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Key Points:

• A numerical approach based on internal energy calculations was developed
to calculate precise velocity changes with fracture opening.

• Velocity can be accounted for by superposition of a linear function of the
fracture density and quadratic function of the aperture size.

• Normalized velocity has a linear relationship with normalized permeability,
and the trend depends on fracture density.

Abstract

In an effort to reveal the subsurface hydraulic changes in fractures by seismic
monitoring, aperture-related velocity changes need to be investigated. We de-
veloped a numerical approach for calculating changes in elastic wave velocity
with fracture aperture opening by determining the internal energy of a digitized
fracture model based on natural rough surfaces. The simulated local elastic en-
ergy revealed that the interaction energy converged within 1.5 mm of the mean
fracture position, and was insignificant unless the fractures intersected. This
energetic approach clarified the aperture–velocity relationship and reproduced
the experimental results. Further calculations using digital fractures with var-
ious sizes and density demonstrated that the velocity can be accounted for by
the superposition of a linear function of fracture density and quadratic function
of aperture, and is insensitive to the fracture size. Although the relationship
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between fracture permeability and elastic wave velocity (i.e., the k–V relation-
ship) depends on the fracture density, the offset-normalized k–V relationship
shows clear linearity with the fracture density. The proposed k–V relationship
as a function of the aperture and fracture density indicates that laboratory-scale
fracture properties of a single fracture can be applied to multiple fractures on a
larger scale. Our findings can be used to interpret temporal changes in seismic
observations and to monitor fluid flow in fractures.

Plain Language Summary

A monitoring of seismic velocity will be useful to find changes in the permeabil-
ity of fractures, if the relationship between elastic wave velocity and fracture
aperture is known. This study presents a numerical approach to calculating
changes in elastic wave velocity, based on the elastic energy calculated using a
digital rock model having simulated natural fractures. The proposed approach
revealed the relationship between fracture aperture and elastic wave velocities
propagating through the fracture. Further calculations showed linear decreases
of wave velocities with the number of fractured layers per unit thickness (i.e.,
the fracture density), whereas the velocities do not significantly change with
fracture size. Our results will allow us to formulate the relationship between
fracture permeability and elastic wave velocity as a function of fracture density.
The proposed equation suggests that the properties of a single fracture on the
laboratory scale can be used for a large-scale multiple fracture system. The
results will provide a prospective application of seismic data to be used in the
sustainable development of fractured reservoirs such as geothermal resources.

1. Introduction

Monitoring fracture systems is important in geology and geophysics, because
fractures control mass and heat transport in the subsurface, which are linked
to earthquakes (i.e., the fault valve model; Sibson et al., 1988) and fractured
reservoir management (e.g., Manga et al., 2012). Recent advances in seismic
monitoring techniques have revealed changes in elastic wave velocity associated
with earthquakes (e.g., Brenguier et al., 2008; Nimiya et al., 2017) and geother-
mal fluid production (Sánchez-Pastor et al., 2019; Taira et al., 2018). These
velocity changes in the vicinity of a fractured zone will reflect subsurface stress
changes that also cause changes in the contact state of fractures (i.e., apertures
or asperities). Numerous experimental and numerical studies of fractured rock
masses have revealed that aperture networks are strongly related to hydraulic
properties, whereas asperity contacts contribute to elastic properties (Guéguen
& Boutéca, 2004; Guéguen & Palciauskas, 1994; Ishibashi et al., 2015; Nolte
et al., 1989; Sawayama et al., 2021a). An aperture increase or contact area
decrease triggered by a subsurface stress change will cause both an increase in
permeability and a decrease in elastic constants. Therefore, the hydraulic and
elastic properties may be related reflecting changes in the microstructures of
the fractures (i.e., apertures and asperities). Previous studies have reported
a correlation between permeability and fracture specific stiffness, which is re-
lated to the amplitude of the seismic response (i.e., attenuation), but have not
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established a direct correlation between permeability and elastic wave velocity
(Pyrak-Nolte & Nolte, 2016; Wang & Cardenas, 2016). A direct correlation
would be beneficial for evaluating changes in subsurface fracture flow by seismic
velocity monitoring.

The fracture permeability 𝑘 is commonly described by the aperture 𝑑 as 𝑘 =
𝑑2/12 in the classical parallel plate model (e.g., Witherspoon et al., 1980). It
can be linked to the elastic wave velocity if the aperture–velocity relationship
is known. However, no established model has correlated these parameters. Al-
though some experimental studies have reported a velocity increase in fractured
rock masses at elevated stress (e.g., Nara et al., 2011; Kurtuluş et al., 2012;
Yang et al., 2019), evaluating actual changes in the apertures is not feasible by
experimental studies. As such, it is important to study the elastic wave velocity
of a fractured rock mass by numerical simulations, while changing the aperture
between two rough surfaces. A numerical approach allows the S-wave velocity
to be calculated even at lower stresses (i.e., a larger aperture), which could then
be used to interpret the velocity changes in the upper crust inferred from cross-
correlation of ambient noise (e.g., Brenguier et al., 2008; Ikeda & Tsuji, 2018;
Nimiya et al., 2017; Sánchez-Pastor et al., 2019; Taira et al., 2018).

