constants of integration) are on the left side of 24 

the equation and the remaining terms are on the right side. Then, we can express the 25 

boundary conditions for the layered system as MR=A where vector R contains the 26 

constants of integration (C’s and k’s) and vector A has the higher degree C’s: 27 
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where, 30 

𝑎𝑃𝐹𝑛1,𝑖 = 𝐴𝑃𝐹𝑛1,𝑖 𝑧𝑖     (S8) 31 
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 34 
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The terms 𝐴𝑃𝐹𝑛1,𝑖 and 𝐴𝑃𝐹𝑛3,𝑖 for the upper mantle are defined in Equations (5.3) and 36 

(5.4), respectively. For the mantle transition zone (MTZ), 𝐴𝑃𝐹𝑛1,𝑖 = 2/𝜂𝑀𝑇𝑍 and 37 

𝐴𝑃𝐹𝑛3,𝑖 = 0. The higher degree 𝐶𝑖 terms in Equation (S11) or in vector A are considered 38 

constant and we initially guess them to be the same for every layer 𝑖 (as in Equation 39 

S5) to determine the 𝐶𝑖 and 𝑘𝑖 in vector R by inversion (R=M-1A). Then, the 𝐶𝑖 in vector 40 



A is updated in every iteration with the calculated 𝐶𝑖 in vector R until their absolute 41 

difference is ≤ 10−6. Then, stresses (Equation 3) and velocities (Equation 6.2) with 42 

depth can be calculated using the derived 𝐶𝑖 and 𝑘𝑖 from vector R. 43 

C. Iteration scheme to compute steady state grain size and stress evolution 44 

The 𝐴𝑃𝐹𝑛1,𝑖 and 𝐴𝑃𝐹𝑛3,𝑖 parameters used in calculating stress 𝜏 and horizontal velocity 45 

𝑣𝑥 (Section A) are dependent on grain-size, which evolves with time (Equation 7). 46 

Both 𝜏 and 𝑣𝑥 reach a steady state, which is determined by employing the scheme 47 

below:  48 

𝒕𝟎:                          𝑎𝑠𝑠𝑢𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑑0  → 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑣𝑥,𝑡0  𝑎𝑛𝑑 𝜏𝑡0   49 

𝒕𝟏 = 𝒕𝟎 + ∆𝒕:     𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 ∆𝑑1 𝑎𝑛𝑑  𝑑1  → 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒  𝑣𝑥,𝑡1  𝑎𝑛𝑑 𝜏𝑡1   50 

𝒕𝟐 = 𝒕𝟏 + ∆𝒕:     𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 ∆𝑑2 𝑎𝑛𝑑 𝑑2  → 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒  𝑣𝑥,𝑡2  𝑎𝑛𝑑 𝜏𝑡2  51 

⋮ 52 

𝒕𝒌 = 𝒕𝒌−𝟏 + ∆𝒕:     𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 ∆𝑑𝑘 𝑎𝑛𝑑 𝑑𝑘  → 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒  𝑣𝑥,𝑡𝑘  𝑎𝑛𝑑 𝜏𝑡𝑘 53 

  

Figure S2. The boundary conditions for 1D model with N layers in terms of stress τi and flow horizontal velocity 

vx,i where i is the layer number. The Ci and ki integration constants in Equation (3) for stress and Equation (6.2) 

for flow velocity are determined, which allows us to solve stresses and flow velocities within the model.  



where 54 

𝑡𝑘 = 𝑘∆𝑡 = 𝑔𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 55 

∆𝑡 = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑜𝑟 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 56 

𝑑𝑘 = 𝑛𝑒𝑤 𝑔𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑎𝑓𝑡𝑒𝑟 𝑡𝑘 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝑆12)) 57 

∆𝑑𝑘 = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑔𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑡𝑘 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  (𝑆13))  58 

𝑣𝑥,𝑡𝑘 = ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤 𝑎𝑡 𝑡𝑘 59 

𝜏𝑡𝑘 = 𝑠𝑡𝑟𝑒𝑠𝑠 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤 𝑎𝑡 𝑡𝑘 60 

After time 𝑡𝑘 (which is 𝑡𝑘−1 + ∆𝑡), we determine the new grain size structure 𝑑𝑘: 61 

𝑑𝑘 = 𝑑𝑘−1 + ∆𝑑𝑘       (S12) 62 

where ∆𝑑𝑘 is estimated by multiplying the grain-size change rate 𝑑̇𝑘−1 at 𝑡𝑘−1 by ∆𝑡:  63 

