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Key Points:

 Ensemble-based simulations of future shoreline evolution to 2100, including sea-level 
rise driven erosion, are performed and analysed

 Future shoreline projections uncertainties are initially controlled by modelling 
assumptions and after 2060 by sea-level rise uncertainties

 The choice of wave-driven equilibrium modelling approach and incident wave 
chronology are critical to future shoreline projections
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Abstract

Most sandy coasts worldwide are under chronic erosion, which increasingly put at risk coastal

communities.  Sandy  shorelines  are  highly  dynamic  and  respond  to  a  myriad  of  processes

interacting at  different  spatial  and temporal  scales,  making shoreline predictions challenging,

especially  on  long  time  scales  (i.e.  decades  and  centuries).  Shoreline  modelling  inherits

uncertainties from the primary driver boundary conditions (e.g. sea-level rise and wave forcing)

as well as uncertainties related to model assumptions and/or misspecifications of the physics.

This study presents an analysis of the uncertainties associated with future shoreline evolution at

the high-energy, cross-shore transport dominated, sandy beach of Truc Vert (France) over the

21st century. We explicitly resolve wave-driven shoreline change using two different equilibrium

modelling approaches to provide new insight into the contributions of sea-level rise, and free

model parameters uncertainties on future shoreline change in the frame of climate change. Based

on a Global Sensitivity Analysis, shoreline response during the first half of the century is found

to be mainly sensitive to the equilibrium model parameters, with the influence of sea-level rise

emerging in the second half of the century (~2050 or later), in both Representative Concentration

Pathways 4.5 and 8.5 scenarios. The results reveal that the seasonal and interannual variability of

the predicted shoreline position is sensitive to the choice of the wave-driven equilibrium based

model. Finally, we discuss the importance of the chronology of wave events in future shoreline

change, calling for more continuous wave projection time series to further address uncertainties

in future wave conditions.

1 Introduction

Ongoing climate change is one of the largest concerns of our time, and its largest impacts on the

world’s environment are yet to come.  Global mean sea-level rise is accelerating since 1870, and

it is expected to continue rising over the 21st century, although acceleration may be avoided if the

Paris Agreement target of below 2°C climate warming is met (Church et al., 2013; Oppenheimer

et al., 2019). In addition, global wave power is adapting to the sea surface temperature since the

late 1940’s (Reguero et al.,  2019), and is expected to change along with storminess by 2100

(Morim et al., 2020). 
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Sandy beaches provide precious natural, structural and social-economical resources to coastal

communities  (Ghermandi & Nunes, 2013; Poudamère et  al.,  2015),  and constitute  about one

third of the ice-free coasts worldwide (Luijendijk et al., 2018). Open sandy beaches constantly

evolve in response to multiple environmental drivers occurring on different time scales, making

sandy  shoreline  dynamics  strongly  sensitive  to  sea-level  rise  and  wave  climate  change

(Ranasinghe, 2016, 2020). Meanwhile, the expected growth of population density in low-lying

coastal  areas  during  the  twenty-first  century  (Merkens  et  al.,  2016;  Neumann  et  al.,  2015)

increases the need for efficient adaptation plans of coastal communities (Oppenheimer et al.,

2019). 

The  spatial  heterogeneity  of  sea-level  rise  (SLR),  wave-climate  change,  time  scales  of

adaptation,  and vulnerability of coastal  communities raises the need for shoreline projections

with their related uncertainties that provide full support to risk-informed decision making process

(Hinkel et al., 2019; Losada et al., 2019; Toimil et al., 2018, 2020; Wainwright et al., 2015).

However, limits in our understanding and modelling capacity of the primary processes driving

shoreline change, together with the uncertainties associated to the future climate (e.g. carbon

emission scenario, SLR, storminess, etc.), undermine the confidence in future shoreline estimates

proportionally to the time scale of application (Ranasinghe, 2020; Toimil et al., 2020). Many

studies focused on the effects of SLR uncertainties (Athanasiou et al., 2020; Le Cozannet et al.,

2016, 2019; Thiéblemont et al., 2021; Vousdoukas et al., 2020) and changes in storminess based

on data extrapolation and/or empirical models (Allenbach et al., 2015; Casas-Prat et al., 2016;

Toimil et al., 2017; Vousdoukas et al., 2020) on future shoreline uncertainties. However, these

studies  do not explicitly  resolve wave-driven shoreline change,  and it  is  advocated that  new

methods have to be developed to predict the impacts of SLR on the coast (Cooper et al., 2020).
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Short- and long-term variability in wave energy, as well as the chronology of storm events, can

strongly affect future shoreline patterns (Besio et al., 2017; Coco et al., 2014; Dissanayake et al.,

2015).   Currently,  there  are  no  studies  addressing  the  time  evolution  of  the  effects  that

uncertainties in future SLR and model parameters have on shoreline projections to the end of the

21st century while explicitly resolving wave-driven shoreline response. A notable exception are

Kroon et al. (2020) who showed the significant effects of wave climate variability and model

uncertainty on the short-term (1 year) probabilistic assessment of coastline change at the Sand

Engine (Netherlands). The authors used a one-line model, i.e. resolving wave-driven longshore

sediment  transport  gradients  and  resulting  shoreline  evolution,  as  this  stretch  of  coast  is

longshore transport dominated. The recent development of equilibrium shoreline models opened

the  way  to  skilful  simulation  of  wave-driven  shoreline  response  on  cross-shore  transport

dominated sites, which are ubiquitous worldwide, on time scales from hours (storm events) to

decades, with low computational cost (Antolínez et al., 2019; Davidson et al., 2013; Lemos et al.,

2018; Robinet  et  al.,  2018; Splinter  et  al.,  2014a; Vitousek et  al.,  2017; Yates et  al.,  2009).

Equilibrium shoreline models are based on the principle that the shoreline dynamically moves

towards a time-varying equilibrium condition (Wright & Short, 1984), which can be expressed as

a function of the current shoreline position (Yates et al., 2009) or antecedent wave conditions

(Davidson et al. 2013). While the two latter equilibrium formulations show similar skill against

shoreline observations on a multi-year timescale (Castelle et al., 2014; Montaño et al., 2020), the

suitability of one approach over the other is unclear, particularly on long-term (multi-decadal)

timescales. In addition, in this type of models, sediment transport processes are described by

semi-empirical relationships that require site-specific calibration against observed shoreline data,

introducing further uncertainty (D’Anna et al., 2020; Splinter et al., 2013). Implementations of
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cross-shore equilibrium models into probabilistic frameworks recently showed that uncertainties

in the calibration of model free parameters (D’Anna et al., 2020) and in future wave conditions

(Vitousek et  al.,  2021)  have  a  significant  impact  on  model  predictions.   In  addition,  recent

studies  found an inherent  connection between the seasonality  of wave climate and shoreline

model parameters that defines the frequency of shoreline response, for several beaches along the

Australian coast (Ibaceta et al., 2020; Splinter et al., 2017)

SLR-driven shoreline retreat is often accounted for using the Bruun (1962) model. This model

relates the rate of shoreline erosion to the SLR rate and the average slope of the active beach

profile, defined between the seaward and landward limits of cross-shore sediment exchange. The

seaward  limit  of  the  active  beach  profile  is  commonly  identified  by  the  depth  of  closure

(Hallermaier,  1978).  As local scale bathymetric  surveys are scarce and the estimation of the

depth of closure is essentially empirical, the active beach profile slope is typically associated

with large uncertainties (Nicholls, 1998; Ranasinghe, 2012). 

In  this  work,  we  aim  at  deepening  our  understanding  in  the  role  and  impact  of  different

uncertainties in shoreline projections. We perform a Global Sensitivity Analysis (GSA) (Saltelli

et  al.,  2008) to unravel  the respective  contributions  of SLR, depth of closure,  and shoreline

model  free parameters  uncertainties.  The framework is  applied  to  the cross-shore dominated

Truc  Vert  beach (SW France)  using two different  wave-driven shoreline  models,  the  Bruun

model,  and  state-of-the-art  SLR  and  wave  projections  for  two  future  Representative

Concentration Pathways (RCP) scenarios. The likely range provided along with median SLR

estimates in IPCC reports does not cover the full uncertainty range of mean sea level projections.