To determine the aperture–velocity relationship of a fractured rock mass, this
study developed a numerical method that calculates anisotropic elastic constants
(i.e., the stiffness tensor 𝐶ijkl) based on an internal energy calculation using the
finite element method (FEM). The finite element analysis of static elasticity has
been used to determine the elastic wave velocity in digitized rock images (e.g.,
Andrä et al., 2013; Sain et al., 2014). These conventional FEM approaches
can only calculate effective elastic constants in a purely isotropic case under
isostrain conditions (i.e., the upper bound). The energetic approach makes it
possible to calculate the stiffness tensor of vertical transverse isotropic (VTI)
media. We also implemented the constant stress assumption in the numerical
self-consistent scheme (Nishizawa, 1982) to mitigate the overestimation of elastic
constants using the conventional FEM approach. We first applied our approach
to synthetic rough fractures based on the natural rough surfaces in contact, and
then undertook calculations with aperture opening to estimate the changes in
elastic wave velocity during deformation. The calculations were extended to
fractures with different sizes and densities. After the experimental verification,
we demonstrate that there is a possible correlation with fracture permeability,
which highlights an application of our approach.

2. Energy of fractured rock according to elasticity theory

The elastic field of a composite medium comprising a homogeneous matrix and
inclusions was described by Eshelby (1957). Let 𝐸0 be the elastic energy of an
intact material when it is free of inhomogeneities and under certain surface loads
which produce an internal stress field corresponding to the surface stress 𝜎ij

𝐴. In
what follows, we consider the isothermal condition. If we introduce inhomogene-
ity with keeping 𝜎ij

𝐴 constant, the elastic energy is augmented by −𝐸int(𝜎ij
𝐴),

which represents the interaction energy of the applied stress and the inhomo-
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geneities in the medium. If such a process is at constant load (i.e., isostress
conditions), then the total energy associated with inclusions is described by the
Gibbs free energy 𝐺 as:

𝐺 = 1
2 𝐶ijkl

−1𝜎ij
𝐴𝜎kl

𝐴 = 𝐸0 − 𝐸int(𝜎ij
𝐴).#(1)

where 𝐶ijkl is the stiffness tensor and 𝐶ijkl
−1 is its inverse and termed the elastic

compliance tensor. The same elastic energy 𝐸0 can be obtained as a function
of the surface strain 𝜀ij𝐴, corresponding to the surface displacements that are
produced by the same surface loads. When the inhomogeneities are introduced,
the interaction energy is augmented by 𝐸int(𝜀ij𝐴), leading to the Helmholtz free
energy 𝐹 :

𝐹 = 1
2 𝐶ijkl𝜀ij𝐴𝜀kl𝐴= 𝐸0 + 𝐸int(𝜀ij𝐴).#(2)

Eshelby (1957) proposed an analytical solution for 𝐸int using the eigen or stress-
free strain 𝜀kl𝑇 , by assuming an elliptical inclusion that is often modeled as
cracks (Nishizawa, 1982; Nishizawa & Kanagawa, 2010; Yamamoto et al., 1981).
However, the complex shapes of fracture apertures cannot be modeled as cracks,
and prevented us from analytically calculating 𝐸int. We directly calculated 𝐹
as:

𝐹 = 1
2 ∭𝑉 𝜎ij(𝑥, 𝑦, 𝑧)𝜀ij(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧,#(3)

where 𝑉 is the volume of the material, and 𝜎ij(𝑥, 𝑦, 𝑧) and 𝜀ij(𝑥, 𝑦, 𝑧) are the
stress and strain at a point (x, y, z) in the material. 𝐶ijkl is defined as the
second derivative of 𝐹 :

𝐶ijkl = 𝜕2𝐹
𝜕𝜀ij

𝐴𝜕𝜀kl
𝐴 .#(4)

The conventional FEM calculation solves for the microscopic stress and strain
according to an arbitrarily input macroscopic strain 𝜀ij𝐴. We approximated 𝐹
in the FEM by discretizing Eq. (3). However, a constant value of 𝜀ij𝐴 will
yield 𝐶ijkl in the isostrain case (upper bound). To incorporate the constant
stress assumption into the conventional FEM, we adopted the numerical self-
consistent (NSC) scheme (Le Ravalec & Guéguen, 1996a, 1996b; Nishizawa &
Kanagawa, 2010; Yamamoto et al., 1981). In this approach, 𝜀ij𝐴 was updated in
a stepwise fashion to keep the initially assumed macroscopic stress 𝜎ij

ini constant
with increasing mean aperture. The iterative process is described as:

𝜀kl𝐴(𝑛) = 𝐶(𝑛−1)
ijkl

−1
𝜎ij

ini, #(5)
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where the superscripts 𝑛 or (𝑛 − 1) of 𝜀kl𝐴 and 𝐶−1
ijkl denote the values of the

𝑛th or (𝑛 − 1)th step. This integrated approach using FEM and NSC methods
enables us to solve reasonable changes in the anisotropic form of 𝐶ijkl, which is
not feasible with a conventional FEM approach. Given that a jointed rock can
be assumed to be transversely isotropic along the z-axis (i.e., perpendicular to
the fracture plane), the objective 𝐶ijkl has a hexagonal symmetry (Mavko et al.,
2009):