∆𝑑𝑘 = ∆𝑡[𝑑̇𝑘−1] = ∆𝑡[𝑑̇𝑔𝑔,𝑘−1 − 𝑑̇𝑑𝑟,𝑘−1]   (S13) 64 

Here 𝑑̇𝑘−1 is estimated using Equation (7) where 𝑑̇𝑔𝑔,𝑘−1 is the grain growth term and 65 

𝑑̇𝑑𝑟,𝑘−1 is the dynamic recrystallization term (the first and second terms on the right 66 

hand side of Equation (7), respectively). The constants used in the calculation of 𝑑̇ (as 67 

described by Equations (7) and (S13)) are summarized in Table S1. Using the new 𝑑𝑘, 68 

we recalculate the horizontal velocity, shear stress, and viscosity structures. We iterate 69 

this process until a steady state grain size is reached at steady-state time 𝑡𝑠𝑠 (typically 70 

<< 1 Myr, criterion is discussed in Section D). 71 



Table S1. Grain size evolution parameters are taken from Behn et al. (2009) since they are calibrated 72 

to laboratory data, and the flow law parameters are from Hirth and Kohlstedt (2003). 73 

Symbol Description Value Units 

𝑑̇𝑔𝑔 Grain growth rate  m/s 

𝑑̇𝑑𝑟 Dynamic recrystallization rate  m/s 

𝜏 Shear stress  Pa 

𝜎 Differential stress (2𝜏)  Pa 

𝑝𝑔 Grain growth exponent 3  

𝐺𝑜(dry) 
Grain growth constant for 50 

ppm H/Si 
1.5 × 10−5 𝑚𝑝𝑔𝑠−1 

𝐺𝑜(wet) 
Grain growth constant for 1000 

ppm H/Si 
4.5 × 10−4 𝑚𝑝𝑔𝑠−1 

𝐸𝑔 
Activation energy for grain 

growth 
350 kJ/mol 

𝑉𝑔 
Activation volume for grain 

growth 
4 × 10−6 𝑚3/𝑚𝑜𝑙 

𝜆 
Reciprocal of strain required for 

new grain size 
10  

𝜒 

Fraction of work done by 

dislocation to ground boundary 

area 

0.1  

𝑐 Geometrical constant 3  

𝛾 
Average specific grain 

boundary energy 
1 𝐽/𝑚2 

𝜀𝑑̇𝑖𝑠𝑙 Dislocation creep strain rate 
For olivine 

𝑠−1 
DRY WET 

𝐴𝑑𝑖𝑠𝑙 Dislocation creep prefactor 1.1 × 105 30 𝑀𝑃𝑎−3.5𝑠−1 

𝑛𝑑𝑖𝑠𝑙 
Dislocation creep stress 

exponent 
3.5 3.5  

𝑝𝑑𝑖𝑠𝑙  
Dislocation creep grain size 

exponent 
0 0  

𝑟𝑑𝑖𝑠𝑙 
Dislocation creep water 

exponent 
0 1.2  

𝛼𝑑𝑖𝑠𝑙  Constant for melt factor 45 45  



𝐸𝑑𝑖𝑠𝑙 
Dislocation creep activation 

energy 
530 480 kJ/mol 

𝑉𝑑𝑖𝑠𝑙 
Dislocation creep activation 

volume 
15 × 10−6 11 × 10−6 𝑚3/𝑚𝑜𝑙 

𝜀𝑑̇𝑖𝑓𝑓 Diffusion creep strain rate 
For olivine 

𝑠−1 
DRY WET 

𝐴𝑑𝑖𝑓𝑓 Diffusion creep prefactor 1.5 × 109 1 × 106 𝑀𝑃𝑎−3.5𝑠−1 

𝑛𝑑𝑖𝑓𝑓 Diffusion creep stress exponent 1 1  

𝑝𝑑𝑖𝑓𝑓 
Diffusion creep grain size 

exponent 
3 3  

𝑟𝑑𝑖𝑓𝑓 Diffusion creep water exponent 0 1  

𝛼𝑑𝑖𝑓𝑓 Constant for melt factor 30 30  

𝐸𝑑𝑖𝑓𝑓 
Diffusion creep activation 

energy 
375 335 kJ/mol 

𝑉𝑑𝑖𝑓𝑓 
Diffusion creep activation 

volume 
6 × 10−6 4 × 10−6 𝑚3/𝑚𝑜𝑙 

D. Convergence criterion for grain size evolution 74 

To determine the steady-state time 𝑡𝑠𝑠, we employ a convergence criterion of: 75 

Δ𝑑𝑛𝑜𝑟𝑚

𝑑𝑛𝑜𝑟𝑚
≤ 𝜗      (S14) 76 

where 𝜗 is the limit for convergence, Δ𝑑𝑛𝑜𝑟𝑚 is the depth-averaged norm of grain size 77 