Hence, there remains a probability of up to 33% that sea-level rise exceeds the likely range.

Therefore,  we also  assess  shoreline  projections  in  the  deterministic  high-end  SLR scenario,
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which remains unlikely but plausible and is associated with large impacts (Stammer et al 2019).

The remainder  of this  paper includes: an outline of Truc Vert beach, the data,  the shoreline

models,  and  the  method  (Section  2);  a  description  of  the  GSA input  variables’  probability

distributions and the numerical modelling setup (Section 3); and the presentation of the results

(Section 4). Discussion and conclusions are provided in Section 5 and 6, respectively.
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2 Study site, data and method

2.1 Truc Vert beach

Truc Vert is a meso-macrotidal wave dominated sandy beach located in the south of the Gironde

coast, southwest France, which extends roughly 100 km between the Gironde river estuary and

the south of the Arcachon basin (Figure 1a,b). Truc Vert is backed by a high (~20 m) and wide

(~250 m) coastal dune system (Robin et al., 2021). The wave climate is characterized by strong

seasonal energy fluctuations,  and strong interannual  winter energy variability  (Castelle et  al.,

2018a; Charles et  al.,  2012; Robinet et al.,  2016), the latter  associated to large-scale climate

patterns  of  atmospheric  variability  in  the  northeast  Atlantic  region  (Castelle  et  al.,  2017).

Monthly-averaged significant wave height ranges from 1.1 m in August with dominant W-NW

direction to 2.4 m in January with dominant W direction. Truc Vert beach has been intensively

monitored since 2003 with monthly to bi-monthly topographic DGPS surveys, with additional

daily  topographic  surveys  and  high-resolution  bathymetric  surveys  collected  during  the

ECORS’08  field  campaign  (Parisot  et  al.,  2009),  see  Castelle  et  al.  (2020)  for  detailed

description of the datasets. Since 2017, high-resolution digital elevation model covering 4 km of

beach-dune are also derived seasonally from photogrammetry of UAV images (Laporte-Fauret et

al., 2019). 

The beach morphology is highly dynamic and responds primarily to cross-shore processes driven

by the temporal variability of the incident wave climate (Castelle et al., 2014; Robinet et al.,

2016, 2018). Overall, this segment of coastline has been observed to be reasonably stable over

the past decades (Castelle et al., 2018b), although the interannual distribution of winter wave

energy may result in episodic severe beach and dune erosion (Castelle et al., 2015; Masselink et

al., 2016).
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Figure 1 (a) Location of Truc Vert beach (green), wave hindcast grid point co-located with the

CANDHIS in situ wave buoy (red), and wave projections grid point (yellow); (b) Picture of Truc

Vert beach and dune landscape (photo by V. Marieu); (c) 4 km alongshore-averaged beach-dune

profile from merged 2008 topo-bathymetry (submerged beach) and 2018 UAV-photogrammetry

digital  elevation  model  (emerged beach and dune);  (d) Mean shoreline (1.5-m beach profile

elevation  proxy)  positions  between  2011  and  2020  derived  from the  bimonthly  topographic

surveys.
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2.2 Wave data: historical and projections

While a dataset of future waves is required to simulate future shoreline change, hindcast wave

data were also needed for the present study in order to: (1) run the shoreline models on the past

period and estimate the distribution of the model parameters; and (2) support the correction of

the wave projection dataset.

2.1.1 Hindcast wave data (1994-2020)

Historical wave data (Hs, Tp,  and Dm), from January 1994 to January 2020, was extracted from

the NORGAS-UG regional hindcast model (Michaud et al., 2016) at the grid point co-located

with the in  situ CANDHIS wave buoy (44°39’9” N; -1°26’48” W) moored in ~50 m depth

offshore of Truc Vert beach (Figure 1a). The NORGAS-UG model covers the French Atlantic

coastal area using an unstructured mesh grid with resolution of 10 km offshore, increasing to 200

m nearshore. The wave model was validated against several French and international wave buoy

data, and showed 0.96-0.99 correlations coefficients, 0.15-0.21 m RMSE, and -0.02 to 0.04 m

bias (Michaud et  al.,  2016).  The hindcasted wave time series (1994-2020) shows the typical

seasonal and interannual modulation of the incident wave climate at Truc Vert beach (Figure 2a).

2.2.2 Future wave climate (2020 - 2100)

Wave-driven  shoreline  change  at  cross-shore  transport  dominated  sites  is  controlled  by  the

variability in incident wave energy including temporal clustering and chronology of storm wave

events  (Splinter  et  al.,  2014b;  Dissanayake et  al.,  2015;  Anguureng et  al.,  2017).  Thus,  the

assessment of future shoreline evolution at Truc Vert requires a continuous wave time series with

high resolution (e.g. few hours). Bricheno and Wolf (2018) (hereafter BW18) provide state-of-

the-art  wave projections  throughout  the  21st century in the Northeast  Atlantic  region for  the

9



manuscript submitted to Journal of Geophysical Research: Earth Surface

RCP8.5  and  RCP4.5  scenarios.  As  part  of  the  Coordinated  Ocean  Wave  Climate  Project

(COWCLIP),  BW18 wave data  belong to an  ensemble  of  global  and regional  wave climate

projections, forced with several Global Climate Models and using different wave models. Within

COWCLIP, changes were found to be robust in the North Atlantic region, suggesting a slight

decrease of annual mean Hs and a clockwise rotation of waves off the Aquitanian coast that is

more  pronounced  for  high  climate  forcing  (Morim  et  al.,  2019).  However,  amongst  the

COWCLIP ensemble, to our knowledge, only BW18 produced uninterrupted time series of wave

data with sufficient spatial resolution to properly reproduce the wave climate offshore our study

site.  The continuous hourly time series of wave conditions  was produced by BW18 using a

dynamical downscaling approach and a nested setup of the WaveWatchIII® spectral wave model

(Tolman,  2009).  The  wave  model  covers  the  Northwest  European  coastal  area  with  a  grid

resolution of 0.083° (<9 km) and was forced with the downscaled EC-Earth global climate model

(Hazeleger et al., 2012). For both RCP scenarios, BW18 model is run from 2006 to 2100  in a

regional  atmospheric  model  configuration  (~0.11°  resolution),  in  the  context  of  the  EURO-

CORDEX project.  BW18 also provide the results of a historic model run, forced with the EC-

Earth model climate, for the period 1970-2004. Such simulation is needed to estimate relative

change  between  past  and  future  wave  climate  or  for  the  correction  of  the  potential  biases

between the modelling results and reference wave data (e.g. wave buoy data or modelled wave

hindcast), which result from climate models bias (see e.g. Charles et al., 2012). From the BW18

modelling, we extracted wave data (Hs, Tp,  and Dm) over 2020-2100 (for shoreline projections)

from the nearest grid point to the CANDHIS wave buoy (~3 km North-East; Figure 1a), in ~50

m depth, for both RCP8.5 and RCP4.5 scenarios. To reduce the bias in modelled future waves,

we analysed the seasonal quantiles of the 1994-2004 portion of BW18 historic wave time series
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(extracted at the same location as the 2020-2100 wave data) and the seasonal quantiles of the

NORGAS-UG hindcast, and set-up a seasonal quantile-quantile correction that we applied to the

2020-2100 wave dataset (details in Text S1 of Supporting information). The corrected BW18

wave time  series  for  RCP8.5 and RCP4.5 scenarios  are  shown in  Figure  2b and  Figure  2c,

respectively. Hereon, we refer to BW18 as the corrected wave time series.
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Figure 2 Wave data offshore of Truc Vert, including: time series of Hs (black lines) and 3-month

averaged  Hs
2Tp (red  lines)  for  (a)  the  1994-2020  wave  hindcast  from NORGAS-UG model

(44°39’9” N; -1°26’48” W), and (b) RCP8.5 and (c)  RCP4.5 scenarios  corrected 2020-2100

Bricheno and Wolf (2018) wave projections; linear trends (solid lines) of annual (d) summer and

(e)  winter  mean  Hs (dashed lines)  of  2020-2100 corrected  Bricheno  and Wolf  (2018)  wave

projections, for RCP4.5 (blue) and RCP8.5 (orange) scenarios. Linear regressions’ coefficients
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were tested to be statistically significant (more than 99% significance) using Student’s t-tests. (f)

Quantile-quantile  comparison  between  RCP4.5  and  RCP8.5’s  3-month  average  of  Hs
2Tp

projections for the four seasons (black crosses) and for the full datasets (grey circles).