𝐶ijkl =

⎡
⎢
⎢
⎢
⎢
⎣

𝐶1111 𝐶1122 𝐶1133 0 0 0
𝐶1122 𝐶1111 𝐶1133 0 0 0
𝐶1133 𝐶1133 𝐶3333 0 0 0

0 0 0 𝐶1212 0 0
0 0 0 0 𝐶1212 0
0 0 0 0 0 𝐶1111−𝐶1122

2

⎤
⎥
⎥
⎥
⎥
⎦

.#(6)

3. Data and Method

3.1. Sample and digitization

We prepared digital models of a fractured rock mass from natural rough sur-
faces, which were also used in Sawayama et al. (2021b) for calculating fracture
permeability as a function of the fracture aperture. The surface topography of a
natural rock fracture was initially mapped using a laser profilometer (Keyence,
VR-3050) with a grid of cells 23.433 µm square. This raw data for the natural
rough surfaces were used to further validate our approach (Section 3.3). We
then analyzed the fractal characteristics of the natural rough surfaces, obtain-
ing a fractal dimension D = 2.4, roughness s = 0.49, and mismatch length scale
𝜆𝑐 = 0.57 mm (see Sawayama et al., 2021b for details of this analysis). Based on
these values, we constructed a synthetic fracture that was 24 × 24 mm in size
with an isotropic surface topography by applying fractional Brownian motion
(Brown, 1995; Matsuki et al., 2006; Sawayama et al., 2021b). This method can
reproduce a self-similar fracture surface with the same amplitude and a differ-
ent relative phase for each fracture surface, where the matedness at wavelengths
larger than 𝜆𝑐 and a mismatch at smaller wavelengths were modeled. The ob-
tained topographies of the hanging wall and footwall are shown in Fig. 1a and
b, respectively. A 3D fracture model was then created numerically by pairing
these surfaces (Fig. 1c). The aperture of the model was varied by uniformly
reducing the local apertures (Fig. 1d and e). Finally, we prepared 16 models
that have different mean apertures (𝑑 = 0.05–0.2 mm) with a grid size of 0.1
mm. Although the elastic properties calculated from the FEM are potentially
affected by the model grid size (Arns et al., 2002), the 0.1 mm grid size was
confirmed to be detailed enough for our approach (Text S1 and Fig. S1). The
thickness of the base models is 10 mm, which provides 0.5%–2.0% of the porosity
variation.
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Figure 1. Topography maps of the (a) hanging wall and (b) footwall of the
synthetic fracture. (c) Three-dimensional view of the digital fracture model.
(d) Asperity distributions of digital fracture models having a different mean
aperture.

3.2. Fracture upscaling and multiplication

It is well known that fracture roughness (i.e., the standard deviation of the
surface height) increases with fracture length. This study incorporated this
scaling law into our model as follows (Matuski et al., 2006):

𝑠 = 𝑠0 ( 𝐿
𝐿0

)3−𝐷, #(7)

where 𝑠0 is the standard deviation of the surface height along a linear profile
of size L0 on a fracture surface and 𝑠 is the standard deviation of the surface
height of an arbitrary fracture size 𝐿. In this study, we used 𝐿0 = 24 mm and
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𝑠0 = 0.49 mm from our results for the natural rock fracture, and generated
three different fracture sizes (L = 24, 48, and 96 mm). The reconstruction of
the surface roughness of a fracture from an observed spectrum is a stochastic
process, and thus we needed to examine stochastic fluctuations in the models
created by different random seeds. This study used five different random seeds
to validate the repeatability of our simulation results for each fracture size.

The multiple fracture models were constructed by assuming a vertical series
of single fractures having the same aperture value. We selected 1.5 mm as
the distance between two single-aligned fractures (i.e., the fracture spacing),
because the interaction energy almost converged at this distance. When the
fracture spacing was smaller than this distance, the energy anomalies near the
fracture planes interfere with each other, resulting in a higher energy peak than
the model with a 3.0 mm fracture spacing (Fig. S2). We prepared up to five-
layered fractures with 1.5 mm spacing that were each 10 mm in thickness (i.e.,
fracture density 𝐷𝐹 = 1–5 cm–1).

3.3. Anisotropic elastic constants of fractured rock determined by finite-element
analysis

Based on Eshelby’s theory, an embedded transverse fracture (i.e., inclusion) in
the model (Fig. 1c) augments the internal energy (i.e., Helmholz free energy
𝐹 ), which is more significant as the aperture opens. This study analyzed quasi-
static changes in 𝐹 by modifying the conventional FEM approach (Arns et al.,
2002; Garboczi, 1998; Sawayama et al., 2021a). In the analysis, we imposed a
periodic boundary in all directions, which simulates an infinitely large model
with a constant fracture density in a vertical direction (i.e., the number of
fractures per unit thickness). The base model has a single fracture in a 10 mm
thick layer, and the fracture density 𝐷𝐹 = 1 cm–1. The elastic constants we
assigned in each solid and fluid node for the FEM are listed in Table 1, based
on P- and S-wave velocity (6.04 km/s and 3.33 km/s) under a high confining
pressure.

The workflow of the modified FEM is shown in Fig. 2, which comprises three
iteration steps: the conjugate gradient, isostress, and NSC steps. The cal-
culation begins with the smallest aperture model (𝑑 = 0.05 mm). We first
used a homogeneous 𝜀kl𝐴, where we assumed an isotropic 𝐶ijkl for the intact
rock (𝐶1111 = 𝐶3333 = 𝐾𝑠 + 4/3 𝜇𝑠, 𝐶1212 = (𝐶1111 − 𝐶1122)/2 = 𝜇𝑠, and
𝐶1122 = 𝐶1133 = 𝐾𝑠 − 2/3𝜇𝑠, where 𝐾𝑠 and 𝜇𝑠 are the bulk and shear moduli
of the solid phase, respectively) and 𝜎ij

ini = 20 MPa in Eq. (5). Although
the actual stress–strain state is heterogeneous due to the presence of the frac-
ture, we first neglected the small error on the energy calculation caused by this
assumption for convenience. The local internal energy was calculated by the
FEM, which was repeated to minimize the gradient of 𝐹 with respect to the dis-
placement by the conjugate gradient iteration (Fig. 2a). After the convergence,
𝐶ijkl can be solved with Eq. (4). We numerically differentiated 𝐹 with respect
to 𝜀ij𝐴 by assuming the vertical transverse isotropy (VTI) of the fractured rock
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model. However, it should be noted that the actual stress state 𝜎ij
𝐴 differs from

𝜎ij
ini, because 𝐶ijkl of the fractured rock model is more compliant than that of

the intact rock. Therefore, we updated 𝜀kl𝐴 using a calculated 𝐶ijkl (VTI) with
Eq. (5) to satisfy 𝜎ij

ini = 20MPa, and then repeated the calculation. The cal-
culation was iterated until 𝜎ij

𝐴 became close enough to 𝜎ij
ini (Fig. 2b). This

isostress iteration process converged within the third iteration (Fig. S3). The
final result for 𝐶ijkl was then used for determining the initial input strain of the
proceeding model. Similarly, we proceeded with the calculations towards the
largest aperture model (𝑑 = 0.2 mm) by updating the input strain 𝜀ij𝐴 in each
fracture aperture model such that 𝜎ij

𝐴 = 𝜎ij
ini = 20 MPa (Fig. 2c). This NSC

process enabled us to simulate the isostress condition and minimize the gap
between the two bounds obtained from the isostress and isostrain conditions,
thereby providing reasonable changes in the stiffness tensors (Yamamoto et al.,
1981).

Table 1. Physical properties used for the finite element modeling.

Bulk modulus [GPa] Shear modulus [GPa] Density [kg/m3]
Solid 59.5* 30.5* 2750
Fluid 2.25** 0** 994**

* Based on P- and S-wave velocity measurements under dry condi-
tions and at a high confining pressure (200 MPa).
** For water at the standard state.
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Figure 2. Flow diagram of the approach used for calculating the stiffness
tensor by integrating the finite element and numerical self-consistent methods.
The input strain for the finite element model was consecutively updated until
the macroscopic stress became close to 20 MPa at each aperture condition.

3.4. Experimental verification

We verified the numerical results for the elastic wave velocity using experimen-
tal results. The experimental sample was prepared as a cylindrical specimen
(35 mm in diameter and 70 mm long), in which the fracture plane was parallel
to the central axis. After mapping the fracture surfaces as described in Section
3.1, the sample was restored to its original state. The P-wave velocity in the
direction normal to the fracture plane was then measured by the pulse transmis-
sion method at eight effective normal stresses from 𝑃eff = 1–15 MPa. The input
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trigger of a pulse was set to a frequency of 250 kHz and amplitude of 10 Vp-p.
Details of the experimental setup were described in Sawayama et al. (2018a).

The simulated velocity change of the experimental fracture was evaluated with
our modified FEM approach. The aperture between the two surfaces in the
digital model was adjusted such that the model had a simulated permeability
equivalent to that measured in the experiments at each stress state (Sawayama
et al., 2021b). The thickness was determined by matching with the measured
fracture porosity in this sample (1.6% at atmospheric pressure; Sawayama et
al., 2021b). The wavelength under our experimental conditions is at least ten
times larger than the largest length of the estimated aperture (0.06 mm). It
should also be noted that the experimental velocity change includes both velocity
changes in the matrix and fracture associated with the elevated stress. Therefore,
we modeled the changes in elastic constants in a matrix (𝐾𝑚 and 𝜇𝑚) based
on P- and S-wave velocities at elevated 𝑃eff as 𝐾𝑚 = 0.128 𝑃eff + 6.49 and
𝜇m = 0.0048 𝑃eff + 27.29, based on an experiment on an intact andesite sample
retrieved from the same borehole as the fractured sample.