change, and 𝑑𝑛𝑜𝑟𝑚 is the depth-averaged norm of grain size. As a convergence 78 

criterion, we use Equation (S15) for a chosen timestep Δt. At time 𝑡𝑘, the parameters in 79 

Equation (S14) are calculated as: 80 

𝜗 = 5 × 10−4 (
∆𝑡

1000 𝑦𝑟
)    (S15) 81 

Δ𝑑𝑛𝑜𝑟𝑚 =
√∑ (𝑑𝑘−𝑑𝑘−1)2∆𝑧𝑁+1

𝑖=1

∑ ∆𝑧𝑁+1
𝑖=1

    (S16) 82 



𝑑𝑛𝑜𝑟𝑚 =
√∑ 𝑑𝑘

2∆𝑧𝑁+1
𝑖=1

∑ ∆𝑧𝑁+1
𝑖=1

     (S17) 83 

When the criterion in Equation (S14) is met, 𝑡𝑘~𝑡𝑠𝑠. 84 

E. Additional analyses at steady-state 85 

E.1 Effect of initial grain-size 86 

We compare two steady-state calculations that are the same except for different initial 87 

olivine grain-sizes (1 mm or 10 mm), which produces flow via Couette flow (CF) above 88 

a 1021 Pa·s mantle transition zone as shown in Figure S3a. Such a flow configuration 89 

Figure S3. Effect of initial grain size (1 mm and 10 mm for the red dashed and black lines, respectively) on 

the steady-state (a) upper mantle flow, (b) induced shear stresses, (c) grain-size structure, and (d) effective 

viscosity. We assume dry conditions, and that the 60 Myr old oceanic upper mantle and mantle transition zone 

are deformed by plate motion of 10 cm/yr and a pressure gradient of -5kPa/km. Until the flow reaches steady 

state, grain size changes according to the grain size evolution AE07 model (Austin and Evans, 2007). Flow 

additionally alters the grain-size structure, which in turn changes the flow and rheology with time. The flow 

eventually reaches steady state after a time tss=152 kyr for an initial grain size of 1 mm and tss=15 kyr for an 

initial grain size of 10 mm (see Supplementary Information D). The timesteps Δt used for 1-mm and 10-mm 

flow models are 10 yr and 100 yr, respectively. 



dominates because of large viscosities in the upper mantle and mantle transition zone 90 

(Figure S3d). Initially smaller (1 mm) and larger grain-sizes (10 mm) evolve to the same 91 

steady-state grain-size structure (except for the stiff undeforming lithosphere, Figure 92 

S3c) and the same steady-state upper mantle flow (Figure S3a) with the same stress 93 

profile (Figure S3b). Clearly, the choice of initial grain-size does not affect the system’s 94 

eventual steady-state but it does affect the time it takes the grain size to reach steady 95 

state. A larger initial grain size (i.e., 10 mm) stabilizes faster (15 kyr) compared to a 96 

smaller grain size (1 mm, 152 kyr), because large grain-sizes subdivide rapidly 97 

(Equation 7). 98 

E.2 Effect of grain-size evolution model 99 

Hall & Parmentier (2003) provide another grain-size evolution model (HP03 model): 100 

HP03 model:  𝑑̇ = 𝑝𝑔
−1𝑑1−𝑝𝑔𝐺𝑜 exp (−

𝐸𝑔+𝑃𝑉𝑔

𝑅𝑇
) − 𝜆𝜀𝑑̇𝑖𝑠𝑙𝑑   (S18) 101 

The grain-size structure stabilizes faster when using AE07 model (𝑡𝑠𝑠 = 478 𝑘𝑦𝑟) 102 

compared to using the HP03 model (598 kyr) because of AE07’s strong dependence on 103 

grain-size (Figure S4c). Although the HP03 model (red dashed line, Figure S4c) 104 

predicts larger grain sizes than does the AE07 model (black line), their flow 105 

configurations (Poiseuille flow or PF, Figure S4a), stress profiles (Figure S4b), and 106 

viscosities (Figure S4d) are nearly the same. 107 



E.3 Effect of contrasting rheologies between upper mantle and MTZ 108 

In Section 4, the comparable effective viscosities of upper mantle and mantle transition 109 

zone result in a CF-dominated dry upper mantle and a PF-dominated wet upper 110 

mantle. However, with contrasting rheologies, the dry upper mantle can accommodate 111 

a PF configuration (case ii, Figure S5a) and a CF configuration in wet upper mantle 112 