The RCP8.5 and 4.5 2020-2100 wave series show a strong interannual modulation of incident

wave energy, which is in line with current wave climate characteristics offshore of Truc Vert.

Both scenarios of the BW18 wave projections show several peaks of the 3-month average Hs
2Tp

that  are  comparable  to  the  2013-2014  outstanding  high-energy  winter  (Hs
2Tp  =  178  m2s)

experienced at  Truc Vert (Figure 2a-c).  For the RCP8.5 (RCP4.5) scenario,  the projected 3-

month average Hs
2Tp reaches at least 90% of the 2013-2014 peak in 2030, 2080, 2086, and 2099

(2060, 2068, 2073 and 2085) (Figure 2b,c). While characterized by similar integrated intensity,

these winters are preceded by different multi-annual energy trends, with the RCP8.5 (RCP4.5)

2080,  2086  and  2099  (2060  and  2068)  winters  following  a  positive  trend  of  wave  energy

(similarly to the 2013-2014 winter), and the 2030 (2060 and 2068) winter following a negative

trend of winter energy. Although in both RCP scenarios the incident wave energy fluctuates with

a similar interannual period with nearly the same average Hs
2Tp  (52 and 54 m2s for RCP8.5 and

RCP4.5, respectively),  the RCP4.5 scenario associates slightly higher energy during Autumn,

Summer and Spring (Figure 2f). The 2020-2100 summer mean wave height (H s summer) fluctuates

between 0.9 m and 1.7 m, with a statistically significant decrease of 2 mm/year (1 mm/year)

rates for the RCP8.5 (RCP4.5) (Figure 2d). Future winter mean wave height (H swinter), which is a

key  driver  of  cross-shore  wave-dominated  shoreline  evolution  (Dodet  et  al.,  2019),  varies

between 1.5 m and 3 m with a statistically significant decreasing trend under 0.05 mm/year in

both RCP scenarios (Figure 2e). This is consistent with previous regional projections (Charles et

al., 2012; Perez et al., 2015; Morim et al., 2019).

13



manuscript submitted to Journal of Geophysical Research: Earth Surface

2.3 Mean sea level and vertical land motion

2.3.1 Past mean sea level reconstruction

As SLR-driven shoreline retreat is explicitly accounted for in the calibration of the shoreline

models, past MSL information is required. We reconstructed the geocentric MSL change in the

Bay of Biscay over the period 2012-2020 using a Kalman filter approach assimilating available

tide gauge records in this region (Rohmer & Le Cozannet, 2019). The resulting SLR rates are

roughly constant at 2.1 ±0.1 mm/year (median ± σ). Local relative MSL change at Truc Vert

beach was calculated by adding the effect of vertical land motion to the relative regional sea

level estimate. Vertical land motion in Truc Vert area was estimated using the near Cap-Ferret

permanent GNSS station from the SONEL database (Santamaria-Gomez et  al.,  2017),  which

provides data from 2005 to 2012, when the station was decommissioned. The GNSS station

measures the effects  of Glacial  Isostatic  Adjustment  and current  gravitational,  rotational  and

deformation changes associated to ongoing glaciers and ice-sheets melting (Frederikse et  al.,

2020). We subtract their effects from the observed GNSS records over the observation period to

assess residual  vertical  ground motions obtaining a subsidence rate of 1.2 ±0.6 mm/yr.  This

results in a roughly constant SLR rate of 3.3 ±0.7 mm/yr over the past decade (see Figure S5 of

supporting information). The observed lowering ground might be due to slow subsidence of the

former Leyre riverbed (Klingebiel & Legigan, 1992). 

The pointwise Cap-Ferret GNSS station information may not be exactly that of the surrounding

area. This is part of the residual uncertainties of our study.

2.3.2 Future mean sea level projections
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State-of-the-art GMSL projections until 2100 are available from the Special Report of Ocean and

Cryosphere in a Changing Climate (SROCC, Oppenheimer et al., 2019). SROCC estimates build

on the  Fifth  Assessment  Report (AR5,  Wong et  al.,  2014)  with  a  revised assessment  of  the

Antarctic dynamics contribution based on new knowledge since the AR5, and provide median

values  of  each  sea  level  change  contribution  with  associated  likely  range for  several  RCP

scenarios. We downscaled the SROCC global MSL projections to Truc Vert beach considering

the regional  fingerprints  of  each mechanism contributing  to  sea-level  changes,  including the

effect of Glacial  Isostatic Adjustment  (Slangen et  al.,  2014). This results in regional relative

2020-2100  SLR estimate  of  0.63  ±0.26  m and  0.37  ±0.16  m for  the  RCP8.5  and  RCP4.5

scenarios, respectively. 

Residual vertical land motion, which is assumed to be due to slow-ongoing geological processes

(see subsection 2.3.1 and Klingebiel & Legigan, 1992), is assumed to remain constant (1.2 ±0.6

mm/yr) over the 21st century. Due to the large uncertainty (0.6 mm/yr) of the subsidence rate, the

stability of the area is not excluded, but has a very low probability (2.1%). The inclusion of

ground motion results in a local relative MSL rise of 0.73 ±0.27 m and 0.47 ±0.17 m from 2020

to  2100  for  RCP8.5  and  RCP4.5  scenarios,  respectively  (see  Figure  S5  in  Supporting

information). Further detail on future SLR is provided in Section 3.1.

2.4 Shoreline change models

Here, we use two equilibrium-based models to assess wave-driven shoreline response: the Yates

et al. (2009) model, and an adaptation of the ShoreFor model (Davidson et al., 2013; Splinter et

al.  2014a).  As the Truc Vert bathymetry iso-contours are essentially  shore-parallel,  breaking

wave conditions were computed directly from offshore wave conditions using the Larson et al.

(2010) formula. Chronic shoreline retreat induced by SLR was estimated using the Bruun (1962)
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model.  As shoreline change at Truc Vert is known to be dominated by cross-shore sediment

transport with negligible gradients in longshore transport (Castelle et al., 2014; Splinter et al.,

2014a), we did not compute longshore sediment transport. The following subsections describe

the two wave-driven shoreline models and the Bruun model.

2.4.1 Wave-driven shoreline models and free parameters

Equilibrium shoreline  models  are  based  on  the  principle  that  local  wave  climate  drives  the

shoreline towards a time-varying equilibrium position at a rate that depends on the instantaneous

wave thrust (e.g. wave power or wave energy) available to move the sediment, and the dynamic

disequilibrium state of the beach (Wright & Short, 1984). A generic formulation of equilibrium

shoreline models expresses the cross-shore rate of shoreline change (dY/dt; m/s) as:

dY
dt

=k+¿−¿F∆ D (1 )¿

where F is the instantaneous wave force function, ΔD is the disequilibrium condition, and k+/- is a

model response rate free parameter. The latter parameter assumes different values for accretion

(k+,  ΔD >0) and erosion (k  -, ΔD <0) events that are driven by different processes associating

different time scales. While the physical meaning of k+/- generally depends on the specific model

formulation  (Vitousek  et  al.,  2021),  for  the  models  used  here  this  parameter  represents  an

efficiency rate of the incident wave forcing. The Yates et al. (2009) model and ShoreFor differ

primarily in the formulation of the respective disequilibrium conditions. 