4. Results

4.1. Elastic energy

Based on the 24 × 24 mm synthetic fracture, we calculated local distributions
of stress, strain, and elastic energy with the FEM. Figure 3 shows the cross-
sections of their local distributions with a 0.2 mm mean aperture. The vertical
stress and strain (𝜎33 and 𝜀33) are normalized by their macroscopic values (𝜎33

𝐴

and 𝜀33
𝐴), whereas the local energy is normalized by the energy of the intact

rock (𝐸0). The mean position of the fracture plane is located at the center of the
model (5 mm in the z-direction). The stress and energy are mainly concentrated
on the edges of the fracture asperity contacts (Fig. 3a), whereas the strain is
accumulated inside the fracture (Fig. 3b). Notably, their anomalies converge
near the fracture. Figure 4 shows the horizontal mean energy and corresponding
cross-sections of the energy distributions. The peak of the energy is consistent
with the mean fracture position. It is clearly evident that the energy is only
localized at 3.5–6.5 mm in the vertical position (i.e., 1.5 mm from the mean
fracture position). The energy anomaly disappears near the top (z = 1.0 mm)
and bottom (z = 9.0 mm) of the model, indicating the model thickness was
sufficiently large at the given aperture conditions.
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Figure 3. Local distribution of normalized values of the (a) vertical stress, (b)
vertical strain, and (c) elastic energy of the 24 × 24 mm fractures at a 0.2 mm
mean aperture.
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Figure 4. (a) Areal average of the elastic energy in the x–y-plane and (b) areal
distribution of local elastic energy at 0.2 mm mean aperture.

The change in the elastic energy of the base model shows a non-linear increase
with aperture opening (Fig. S4). Note that the energy change obtained with our
approach was slightly larger than the result without updating the strain input,
and this discrepancy became more significant as the aperture increased (Fig.
S4a). Consequently, the conventional approach (i.e., the isostrain assumption)
underestimated the velocity change due to the fracture aperture opening (Fig.
S4b). In addition to the aperture change, the model thickness potentially affects
the elastic energy. When the model thickness is larger, the energy anomaly near
the fracture will be relatively smaller. We therefore analyzed the elastic energy
when the thickness was twice that of the base model (i.e., 20 mm thickness).
The relative energy changes of the 20-mm-thick model were smaller than those
of the base model (Fig. S4c). Given that we adopted a periodic boundary in all
directions, twice the model thickness is equivalent to half of the fracture density
𝐷𝐹 (i.e., number of fractures per unit thickness). When two single-aligned
fractures were embedded in the 20 mm thickness (i.e., the same 𝐷𝐹 as the base
model), both results showed good agreement (Fig. S4c).

4.2. Velocity changes with aperture opening

From the stiffness tensor determined from the elastic energy, P-wave velocity
𝑉𝑝 and S-wave velocity 𝑉𝑠 in the direction normal to the fracture plane were
calculated as:

𝑉𝑝 = √ 𝐶3333
𝜌 , 𝑉𝑠 = √ 𝐶1212

𝜌 , #(8)

where 𝜌 is the arithmetic average of densities of solid and pore water (Table
1). The resultant changes with aperture opening are plotted in Fig. 5 (a),
and show the non-linear decrease of 𝑉𝑝 and 𝑉𝑠. The change in 𝑉𝑠 is slightly
smaller than that of 𝑉𝑝, which is consistent with the numerical simulation and
laboratory experiments on natural rock fractures (Cha et al., 2009; Sawayama
et al., 2021a).

The phase velocities of the following three modes were also evaluated. The ve-
locities of quasi-longitudinal (qP), quasi-shear (qS), and pure shear (SH) modes
in transversely isotropic material along the z-axis are given as (Mavko et al.,
2009):

𝑉qP(𝜃) = √ 𝐶1111 sin
2 𝜃+𝐶3333 cos2 𝜃+𝐶1212+√𝑀(𝜃)

2𝜌 , #(9)

𝑉qS(𝜃) = √ 𝐶1111 sin
2 𝜃+𝐶3333 cos2 𝜃+𝐶1212−√𝑀(𝜃)

2𝜌 , #(10)

𝑉SH(𝜃) = √ (𝐶1111−𝐶1122) sin2 𝜃+2𝐶1212 cos2 𝜃
2𝜌 , #(11)

12



where

𝑀(𝜃) = [(𝐶1111 − 𝐶1212) sin2 𝜃− (𝐶3333 − 𝐶1212) cos2 𝜃]2 + (𝐶1133 + 𝐶1212)2 sin2 𝜃.#(12)

𝜃 is the angle between the wave vector and symmetry axis (� = 0 for a prop-
agation direction normal to the fracture plane), indicating 𝑉qP(0) = 𝑉𝑝 and
𝑉qS(0) = 𝑉SH(0) = 𝑉𝑠 in Eq. (8). The results are shown in Fig. 5b and c. The
aperture effect on the velocity change is significant at � < 70˚ (Fig. 5b). 𝑉qS
and 𝑉SH show different trends, whereby 𝑉qS is mostly faster than 𝑉SH, but slower
than 𝑉SH at 𝜃 > 70˚. This discrepancy between the two modes of S-waves re-
flects the angular dependence on shear wave anisotropy, which can be expressed
as (𝑉 qS − 𝑉SH)/[(𝑉 qS + 𝑉SH)/2] (Fig. 5d). Consequently, the anisotropy shows
a peak at � = 40˚, and the peak value increases with aperture opening. The
peak angle has a similar value to that of a shale fracture, which will be <45˚
depending on the anisotropy of the material (Berryman, 2008).
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Figure 5. Plots showing the (a) P- and S-wave velocity in a direction perpen-
dicular to the fracture plane as a function of the mean aperture, (b) angular
phase velocity distributions for qP at 0.05 and 0.2 mm mean aperture, (c) an-
gular phase velocity distributions for qS and SH waves, and (d) shear wave
anisotropy as a function of the angle under various aperture conditions.