(case i, Figure S5d). The less viscous mantle transition zone below dry upper mantle 113 

(Figure S5c) allows a pressure-driven flow within the upper mantle (case ii, Figure 114 

S5a). In contrast, the more viscous mantle transition zone below the wet upper mantle 115 

(Figure S5f) can shut down pressure-driven flow unless the pressure gradient is large 116 

enough (cases ii and iii, Figure S5d) to drive PF that exceeds the plate-driven flow.  117 

Figure S4. Effect of grain size evolution model (HP03 (Hall & Parmentier, 2003) for the red dashed line and 

AE07 (Austin and Evans, 2007) for the black line) on the steady-state (a) upper mantle flow, (b) induced shear 

stresses, (c) grain-size structure (initially 10 mm grain size), and (d) viscosity. The flow conditions considered 

are the same as in Figure S3. The timesteps Δt used for HP03 and AE07 grain-size evolution models are 1000 

yr and 100 yr, respectively. 



E.4 Effect of water and small melt fraction on upper mantle flow and rheology 118 

Varying the water distribution (blue line in Figure S6 vs. case (i) wet upper mantle in 119 

Figure 4) clearly alters the rheology and grain-size structures, and thus also the flow 120 

pattern. In contrast, adding a small amount of melt (< 0.1%, Figure 6a.2) in the 121 

Figure S5. Effect of contrasting rheologies between upper mantle (UM) and MTZ on the steady state (a, 

d) flow, (b, e) grain size structure, and (c, f) viscosity for (a-c) dry and (d-f) wet (d-f) conditions. Different 

combinations of plate velocity and horizontal pressure gradient (labeled as i, ii and iii) are considered, and are 

the same as in Figure 4. For dry upper mantle, the assigned mantle transition zone (MTZ) viscosity is 1020 Pa·s, 

and 1021 Pa·s MTZ for wet upper mantle. The less viscous MTZ viscosity allows for a PF configuration to 

dominate in the more viscous upper mantle. Otherwise, CF may dominate unless the pressure gradient is large 

enough to drive PF that exceeds plate velocity. The initial grain-size for each calculation is 10 mm. A timestep 

Δt of 1000 yr is used for case (i), and 100 yr for cases (ii) and (iii). 



asthenosphere reduces the viscosity by at least a factor of ~0.8, which yields negligible 122 

changes to the flow pattern and grain-size structure (compare blue and dashed orange 123 

lines, Figure S6). 124 

E.5 Different flow configurations in dry and wet upper mantle 125 

The flow configurations and rheological structures for the different plate velocity and 126 

pressure gradient combinations, and MTZ viscosities, shown in Figures S7 and S8 for 127 

dry and wet conditions, respectively, as discussed in Section 6.3. 128 

Figure S6. Effect of excluding melt (blue line) vs. including melt (dashed orange line) on steady-state upper mantle 

(a) flow, (b) olivine grain sizes, (c) viscosity, and (d) dominant deformation mechanism. A 60 Myr old oceanic 

upper mantle is considered with 2 cm/yr plate velocity and a -1 kPa/km pressure gradient. The grain-size evolution 

model used is AE07 (Austin and Evans, 2007) with a timestep Δt of 1000 yr.  



 129 

Figure S7. The (a) four flow configurations for dry (50 ppm H/Si) upper mantle and their associated (b) 

stresses, (c) grain-sizes, and (d) viscosity structures. The corresponding plate speed and pressure gradient 

combinations used to produce such flows are shown in Figure 7b.1 (in red rectangles).  

Figure S8. The (a) four flow configurations plausible for wet (1000 ppm H/Si) upper mantle and their 

associated (b) stresses, (c) grain-sizes, and (d) viscosity structures. The corresponding plate speed and 

pressure gradient combinations used to produce such flows are shown in Figure 7b.2 (in blue rectangles).  