2.4.1.1 ShoreFor model

The ShoreFor model (hereafter SF) adopts a disequilibrium condition (ΔΩ) based on the wave

history and the standard deviation  of  ΔΩ.  The governing equation  for  shoreline  change rate

reads:
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dY
dt

=k s
+¿−¿P0.5 ∆ Ω

σ ∆Ω

+b (2)¿

where, ks
+/-(m s-1W-0.5) is the response rate parameter,  P(W) is the wave power at breaking, and

b(m/s) is a linear term trend. Following Robinet et al. (2018), the disequilibrium term ΔΩ at a

given  time is  defined  as  the  difference  between  the  equilibrium dimensionless  fall  velocity

(Ωeq(Φ)) and the offshore dimensionless fall  velocity (Ωo),  where  Ωeq(Φ) is a function of the

sediment size, prior wave conditions, and the free parameter Φ. The parameter Φ (days) is a site-

specific ‘beach memory’, and defines the time over which a given wave event has an impact over

the equilibrium state of the beach. In SF, the values of the  ks
 +/- parameter  for accretion and

erosion  conditions  are  considered  proportional  through  a  coefficient  r  (ks
- =rks

+).  The  r

coefficient is not a model free parameter but is defined by the wave forcing, and is such that no

trend in wave forcing results in no trend in the modelled shoreline position over the simulated

period:

r=¿

F=P0.5
∆Ω(Φ)

σ∆Ω
(4 )

where N is the length of the simulated period, and ⟨ . ⟩ denotes an operation that removes the linear

trend. For an extended description of SF the reader is referred to Davidson et al. (2013) and

Splinter et al. (2014a). In SF, the model free parameters to be calibrated at a given site are ks
+, Φ

and  b. Physically,  the  ks
+/-(m s-1W-0.5) is a measure of the efficiency of wave forcing to drive

shoreline change. Φ(days) is a time scale for the duration of the impact that past waves exerted

on the beach, and provides the ability for the model equilibrium condition to evolve along with

long-term wave energy trends. The parameter b(m/s) is a linear term that encapsulates the effect

of slow processes, other than wave-driven equilibrium based, which may drive chronic shoreline
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change (e.g., wind driven sediment transport) and that are not explicitly resolved in the model.

We note here that, while accounting for the effects of slow processes using a constant linear

trend  (i.e.,  b)  can  improve  the  model  skill  for  simulated  periods  within  the  decade,  the

application of such trend over longer time scales (decades to centuries) becomes increasingly

inaccurate (D’Anna et al., 2020). Therefore, given the long time scale of our application and the

absence of secondary processes (e.g. longshore gradients in sediment transport) that may drive

long-term shoreline trends at Truc Vert, we set b=0. 

2.4.1.2 Yates model

In Yates’ model  (hereafter  Y09) the disequilibrium condition is  defined as a function of the

current shoreline position, and the cross-shore rate of shoreline is calculated as follows:

dY
dt

=k y
+¿−¿E0.5 (E eq (Y )−E )(5)¿

where  E (m2)  is  the wave energy,  ky
+/-(m s-1/m2)  is  the response rate  parameter,  Y(m) is  the

present  shoreline  position,  and  Eeq(Y)  is  the  wave  energy  in  equilibrium  with  the  current

shoreline position Y through a linear relationship: 

Eeq (Y )=a1Y +a2(6)

where a1 (m2/m) and a2 (m2) are free model parameters. In the Y09 model no assumption is made

on  a  possible  relationship  between  the  ky
+ and  ky

-,  which  are  both  considered  model  free

parameters and, as well as a1 and a2, require specific calibration for each field site application.

Contrarily to SF, here the equilibrium state formulation (Equation 6) does not depend on recent

wave conditions, making this model insensitive to wave climate variability on time scales larger

than the calibration period. Physically, ky
+/-, once again is a measure of the shoreline reactivity to

the incident wave forcing, and is expressed in (m s-1/m). Although the dimensions of a1 and a2

are ‘energy/meter’ and ‘energy’, respectively, the role of these parameters in the model is purely
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empirical.  A rearrangement  of  the  terms  in  Equations  2-3  results  in  combinations  of  model

parameters that are representative of equilibrium time and spatial scales (Vitousek et al., 2021).

However,  here  we  use  Y09  in  its  original  form,  where  a1  and  a2 are  treated  as  empirical

parameters. 

2.4.2 Sea-level driven shoreline recession

We include SLR-driven shoreline recession using the Bruun (1962) model, which is based on the

equilibrium beach concept and cross-shore balance of sediment volume. While the reliability of

this model is highly debated for its oversimplification of the reality (Cooper & Pilkey, 2004;

Ranasinghe,  2012),  its  simple  linear  formulation  has  been  extensively  used  worldwide.  In

addition,  Truc  Vert  beach  is  a  relatively  undisturbed  beach-dune  environment  with  large

accommodation space, which makes this sites in line with most of the Bruun Rule underlying

assumptions. The Bruun model assumes that under rising sea level, on time scales larger than

years, the average beach profile translates upwards and landwards. The resulting shoreline retreat

(dYSLR/dt) depends on SLR and the average slope of the active beach profile, here extending

from the dune crest down to the depth of closure (DoC), defined as the depth beyond which

sediment exchange is considered negligible (Bruun, 1988; Wolinsky & Murray, 2009):

dY SLR

dt
=
SLRrate

tanβ
(7)

where SLRrate is the rate of SLR (m/time), and tanβ is the average profile slope defined between

the DoC and the dune crest. We estimated the DoC according to Hallermeier (1978), and the

corresponding tanβ=0.023 using the beach profile reported in Figure 1c.

19



manuscript submitted to Journal of Geophysical Research: Earth Surface

2.5 Global Sensitivity Analysis

Numerical modelling of shoreline change inherits the uncertainties associated to input variables

and  their  complex  interactions,  affecting  the  robustness  of  the  shoreline  projections.  While

numerical modelling provides a ‘key-hole’ to observe the explicit  interactions among defined

sets of variables, sensitivity analysis provides a way to understand the role of input variables

uncertainties in shoreline predictions. Here, we use the framework proposed by D’Anna et al.

(2020),  who used a  variance-based Global  Sensitivity  Analysis  (GSA) (Saltelli  et  al.,  2008;

Sobol’,  2001)  to  investigate  the  relative  contributions  of  the  uncertainties  affecting  input

variables to the uncertainties of modelled shoreline predictions, and their evolution in time. The

estimate of such contribution is measured, for each variable, by a sensitivity index known as

first-order Sobol’ index  (Si). The  Si measures the reduction in the output’s uncertainty (i.e. the

variance) that would occur if the uncertain input Xi was set to its true value, and is defined as:

Si=
Var (E (Y|X i ) )

Var (Y )
(8)

where  Var is the variance operator,  E is the expectation operator,  Y is the modelled shoreline

position,  and  Xi is  the i-th  uncertain  input  variable.  Here,  we address  the  relative  impact  of

uncertainties associated to SLR, DoC and of model free parameters on shoreline projections (Y)

and their evolution in time for the two different modelling approaches described in Section 2.4.

Following  D’Anna  et  al.  (2020),  we  computed  the  Sis  using  the  modularized  sample-based

approach by Li and Mahadevan (2016), which allows accounting for the statistical dependence

between model free parameters, and we estimate Sis for the purpose of “Factors’ Prioritization”.

At a given time, the Factors’ Prioritization (as defined by Saltelli et al., 2008) identifies the main

driver of model results uncertainty, that is, the uncertain input variable that would most reduce

the output’s variance when fixed to its true value. The method can be summarized in three steps:
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1) Definition of probability distribution associated to each stochastic input variable (SLR,

DoC and model free parameters);

2) Generation  of  ensemble  modelled  shoreline  projections,  by means  of  a  Monte-Carlo-

based procedure (with accounts for dependence among the input parameters); and

3) Computation of first-order Sobol’ index time series for each uncertain input variable.

Figure  3 synthesizes  the  generalized  method  and  details  for  the  Truc  Vert  probabilistic

applications (excluding the additional high-end SLR deterministic scenario).

Figure  3 Flowchart of the method applied herein, summarized for a general case (black box),

and for the Truc Vert application (red box) in the four application scenarios.