4.3. Fracture upscaling

We extended the calculations to different sizes of synthetic fractures (24, 48, and
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96 mm) with five different random seeds. Figure 6 shows changes in 𝑉𝑝, 𝑉𝑠, and
shear wave anisotropy versus the mean aperture at various fracture sizes and
random seeds. These plots show there are no significant differences resulting
from changes in the random seeds and fracture size, demonstrating both the
repeatability of the simulations and the size-independent characteristics of the
velocities in the simulated fractures. These size-independent characteristics sug-
gest that fracture size does not strongly affect the velocity perturbation when
the wavelength is much larger than the fracture.
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Figure 6. Changes in the (a) P-wave velocity, (b) S-wave velocity, and (c) shear
wave anisotropy as functions of the mean aperture. Symbol shapes correspond to
the different random seeds, and their colors correspond to the different fracture
sizes. 𝜃 is the angle between the wave vector and symmetry axis (� = 0 for a
propagation direction perpendicular to the fracture plane).

4.4. Fracture density
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Figure 7 shows changes in 𝑉𝑝, 𝑉𝑠, and shear wave anisotropy versus the mean
aperture in a multi-fracture system. 𝑉𝑝 and 𝑉𝑠 clearly decrease with an increas-
ing number of fractures, and this effect is prominent in larger aperture models
(Fig. 7a and b). Shear wave anisotropy also shows a similar trend (Fig. 7c).
Although we used a model having a 1.5 mm fracture spacing, the effect of the
fracture spacing on 𝑉𝑝, 𝑉𝑠, and shear wave anisotropy was small (Fig. S5a–c).
This is because the elastic energy was less sensitive to the fracture spacing, un-
less the fractures intersected (Fig. S5d). The same 𝐷𝐹 model shows the same
velocity and anisotropy trends regardless of the different model thicknesses (Fig.
S6). These results indicate that the experimentally determined dependencies
on both the number of fractures and rock thickness (e.g., Kurtuluş et al., 2012;
Yang et al., 2019) are accounted for by considering the fracture density.
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Figure 7. Changes in the (a) P-wave velocity, (b) S-wave velocity, and (c)
shear wave anisotropy at an angle 𝜃 = 45˚ as a function of the mean aperture.
The symbol colors correspond to the different fracture densities.

4.5. Comparison of numerical and experimental results

The P-wave velocities obtained from our numerical approach were compared
with experimental data. Figure 8 shows the P-wave velocities in the experiment
and from the numerical approach. The raw data indicate that the numerical
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results for the digital rock models of all fracture areas have a slightly lower
velocity than the experimental values. This may be due to the mismatch be-
tween the numerical model and actual path area in the experimental setup, as
the point-source input pulse in the experiment will have a smaller scope than
the entire fracture plane. When the ray path is approximately straight, the
propagating wave interacts with the medium inside a prolate spheroid, with a
major axis that links the source and receiver transducers, which is known as the
first Fresnel zone. The length of the minor axis of the spheroid 𝑟 is given by
(Spetzler & Snieder, 2004):

𝑟 = √ l�
2 .#(13)

where l and � are the half-distance between the source and receiver transducers
and the wavelength of the propagating P-wave, respectively. The experimental
pulse frequency of 250 kHz yields r = 13.3 mm by assuming 𝑉𝑝 = 5 km/s. We
therefore constructed the digital rock model using 13.3 mm square-sized fracture
from the experimental source position to undertake a further simulation. The
updated simulation result is more like the experimental value (FZ in Fig. 8).
A small discrepancy may arise from the gap between the estimated porosity or
asperity contacts, based on the permeability, and actual values, as the velocity is
more sensitive to these factors than the permeability (Sawayama et al., 2021a).
Overall, the trends of the experimental results are consistent with the simulated
velocity by incorporating the matrix velocity change and model fracture size
according to the experimental ray path.

Figure 8. Experimental and simulated P-wave velocity with increasing effective
normal stress. Solid and open symbols represent experimental and simulated
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results, respectively. The raw and FZ simulation data are the P-wave velocity
of the entire fracture plane and estimated first Fresnel zone, respectively.

5. Discussion and applications

We have demonstrated that the changes in elastic energy (and therefore the
elastic wave velocity) of the fracture in Eshelby’s model can be accounted for
by the fracture aperture and density (Figs 5 and 7), which the volume fraction
of an inclusion represents. The velocity in the direction normal to the fracture
can be simply modeled as a horizontal layered structure comprising matrix and
an inclusion. Assuming a long-wavelength limit, 𝑉𝑝 is given by the effective
medium theory (Mavko et al., 2009):

𝑉𝑝 = √ 𝑀
𝜌 .#(14)

Given that the fracture is filled with pore water, the effective P-wave modulus
𝑀 (𝐾 + 4/3𝜇) is obtained from the Backus average:

