References
Arevalo, J., Welty, J., Fan, Y., & Zeng, X. (2021). Implementation of snowpack treatment in the cpc water balance model and its impact on drought assessment. Journal of Hydrometeorology , 22 (5), 1235–1247. https://doi.org/10.1175/JHM-D-20-0201.1
Atiah, W. A., Amekudzi, L. K., Akum, R. A., Quansah, E., Antwi-Agyei, P., & Danuor, S. K. (2022). Climate variability and impacts on maize (Zea mays) yield in Ghana, West Africa. Quarterly Journal of the Royal Meteorological Society , 148 (742), 185–198. https://doi.org/10.1002/qj.4199
Bell, J. E., Palecki, M. A., Baker, C. B., Collins, W. G., Lawrimore, J. H., Leeper, R. D., et al. (2013). U.S. climate reference network soil moisture and temperature observations. Journal of Hydrometeorology , 14 (3), 977–988. https://doi.org/10.1175/JHM-D-12-0146.1
Benjamin, S. G., Smirnova, T. G., James, E. P., Lin, L.-F., Hu, M., Turner, D. D., & He, S. (2022). Land-snow data assimilation including a moderately coupled initialization method applied to NWP. Journal of Hydrometeorology . https://doi.org/10.1175/jhm-d-21-0198.1
Carrera, M. L., Bilodeau, B., Bélair, S., Abrahamowicz, M., Russell, A., & Wang, X. (2019). Assimilation of passive L-band microwave brightness temperatures in the Canadian Land data assimilation system: Impacts on short-range warm season numerical weather prediction. Journal of Hydrometeorology , 20 (6), 1053–1079. https://doi.org/10.1175/JHM-D-18-0133.1
Delworth, T. L., & Manabe, S. (1988). The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate.Journal of Climate , 1 (5), 523–547. https://doi.org/10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2
Dirmeyer, P. A., Wu, J., Norton, H. E., Dorigo, W. A., Quiring, S. M., Ford, T. W., et al. (2016). Confronting weather and climate models with observational data from soil moisture networks over the United States.Journal of Hydrometeorology , 17 (4), 1049–1067. https://doi.org/10.1175/JHM-D-15-0196.1
Dowell, D. C., Alexander, C. R., James, E. P., Weygandt, S. S., Benjamin, S. G., Manikin, G. S., et al. (2022). The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part 1: Motivation and System Description. Wea. Forecasting . https://doi.org/10.1175/WAF-D-21-0151.1
Ek, M. B., & Holtslag, A. A. M. (2004). Influence of Soil Moisture on Boundary Layer Cloud Development. Journal of Hydrometeorology ,5 (1), 86–99. https://doi.org/10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2
Fan, Y., & van den Dool, H. (2004). Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present.Journal of Geophysical Research D: Atmospheres , 109 (10), 1–8. https://doi.org/10.1029/2003JD004345
Ford, T. W., & Quiring, S. M. (2019). Comparison of Contemporary In Situ, Model, and Satellite Remote Sensing Soil Moisture With a Focus on Drought Monitoring. Water Resources Research , 1565–1582. https://doi.org/10.1029/2018WR024039
Guttman, N. B., & Quayle, R. G. (1996). A historical perspective of U.S. climate divisions. Bulletin of the American Meteorological Society , 77 (2), 293–303. https://doi.org/10.1175/1520-0477(1996)077<0293:AHPOUC>2.0.CO;2
Huang, J., Van Den Dool, H. M., & Georgakakos, K. P. (1996). Analysis of model-calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts. Journal of Climate . https://doi.org/10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2
James, E. P., Alexander, C. R., Dowell, D. C., Weygandt, S. S., Benjamin, S. G., Manikin, G. S., et al. (2022). The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part 2: Forecast Performance. Wea. Forecasting.https://doi.org/10.1175/WAF-D-21-0130.1
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., et al. (2004). Regions of Strong Coupling Between Soil Moisture and Precipitation. Science , 305(5687), 1138–1140. https://doi.org/10.1126/science.1100217
Lin, L. F., & Pu, Z. (2020). Improving near-surface short-range weather forecasts using strongly coupled land-atmosphere data assimilation with gsi-enkf. Monthly Weather Review , 148(7), 2863–2888. https://doi.org/10.1175/MWR-D-19-0370.1
Liu, J., Zhan, X., Hain, C., Yin, J., Fang, L., Li, Z., & Zhao, L. (2016). NOAA Soil Moisture Operational Product System (SMOPS) and its validations. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 3477–3480). IEEE. https://doi.org/10.1109/IGARSS.2016.7729899
Madadgar, S., AghaKouchak, A., Farahmand, A., & Davis, S. J. (2017). Probabilistic estimates of drought impacts on agricultural production.Geophysical Research Letters , 44 (15), 7799–7807. https://doi.org/10.1002/2017GL073606
Min, L., Fitzjarrald, D. R., Du, Y., Rose, B. E. J., Hong, J., & Min, Q. (2021). Exploring Sources of Surface Bias in HRRR Using New York State Mesonet. