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e Surface melt depletes firn air in Antarctic ice Annual Surface Melt E mducg Foehn |nduce¥j alt e Despite lack of shortwave radiation LCIS experiences surface
shelves and can lead to shelf disintegration, | arsen € Ice Shelf (LCIS) IR C YL [ EE 2T Ay YN melt during polar night due to foehn winds, confirmed using
glacier acceleration, and sea level to rise. % AWS height measurements and satellite based radar (Figure

e Foehn winds enhance melt through large ke 9)
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fluxes of sensible heat. 66°S

e Automatic Weather Stations (AWS) provide
iNn-situ measurements during foehn events
with limited spatial representation.

e ERAS reanalysis data can expand the spatial 68°S |-
pattern of foehn winds, however do not V
represent surface conditions well.

o % Large sensible heat fluxes dominate the surface
energy budget during polar night foehn winds with a mean
energy flux of 66.4 W/m?(Figure 6).

o 2.5 % of the annual melt occurs during polar night
(Figure 5).

0 Mean melt of 0.01 m.w.e./yr occurs on LCIS with a
maximum of 0.027 m.w.e./yr (Figure 3).
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We use machine learning (ML) to calibrate ERAS5 reanalysis data o % Maximum polar night melt of 6.3 % occurs in cabinet

o o o @8 o . . . .
using AWS data. We quantify the spatial and temporal extent of = =5 | inlet close to the Antarctic Peninsula Range (Figure 7).
foehn wind melt events during polar night and their contribution Figure 2: Climatology of annual Figure 3: /+ Climatology of polar night Figure 4: Climatology of polar day e Strong foehn signature east of the Peninsular Range due to
to the total annual melt on the Larsen C Ice Shelf (LCIS). surface melt on LCIS (2007-2017).  surface melt on LCIS (2007-2017). surface melt on LCIS (2007-2017). topographic funneling of foehn winds and a change in
Melt Time vs. Melt Climatology (2007-2017) Percentage of Melt topographic relief (Figures 3, 7).
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FonDa uses variable thresholds to identify foehn wind during polar 09 methodology to all of the
night (Figure 1) pCih . . . . Antarctic Ice Sheet as well as
Polar Night Polar Day Polar Night Polar Day 0.0 th G | d | h t
. Temperatu re>0 OC Foehn Foehn Non-Foehn Non-Foehn : ' e areenian ce sneet.
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