3 Input probability distributions for future projections

3.1 Probabilistic sea-level rise

Sea-level projections inherit uncertainties associated with physical unknowns and modelling of

the contributing processes. While many efforts were dedicated to assess such uncertainties, there

is no single approach to define MSL probability distributions yet (Jackson & Jevrejeva, 2016;
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Jevrejeva et al., 2019; Kopp et al., 2014). We produced probabilistic relative MSL projections,

conditional  to  the  RCP8.5  and  4.5  scenarios,  defining  time  varying  normal  probability

distributions characterized by the yearly median and standard deviations (likely range) obtained

in Section 2.3.2 (Figure 4a,b),  following Hunter et  al.  (2012).  In the high-emission scenario

(RCP8.5),  the  large  uncertainty  associated  with  Antarctic  ice  sheet  dynamics  generates  a

skewness of the distributions in the second half of the 21st century, enhancing the amount of

possible extreme SLR (Grinsted et al., 2015; Jackson & Jevrejeva, 2016; Kopp et al., 2014). The

upper tail of the skewed probability distribution is very much debated (Jevrejeva et al., 2019) and

is  not  represented  by  the  Gaussian  distributions.  Therefore,  in  addition  to  the  Gaussian

distribution reflecting the SROCC assessment (Oppenheimer et al., 2019), we consider a high-

impact, low probability high-end sea level scenario that might take place for high greenhouse gas

emissions (RCP8.5; black line in Figure 4b) following the same assumptions as Thiéblemont et

al. (2019).

The  possibility  that  the  subsidence  rate  revealed  by  the  Cap-Ferret  GPS  station  is  not

representative of the Truc Vert area (located at 8 km distance) constitutes a residual uncertainty

that  cannot  be quantified,  and is  not  accounted  in  this  study due to the lack of  quantitative

information supporting an alternative scenario for residual vertical ground motions. 

3.2 Depth of closure

The active beach profile slope is critical to SLR-driven erosion rate (Section 2.4), and strongly

depends on the depth of closure (DoC). The DoC was calculated from the wave climate using the

Hallermeier  (1978) formula.  Given that  DoC depends on the period of  time over which the

Hallermeier formula is applied (Nicholls, 1998), we iteratively applied the Hallermeier formula

over a 1-year moving window of the future wave climate with a 30-days step. For both RCP8.5
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and RCP4.5 scenarios, the latter procedure generated an ensemble of possible DoC values well

fitted  by a Gaussian distribution (Figure 4c).  The DoC probability  distribution  shows higher

median and standard deviation values in the RCP4.5 (µ = 17.2 m; σ = 1.75 m) than in the RCP8.5

(µ = 16.3 m;  σ = 0.95 m).  This results from the more frequent  occurrence and larger  wave

heights associated to isolated extreme events in the RCP4.5 scenario, compared to the RCP8.5

scenario. 

3.3 Model parameters

Numerical models are associated with uncertainties owing to the choice of modelling approach

and to the estimation of model free parameters. We accounted for the uncertainty conditional to

the choice of modelling approach assessing the shoreline projections using the Y09 and the SF

models described in Section 2.4.1, in two separated scenarios. Both models rely on shoreline

observations  to  calibrate  the  respective  free  parameters,  and  inherit  uncertainties  due  to  the

quality and amount of available data (Splinter et al., 2013), to possible non-stationarity of the

parameters in respect to the wave climate (Ibaceta et al., 2020), and to the optimization method.

Uncertainties affecting model free parameters of the Y09 model (ky
+/-,  a1, a2) and the SF model

(ks
+,  Φ)  are  synthetized  by  their  associated  joined  probability  distribution.  We  follow  the

approach developed in D’Anna et  al.  (2020),  who determined the optimized combination  of

model  free parameters  as well  as their  joined probability  distribution by fitting  an empirical

multivariate  distribution  (multivariate  kernel  function)  on  an  ensemble  of  model  parameters

combinations that produced a RMSE < 10 m against observed shoreline data. Unlike D’Anna et

al. (2020), here we calibrated the models between January 2012 and December 2019, where no

long-term trend in shoreline position is observed, in line with the assumption of the SF parameter
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b=0 (see  Section  2.4.1).  In  addition,  we  used  the  Nash-Sutcliffe  (Nash  &  Sutcliffe,  1970)

efficiency score (NS) instead of the RMSE to determine the models’ performance (as for instance

in Kroon et al., 2020). The  NS measures the model skill in comparison to the ‘mean’ model,

based on the error’s variance, and it is calculated as follows:

NS=1−
∑
n=1

N

(Y m
n
−Y o

n )
2

∑
n=1

N

(Y o−Y o
n
)
2
(9)

where N is the number of observations, Ym
n and Yo

n are the n-th modelled and observed shoreline

positions,  respectively,  and   Y o is  the  mean  of  the  observed  shoreline  positions.  The  NS

coefficient  can  range  between  -∞  and  1,  where  NS =  1  corresponds  to  a  model  perfectly

reproducing the observations, NS = 0 to a model with skill comparable to the ‘mean model’, and

NS < 0 corresponds to models less skilful than the ‘mean model’. We obtained the probability

distribution using combinations  of parameters  that  resulted in a  NS ≥ 0.25 (compared to the

maximum NS = 0.63), which corresponds to a max RMSE of ~10 m consistently with D’Anna et

al. (2020). We defined the latter threshold with the iterative procedure described in Text S1 of

Supporting Information. This procedure results in the probability distributions of ky
+/-, a1, and a2

for Y09, and ks
+ and Φ for SF shown in Figure 4d,e, with the range of possible parameters values

reported in Table 1.

24



manuscript submitted to Journal of Geophysical Research: Earth Surface

25



manuscript submitted to Journal of Geophysical Research: Earth Surface

Figure  4 Probability  distributions  of:  relative  mean  sea  level  over  the  period  2020-2100,

including the likely (dark shaded areas) and 0.01st to 99.9th (light shaded areas) ranges, for (a)

RCP4.5 and (b) RCP8.5 scenarios, with deterministic high-end sea-level projections (black line);

(c) Gaussian distributions of depth of closure values calculated over the 2020-2100 wave time

series for RCP4.5 (blue curve) and RCP8.5 (red curve) scenarios; and empirical joint probability

distributions of (d) ShoreFor [ks
+, Φ] parameters, and (e) Yates [ky

+/-, a1, a2] parameters, obtained

fitting a kernel density function (with bandwidths estimated from the marginal kernel density

function for each variable)  on 6000 combinations of model parameters  producing  NS > 0.25

against shoreline data.

Table 1 Optimised combinations of cross-shore model free parameters, and respective range of 

variation in the probability distributions.

Model Model parameter
Optimised

value
Distribution

range

ShoreFor
ks

+[m1.5 s-1 W0.5] 4.4 x10-8 [2; 7.4] x10-8

Φ [days] 1193 [400; 1423]

Yates

ky
+ [m2s-1 /m] 0.87 [0.24 ; 2]

ky
- [ m2s-1 /m] 0.5 [0.1 ;1.5 ]

a1 [m2/m] -0.008 [-0.02 ; -0.004]

a2 [m2] 0.49 [0.33 ; 1]

3.4 Model setup of shoreline projections

26



manuscript submitted to Journal of Geophysical Research: Earth Surface

Four ensembles of 3000 possible shoreline trajectories from 2020 to 2100 were generated using

the SF and Y09 shoreline change models, linearly combined with the Bruun Rule, for the two

RCP8.5 and RCP4.5 scenarios (Table 2). 