1
𝑀 = 1−𝑓𝑤

𝑀𝑠
+ 𝑓𝑤

𝑀𝑤
, #(15)

where 𝑓𝑤 is the volume fraction of pore water given by the ratio of the mean
aperture to model thickness, and 𝑀𝑠 and 𝑀𝑤 are the P-wave modulus of the
solid and pore water, respectively. The predicted 𝑉𝑝 from Eq. (14) of our digital
fracture at a mean aperture d = 0.2 mm yields 4.44 km/s, which is much smaller
than the simulation result (Fig. 7a). Moreover, the simulation results show that
the velocity at d = 0.2 mm and 𝐷𝐹 = 1 cm–1 is much smaller than the velocity
at d = 0.1 mm and 𝐷𝐹 = 2 cm–1 (Fig. 7a), even though Eq. (14) yields the
same 𝑉𝑝. In both cases, the simple effective medium theory will underestimate
the velocity, indicating that 𝑓𝑤 cannot account for the velocity change of mated
fractures. As such, both the mean aperture and fracture density are essential for
predicting the velocity of mated fractures. We therefore modeled the velocity
changes as functions of aperture and fracture density. Figure 9 shows 𝑉𝑝 and
𝑉𝑠 normalized by the matrix velocity (𝑉𝑝

𝑜 = 6.04 km/s; 𝑉𝑠
𝑜 = 3.33 km/s)

as functions of aperture and fracture density. The colored surface in Fig. 9
represents the curve fitting results using the following models:

𝑉𝑝
𝑉𝑝

𝑜 = 1 − 𝐷𝐹 (1.39𝑑2 − 0.136𝑑 + 5.90 × 10−3) , #(16)

𝑉𝑠
𝑉𝑠

𝑜 = 1 − 𝐷𝐹 (0.952𝑑2 − 0.0277𝑑 + 2.98 × 10−3) . #(17)

The empirical model predictions are consistent with our simulation results in
the base model (Fig. 9), and with a much wider range of 𝐷𝐹 values for the 20
mm thickness model (Fig. S6). These empirical models imply that the elastic
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wave velocity of the fractured rock mass can be accounted for by the superpo-
sition of a linear function of the fracture density and quadratic function of the
aperture. A linear decrease in elastic wave velocity with fracture density has
also been reported in some experimental studies (Kahraman, 2001; Kurtuluş et
al., 2012; Yang et al., 2019). These studies observed different trends for the
relationship depending on the rock samples, which might be related to the frac-
ture characteristics (e.g., roughness, fractal dimensions, and mismatch length
scale). These characteristics may also affect aperture-related velocity changes
in a single mated fracture (Cha et al., 2009; Mohd-Nordin, 2016; Sawayama et
al., 2021a). Future studies need to clarify the mechanism of determining the
empirical parameters with respect to fracture geometry. Notably, the proposed
empirical model allows us to extrapolate the aperture–velocity relationship for
a single fracture to multiple fractures comprising a vertical series of the same
fractal surfaces.

Figure 9 Curve fitting results of the (a) P-wave velocity and (b) S-wave velocity
normalized to the matrix values. The plots show the simulation results and the
color surfaces represent the curve fitting model based on Eqs (16) and (17).

One application of our finding is that it is possible to correlate the elastic wave
velocity with fracture permeability with respect to the aperture and fracture
density. When the number of fractured layers 𝑁𝐹 having the same mean aper-
ture 𝑑 is vertically accumulated in a unit volume, the total fracture permeability
𝑘 can be simply given by 𝑘 = (𝑁𝐹 𝑑)2/12, while the elastic wave velocities can
be derived from the empirical models (Eqs (16) and (17)). The predicted rela-
tionship between fracture permeability and elastic wave velocity (i.e., the k–V
relationship) is shown in Fig. 10. The simulation results for the permeability
(Sawayama et al., 2021b) and elastic wave velocities (Fig. 9) using the same dig-
ital fracture models are also plotted, and are consistent with the predictions and
show no significant changes with fracture size. Both the 𝑉𝑝 and 𝑉𝑠 changes are
larger at higher permeability (log(k) < 10.8 at 𝑁𝐹 =1), whereas they are almost
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constant at lower permeability. This reflects the different mechanisms under-
lying both properties; the velocity change becomes small after a large fraction
of the asperities become in contact, while permeability continuously decreases
with increasing contact area (Sawayama et al., 2021a). Fracture density changes
the k–V relationship, and changes in velocity and permeability at higher 𝐷𝐹 are
much larger than those at lower 𝐷𝐹 . This suggests that the direct prediction of
permeability from the observed velocity might be difficult in a natural setting,
unless 𝐷𝐹 is known.

Figure 10. Plots of the fracture permeability versus (a) P-wave velocity and (b)
S-wave velocity. The plots show the simulation results and the symbol shapes
represent different fracture length sizes. The colored lines show the predicted
relationships of different fracture densities extrapolated from the results of the
single fracture model.

In contrast, the offset of the k–V relationship can be neglected by focusing on
the relative changes in these properties for monitoring. The k–V relationship
is thus normalized by the reference values. We used d = 0.065 mm as the
reference value, where the dominant flow channel is disconnected (Sawayama et
al., 2021b). Consequently, the relative k–V relationship shows clear linearity
in linear coordinates, and the trend depends on fracture density (Fig. 11).
Therefore, the k–V relationship can be modeled as follows:

𝑘
𝑘′ = 𝛼𝑝

𝐷𝐹

𝑉 ′
𝑝 −𝑉 𝑝
𝑉 ′𝑝

, #(18)