For each model and RCP scenario, 3000 simulations were run with different combinations of

model  free  parameters,  DoC and  SLR time  series,  sampled  from the  respective  probability

distributions. Shoreline change was computed with a 3-hour time step from the 1st January 2020

to the 31st December 2099 starting from the same shoreline position (Y0  =0), and model outputs

were  recorded  with  a  2-weeks  resolution.  As  the  characteristics  of  the  MSL  probability

distribution  are  time-dependent,  we  randomly  sampled  percentile  values  and  extracted  the

corresponding MSL at each year. The ensemble projections character was synthetized by the

likely range and the possible range, defined at each time step as the variance and the envelope

(min and max) of modelled shoreline positions, respectively. The impact of individual winters on

shoreline projections is qualitatively discussed observing the distributions of shoreline positions

corresponding  to  the  most  seaward  and  landward  median  shoreline  position  within  each

simulated annual cycle (1st September to 31th August). We analysed the decadal shoreline trends

by filtering  the modelled  shoreline time series  with a 5-year  running mean.  In addition,  for

RCP8.5 scenario, a deterministic high-end-SLR simulation was run with both shoreline models

using the optimized model parameters (Table 1) and the median DoC.

Table 2 Probabilistic future scenarios for two Representative Concentration Pathways (RCP) and

two  different  wave-driven  modelling  approaches,  using  the  Bruun  Rule  and  3000  different

combinations of model parameters, SLR percentile and DoC. 

Future scenario
SLR-driven

shoreline change
Wave-driven

shoreline change
# Combinations of
uncertain variables

RCP 4.5 Bruun Rule ShoreFor (SF) 3000
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Yates (Y09) 3000

RCP 8.5 Bruun Rule
ShoreFor (SF) 3000

Yates (Y09) 3000

4 Results

4.1 Shoreline projections

The four future scenarios in  Table 2 resulted each one in 3000 shoreline evolution simulations

spanning  2020-2100  (Figure  5 and  Figure  6).  Figure  5c,d  and  Figure  6c,d  represent  the

distribution of 3000 modelled shoreline positions at each recorded output time. All scenarios

show a net erosion by 2100. All model ensembles also show large interannual variability that is

essentially enforced by the interannual variability in incident winter-mean wave height (Figure

5a,b  and  Figure  6a,b).  In  the  RCP8.5  (RCP4.5)  scenario  we  observe  a  long-term shoreline

change  pattern  responding  to  alternating  sequences  of  high-  and low-energy  winters  with  a

period of ~20 years (~10 years) and even longer (Figure 5a,e,f and Figure 6a,e,f). 

Figure 5c,d (Figure 6c,d) show several episodes of rapid erosion driven by isolated extreme

energy winters, for instance for the RCP8.5 (RCP4.5) scenario in winter 2030, 2076, and 2086

(2068, 2073 and 2085). The two wave-driven shoreline models (Y09 and SF) produce consistent

short- and long-term shoreline cycles, with larger tendency to accretion in SF than in Y09 during

extended periods of low energy winters, for instance during 2050-2055 for RCP4.5 and 2060-

2070 for RCP8.5 (Figure 5c,d and Figure 6c,d). 
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In the RCP4.5 emission scenario, the modelled 2020-2100 Truc Vert shoreline trend leads to a

likely (possible) retreat of 15 to 33 m (4 to 75 m) with Y09, and 14 to 33 m (2 to 65 m) with SF.

On a yearly time scale, the shoreline position is likely (possible) to be farther landward from the

initial position, by 76 m (123 m) with Y09, and 43 m (74 m) with SF (Figure 5c,d,  Table 3).

Indeed, the occurrence of extreme winters can produce significant landward shifts of the possible

shoreline positions, as observed during the 2084-2085 winter (Figure 5c,d).
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Figure 5 (a) Time series of winter mean wave height of the BW18 RCP4.5 projections (dashed

line) with corresponding 5-year average (solid line); (b) BW18 RCP4.5 wave height time series

(black  line),  and  3-month  average  Hs
2Tp time  series  (red  line);  RCP4.5  scenario  2020-2100

shoreline  projections  at  14-days  resolution  obtained  using  (c)  Y09  and  (d)  SF;  and  5-year

running mean shoreline projections modelled with (e) Y09 and (f) SF, respectively. Dark (light)

blue shaded areas indicate the likely (possible) range of the shoreline position, and solid light

line median shoreline position. The dotted vertical line indicates the most landward shoreline
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position over the simulated period. Yellow shaded areas indicate examples of years including

high-energy winters.

When forced with RCP8.5 scenario’s wave and MSL projections, from 2020 to 2100 simulations

indicate an average likely (possible) erosion of 27 to 48 m (16 to 83 m) using Y09, and 30 to 47

m (26 to 76 m) using SF (Figure 6d,e). In this scenario, over the simulated period the likely

(possible) most landward shoreline position reaches up to 70 m (108 m) from the initial shoreline

position with Y09 model, and 48 m (76 m) with SF (Figure 6c,d,  Table 3). Similarly to the

RCP4.5, here we observe for both models some important shifts in shoreline position distribution

owing to extreme winters such as 2086’s winter (Figure 6c,d).

In the high-end SLR scenario, both models predict a shoreline position within the envelope of

probabilistic projections until  2090, before the shoreline moves further inland during the last

decade (Figure 6d,e). The modelled 5-year averaged shoreline position in 2100 is of 88 and 74 m

for  Y09  and  SF,  respectively  (Table  3).  The  most  landward  shoreline  position  observed

throughout the simulation is 107 m with Y09, and 86 m with SF (Figure 6d,e). Note that Truc

Vert beach is backed by a large sand dune, so that retreat cannot be limited by non-erodible

geological outcrops. While such a large erosion does not threaten any human assets close to Truc

Vert  beach,  such  scenarios,  though  unlikely,  question  adaptation  planning  in  other  eroding

urbanised coastal areas in southwest France. 
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Figure 6 (a) Time series of winter mean wave height of the BW18 RCP8.5 projections (dashed

line) with corresponding 5-year average (solid line); (b) BW18 RCP8.5 wave height time series

(black  line),  and  3-month  average  Hs
2Tp time  series  (red  line);  RCP8.5  scenario  2020-2100

shoreline  projections  at  14-days  resolution  obtained  using  (c)  Y09  and  (d)  SF;  and  5-year

running mean shoreline projections modelled with (e) Y09 and (f) SF, respectively. Dark (light)

shaded areas  indicate  the  likely  (possible)  range of  the  shoreline  position.  Black  solid  lines

indicate shoreline projections in the RCP8.5 high-end SLR scenario.  The dotted vertical  line
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indicates the most landward shoreline position over the simulated period. Yellow shaded areas

indicate examples of years including high-energy winters.

Table 3 Likely and possible values of the 5-year averaged projected shoreline position in 2100,

and  2020-2100  most  landward  shoreline  position,  obtained  using  Y09  and  SF  equilibrium

shoreline models for the RCP4.5 and RCP8.5 probabilistic scenarios, and the deterministic high-

end SLR scenario.

Scenario

2100 5-year averaged
shoreline position

Most landward
shoreline position

likely range

(m)

possible range

(m)

likely 
(m)

possible 
(m)

RCP 4.5
Y09 -15 – -33 -4 – -75 -76 -123
SF -14 – -33 -2 – -65 -43 -74

RCP 8.5
Y09 -27 – -48 -16 – -83 -70 -108
SF -30 – -47 -26 – -76 -48 -76

Deterministic scenario
2100 5-year averaged

shoreline position
(m)

Most landward
shoreline position

(m)

High-end RCP 8.5
Y09 -88 -107
SF -74 -86

4.2 Global Sensitivity Analysis

In both RCP8.5 and 4.5 scenarios and for both shoreline model applications, the GSA shows that

over the first 30 years of simulation the variance of modelled shoreline projections is driven

primarily by the uncertainties in model free parameters, while the effects of SLR uncertainties on

shoreline position become increasingly significant after 2050 (Figure 7 and Figure 8). The Sis of

the Y09 and SF response rate parameters (ky
+/- and ks

+, respectively) and the SF beach memory

parameter  (Φ)  show seasonal  (6 months) and decadal modulation with a decreasing trend as

shoreline projections become more sensitive to SLR (Figure 7c,d and Figure 8c,d). Variations in

33



manuscript submitted to Journal of Geophysical Research: Earth Surface

ky
+/- and ks

+ are the primary source of shoreline projection uncertainties during accretion periods.

However, the response rate parameters’ uncertainties have a stronger impact on seasonal scale

when using the Y09 model (Figure 7c), and a larger impact on interannual scale when using the

SF model  (Figure 8c),  due to  the  different  response  of  the models  to  incident  wave energy

variability. Seasonal modulation is also observed for the Sis of the Y09 empirical parameters (a1

and a2), although their variability on longer time scales is visibly uncorrelated to the variability

in incident wave conditions. However, the estimated a1’s and a2’s Sis remain below 20% during

most of the simulated period with occasional peaks up to 45% (Figure 7e,f). The primary effects

of SLR uncertainties emerge at different times, which depend both on the RCP scenario and on

the shoreline model. When using Y09, a positive trend in SLR’s  Si emerges in the 2050-2060

period, with  SLR’s Si exceeding those of model parameters since approximately 2060-2070, for

both RCP scenarios (Figure 7g). Instead, with SF in the RCP8.5 (RCP4.5) scenario, such quasi-

monotonic trend appears later, approximately during the 2070s’ (2060s’) and only exceeds the

model parameters’ Sis after 2085 (2080) (Figure 8e). For all scenarios, DoC’s Si slowly increases,

with similar trends as SLR’s Si, and reaches approximately 5% and 10%, in the RCP8.5 and 4.5

scenarios, respectively. This difference is probably due to the larger uncertainties of SLR in the

RCP8.5 scenario  (Figure  4b),  and to  the  larger  variance  of  the  DoC probability  distribution

obtained for the RCP4.5 scenario (Figure 4c).
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Figure 7 Global Sensitivity Analysis results over the period 2020-2100 using the Yates model in

the  RCP4.5  (blue  lines)  and  RCP8.5  (orange  lines)  scenarios.  (a)  RCP4.5  and  (b)  RCP8.5

Ensemble shoreline projections (shaded areas) over 2020-2100; First-order Sobol’ index time
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series for (c) ky
+, (d) ky

-, (e) a1, (f) a2, (g) sea-level rise, and (h) depth of closure, with respective

linear fit (solid straight lines).

Figure  8 Global  Sensitivity  Analysis  results  over  the  period  2020-2100 using  the  ShoreFor

model  in  the RCP4.5 (blue lines)  and RCP8.5 (orange lines)  scenarios.  (a)  RCP4.5 and (b)

RCP8.5 Ensemble shoreline projections (shaded areas) over 2020-2100; First-order Sobol’ index

time series for (c) ks
+, (d) Φ, (e) sea-level rise, and (f) depth of closure, with respective linear fit

(solid straight lines).
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5 Discussion

5.1 Sea-level rise

While observed shoreline erosion in Aquitaine is not yet attributed to SLR, sooner or later a

SLR-driven signal will emerge from the current shoreline change variability, as sea levels are

committed to rise by meters over the coming centuries (Oppenheimer et al., 2019). Our results

suggest that these times of emergence of an SLR-driven erosive trend could be visible during the

2nd half  of  the  21st century,  possibly  by  2070.  Yet,  this  result  relies  on  our  modelling

assumptions, including the Bruun Rule and the Yates or ShoreFor models. 

The GSA applications to four simulated scenarios indicate that uncertainties in the modelled

2020-2100 shoreline projections at Truc Vert are primarily caused by uncertainties in model free

parameters between the present day and 2050. The effects SLR uncertainties always emerge as a

significant contribution to the shoreline change uncertainties in the second half of the century.

We also observed that the time evolution of  Sis and the onset of SLR uncertainties effects are

conditional to the RCP scenario (in agreement with Le Cozannet et al.,  2019), the choice of

shoreline model, and the variability of forcing wave climate. 

5.2 Shoreline models

The results obtained for the two different disequilibrium approaches (Y09 and SF) show similar

seasonal  and  interannual  shoreline  cycles,  although  with  notably  different  amplitudes.  Such

behaviours are rooted in the different expressions of the equilibrium physics adopted in the two

wave-driven  models  (i.e.  the  mechanism  that  would  drive  the  shoreline  to  an  equilibrium

position under constant wave conditions). Vitousek et al. (2021) analytically show that the type

of equilibrium condition is critical for the short- and long-term response of the shoreline model.

On one hand, Y09’s equilibrium condition depends on the current shoreline position, and is not

influenced by storm events that occurred prior to a given time scale that is implicitly defined by
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the model  calibration  (see ‘Appendix A’ of Vitousek et  al.,  2021).  On the other  hand, SF’s

equilibrium state  is  determined  by the  (time  varying)  past  wave conditions  with  an  explicit

‘beach memory’ function, and evolves in time accordingly. This means that, in absence of other

processes, the Y09 modelled shoreline oscillates persistently around the same position regardless

of the temporal variability of wave energy. Instead, SF can only achieve such a stable mean

shoreline trend when forced with a periodic long-term wave climate (Vitousek et  al.,  2021).

Hence, in presence of long-term trends of wave energy, Y09 emphasizes the short-term shoreline

erosion/accretion in order to re-establish the equilibrium shoreline position. The latter results in

larger amplitudes of seasonal fluctuations and in attenuation of long-term fluctuations, compared

to SF.

5.3 Model free parameters

Resolving process-based shoreline response to time-varying incident wave energy revealed that

uncertainties  in  model  parameters  have the  largest  impact  over  the first  simulated  30 years,

regardless of the cross-shore shoreline model choice. Over this period, Y09 and SF uncertainties

in response rate  parameters  (ky
+/-and  ks

+,  respectively)  are responsible for most of the results

uncertainties, which increases during low energy winters (on seasonal scale), and is particularly

emphasized for SF in correspondence of extended low energy periods. This suggests that the

assumption of a linear relationship between SF’s response rate parameters (ks
-= r ks

+) may not

hold in  the context  of long-term simulations,  as it  might  depend on the evolution  of  waves

properties (Ibaceta et al., 2020). While the Sis of the remaining model parameters (Φ for SF; a1

and  a2 for Y09) show a definite seasonality, their variability on longer time scales is unclear.

However,  Φ’s  Si,  which  exhibit  relatively  high  values  (up  to  90%) at  the  beginning  of  the
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simulation, shows an overall decaying trend for both RCP scenarios applications. The a1 and a2’s

Sis remain weak, though not negligible, (<20%) over all the simulated period.

The behaviour of the model free parameters’ Sis highlights, once again, the importance of wave

energy  variability  in  determining  the  impact  of  the  parameters  uncertainties  on  shoreline

projections. This was also observed in previous studies (D’Anna et al., 2020; Ibaceta et al., 2020;

Splinter et al., 2017). As a perspective of future work, one way to reduce the effects of model

free  parameters’  uncertainties  on  modelled  shoreline  may  be  to  employ  non-stationary

parameters  that  can  adjust  to  changes  in  wave  climate  variability  (Ibaceta  et  al.,  2020).  In

addition,  rearranging the Y09 parameters so that the new parameters have a similar order of

magnitudes  may  increase  the  efficiency  of  model  calibration,  reducing  model  parameters

uncertainties (Vitousek et al., 2021).

5.4 The role of wave time series

Our results indicate that the shoreline erosion is not only associated with large winter energy, but

also depends on the trends of past winter wave energy and the internal variability of high energy

events within the season. For instance, in the RCP4.5 scenario the winters 2084-2085 and 2059-

2060 show similar 3-month averaged Hs
2Tp peak (164 m2s and 172 m2s, respectively), but they

are preceded by several years of negative and positive winter energy trend, respectively (Figure

2b). This results in the winter 2084-2085 producing a rapid landward shift of shoreline position

distribution, and the winter 2059-2060 driving more moderate annual changes while contributing

to  a  long-term erosive  trend (Figure 5c,d).  We also observe that  the  interannual  patterns  of

shoreline  evolution  are  clearly  correlated  to  those  of  winter  wave energy.  These  behaviours

underline  the  critical  role  of  high/low energy  winters  interannual  cycles,  as  well  as  storms

sequencing, in wave-driven shoreline response, in line with previous studies (Dissanayake et al.,
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2015; Besio et al., 2017; Dodet et al., 2019). In addition, the temporal variability of wave climate

(e.g. seasonal distribution of storm events) has been observed to affect the frequency (or ‘mode’)

of shoreline response (Splinter et al., 2017; Ibaceta et al., 2020). 