𝑘
𝑘′ = 𝛼𝑠

𝐷𝐹

𝑉 ′
𝑠 −𝑉 𝑠
𝑉 ′𝑠

, #(19)

where 𝑘′, 𝑉 ′
𝑝 , and 𝑉 ′

𝑠 are arbitrary reference values of the permeability, and
P- and S-wave velocities, respectively. The empirical parameters 𝛼𝑝 and 𝛼𝑠
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represent the linearity of the k–𝑉𝑝 and k–𝑉𝑠 relationships for a single fracture,
respectively. The predicted lines using 𝛼𝑝 = 3000 and 𝛼𝑠 = 2500 are also shown
in Fig. 11. The predicted k–𝑉𝑝 relationship is consistent with the simulation
results for k/k’ < 30 (Fig. 11a), whereas the trend deviates from the simulation
results at k/k’ > 30. This deviation point corresponds to d = 0.13 mm (or
�25% of the contact area), suggesting that changes in 𝑉𝑝 become small when
the fracture contact is weaker than this threshold. This trend for k/k’ > 30
shows good agreement when 𝛼𝑝 = 2200 (Fig. 11a). Although no studies have
correlated the fracture permeability and velocity, some experimental studies
(e.g., Alam et al., 2011; Prasad, 2003) have found that the trend of the k–𝑉𝑝
relationship for a porous rock varies with the lithology, which may be due to
pore and grain features (e.g., tortuosity, specific surface area, impurities, and
clay contents). Our results revealed that the trend of the k–𝑉𝑝 relationship for a
fracture is strongly related to 𝐷𝐹 , and will also change according to the fracture
contact state. In contrast, the trend of the k–𝑉𝑠 relationship is irrelative to the
contact state, and constant in fractures with the same fractal characteristics
and 𝐷𝐹 (Fig. 11b). Although the empirical parameter 𝛼 can vary with fracture
types, it can be determined from the k–𝑉 relationship for a single fracture.
This finding implies that investigations of small-scale single fractures and the
k–V relationship can be extrapolated to multiple fractures in natural settings.
Therefore, velocity monitoring (especially 𝑉𝑠) can potentially evaluate changes
in fracture permeability.

Figure 11. Plots of permeability versus (a) P-wave velocity and (b) S-wave
velocity normalized to the reference values (see the text for details). The sym-
bol colors represent the fracture densities and the lines denote the predicted
relationships based on Eqs (18) and (19).

Although the presented digital rock models are mated fractures based on
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isotropic surfaces, it should be noted that permeability enhancement by hy-
draulic stimulation is triggered not only by joint openings but also by shear slip
(e.g., Rinaldi & Rutqvist, 2019). Future work should extend this approach to
solving for the stiffness tensor in the orthorhombic case (e.g., sheared fractures)
to confirm the limitations of the proposed formulae. Another limitation of the
formulae arises from the assumption that there is no matrix velocity change. It
is known that the velocity change at elevated pressure is significant at higher
crack density (i.e., lower stress), but is smaller at lower crack density (i.e.,
higher stress). Such a pressure effect on velocity change will be smaller if
cracks are filled with water and have low aspect ratios (Nur & Simmons, 1969;
O’Connnell & Budiansky, 1974; Hadley, 1976; Meglis et al., 1996; Paterson &
Wang, 2005; Watanabe & Higuchi, 2015). Therefore, the proposed empirical
model could be used for rocks with a low crack aspect ratio (e.g., volcanic rocks)
or under higher crustal stress conditions, which has negligibly small changes
in matrix velocity. Given that our approach can incorporate matrix velocity
changes when experimental data are available (Fig. 8), our method can be
extended to rocks with a high crack aspect ratio (e.g., granite). Moreover, the
method needs to be tested further for size dependencies, because the studied
experimental fracture was much smaller than natural fractures. For example,
a test site of the enhanced geothermal system has a kilometer-scale fracture
(e.g., Didana et al., 2017). Although our study adopted a zero frequency
assumption for the velocity calculation, the scaling effect on velocity can be
addressed by considering the ratio of the finite wavelengths and fracture size
(Mavko et al., 2009). Because finite-difference time-domain modeling of wave
fields in fractured media requires more complex assumptions, such as fracture
compliance (Bakulin et al., 2000; Minato & Ghose, 2016; Pyrak-Nolte et
al., 1990), future studies need to further investigate the scale dependency of
velocity using this technique.

4. Conclusions

We developed a method for calculating the hexagonal form of the stiffness tensor
based on internal energy calculations, and investigated the changes in elastic
wave velocities and shear wave anisotropy with aperture opening. Simulated lo-
cal elastic energy revealed that the interaction energy converged within 1.5 mm
of the mean fracture position, and was insignificant unless the fractures inter-
sected. The energetic approach integrating FEM and NSC methods identified
the aperture–velocity relationship and reproduced the experimental results. Fur-
ther calculations using digital fractures with various sizes and densities showed
that the elastic wave velocity can be accounted for by the superposition of a lin-
ear function of the fracture density and quadratic function of the aperture, and
is independent of the fracture size. We also showed that the k–V relationship is
independent of fracture size, but dependent on fracture density. In contrast, the
k–V relationship shows a clear linearity with fracture density when the offset is
normalized by arbitrary reference values. Although further study is needed to
confirm the empirical parameters determining the slope of this relationship, our
results indicate that laboratory-scale fracture properties for a single fracture can
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be extended to multiple fractures. Our findings indicate that temporal changes
in seismic properties might be used for monitoring fracture flow.
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