Therefore, we further investigated the potential role of future waves uncertainties in shoreline

projections performing the GSA on an additional ensemble of 3000 simulations forcing the Y09

and SF models with 100 different wave time series. We generated 100 random synthetic wave

time series using the method proposed by Davidson et al.  (2017), which consists in building

continuous series of wave conditions by sampling 1-month portions from a reference dataset of

existing wave data (e.g. historic wave data) at a given location. The method generates synthetic

wave time series with random, though realistic, chronology of wave events, while maintaining

the seasonal and yearly character of the wave climate. We used the BW18 projections for the

RCP8.5 scenario as reference wave data and individually applied the Davidson et  al.  (2017)

method over 10-years and 15-years periods from 2020 to 2100, in order to preserve the long-term

(>15 years) characteristics of the reference time series (Figure 9a). 

When  using  the  latter  approach  to  generate  ensemble  waves  the  SF  model  shows  some

limitations. Therefore, here we exploit only the test results obtained with Y09. The results of the

SF test application and the aforementioned limitations are illustrated in Text S3 and Figure S4 of

Supporting information.
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Figure 9 Ensemble of 3000 Yates simulations forced using (a) 3-month average energy (Hs
2) of

100 random wave time series from 2020 to 2100 generated with the Davidson et  al.  (2017)

method based on the BW18 wave projections for the RCP8.5 scenario; (b) Ensemble shoreline

projections over the analysed period; First-order Sobol’ index time series for (c) ky
+, (d) ky

-, (e)
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a1, (f) a2, (g) sea-level rise, (h) depth of closure, and (i) wave energy, with respective linear fit

(solid straight lines).

The GSA results show that the introduction of uncertainties in the temporal distribution of wave

events (Figure 9a) has a large impact on the variance of model results (Figure 9b) and, in turn, on

the relative contributions of  the remaining uncertain input  parameters  (Figure 9c-h).  In fact,

accounting for uncertainty in wave events chronology (though in a simplistic way) increases the

overall model variance throughout the entire simulated period (Figure 6c and  Figure 9b), and

associates a dominating  Si (up to 0.3) over the first half of the simulated period (Figure 9i).

However, SLR’s Si still emerges after 2060 and dominate shoreline projections uncertainties over

the last two simulated decades.  The results of the test application illustrated above suggest that

including uncertainties in wave projections can significantly impact the uncertainties of shoreline

projections and the relative contributions of the remaining uncertain input variable.

5.5 Assumptions and limitations

Wave projections are affected by uncertainties owing to the choice of the Global Climate Model

(Morim et al., 2020) and random variability of wave events.  Although our results are based on

deterministic BW18’s wave projections, in the northeast Atlantic region future wave estimates

have been observed to be mostly sensitive to the RCP scenario (Morim et al., 2020).  In addition,

accounting for uncertainties in wave projections may also increase the uncertainties in DoC,

which were based on one deterministic wave time series in the present study. However, to the

authors’ knowledge there is no other dataset of continuous 2020-2100 wave projections, over the

north Atlantic area, with a sufficient spatial resolution to resolve the site-specific regional scale

processes. This underlines the need of continuous wave time series (obtained with different wave

models of fine enough spatial  resolution,  different climate models, for different RCP scenarios),
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as well as tools allowing generating continuous realistic future wave time series, such as climate

based stochastic wave emulators (Anderson et al., 2019; Cagigal et al., 2020).

In  the  current  work,  we assumed that  MSL 2020-2100 projections  are  normally  distributed.

However,  the  MSL  distribution  may  be  skewed  towards  higher  values  due  to  additional

uncertainty  related  to  Antarctic  ice-sheet  melting  in  the  RCP8.5  scenario.  We  simulated  a

deterministic RCP8.5 high-end SLR scenario to define a low-probability/high-impact scenario

for  projected  shoreline  erosion.  Yet,  our  high-end  SLR  scenario  is  based  on  a  particular

combination  of  high-end  contributions  to  sea-level  rise,  which  makes  no  consensus  in  the

scientific community (Bamber et al., 2019; Edwards et al., 2021; Stammer et al., 2019). While

this is not included in the GSA, the use of a skewed probability distribution may lead to an

earlier onset of SLR uncertainties in shoreline projections.

The Bruun Rule, used in our application to estimate SLR-driven shoreline recession, builds on

several  strong assumptions  that  reduce  the  applicability  of  this  model  to  a  limited  range of

beaches (Cooper et al., 2020). As the Truc Vert is an uninterrupted natural cross-shore transport

dominated beach, with large sediment availability,  most underlying assumption of the Bruun

model  are satisfied.  However,  alternative models to address beach response to SLR, such as

ShoreTrans (McCarroll et al., 2020), can be implemented in this framework.

Here,  we investigated the main effect  of the uncertainties  in  input variables  (Sis).  While  the

estimated  Si of  the  DoC remains  relatively  low over  the  simulated  period,  in  all  simulated

scenarios, the interaction of DoC and SLR uncertainties (i.e.  second-order Sobol’ index) may

have  a  larger  impact.  However,  estimating  robust  interaction  terms  would  require  a  larger

ensemble  of  simulations  (several  tens  of  thousands).  Furthermore,  in  order  to  rigorously

conclude on the negligible character of some uncertainties, GSA should be conducted within the
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factors’ fixing setting (i.e., investigating the ‘total effect’ of uncertain variables, Saltelli et al.,

2008). In the presence of dependence among the inputs, more advanced GSA indices should be

used for this purpose. In particular, a method that employes the so-called  Shapley effects has

recently been proposed and showed very promising results (Iooss & Prieur, 2019). While the

direct  application  of this  method requires computational  cost of several  order of magnitudes

larger  than  the  Sobol’  indices  (see  Iooss  &  Prieur,  2019),  Broto  et  al.  (2020)  successfully

implemented a more computationally efficient sampling-based method for GSA using Shapley

indices. This may be an interesting perceptive for future works. 

5.6 Concluding Remarks

Our results are useful to assess how far the future research may reduce uncertainties in future

shoreline  change  projections.  Research  on  future  sea-level  rise  can  reduce  substantially

uncertainties in shoreline change projections, but only during the second half of the 21 st century.

Adaptation practitioners concerned by adapting over the coming decades (up to 2050) may prefer

increasing  the  understanding  of  wave  climate  variability  and  reduced  complexity  models

improvements.  Yet,  there  remain  residual  uncertainties  that  require  further  observations  and

research. These include waves climate projections, Antarctic and Greenland ice-sheet melting,

and vertical ground motions. Finally, a clear signal that the world is on the track for meeting the

Paris agreement target would substantially limit the risk of large (several tens of meters) SLR-

driven shoreline retreat during the second half of the 21st century and offer better perspectives for

adaptation planning in the Aquitainian region.

6 Conclusions

We performed a Global Sensitivity Analysis on probabilistic 2020-2100 shoreline projections at

the cross-shore transport dominated Truc Vert beach in southwest France. Time varying first-
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order  Sobol’  indices  were  calculated  for  sea-level  rise,  depth  of  closure,  and  model  free

parameters for two different cross-shore shoreline models (Yates and  ShoreFor) and two RCP

scenarios (RCP4.5 and RCP8.5). We show that uncertainties in shoreline projections are initially

driven by uncertainties  in model  free parameters,  with the effects  of SLR uncertainties  only

emerging in the second half of the 21st century. However, the relative effects of SLR and model

parameters uncertainties on shoreline projections do not only depend on the shoreline modelling

approach and RCP scenarios, but their time evolution is also related to the forcing wave climate

variability.  We also emphasize  the importance  of  accounting  for  uncertainties  related  to  the

temporal distribution of wave energy, and therefore the need of ensembles of synthetic wave

time series that account for the inherent variability of the wave climate. 
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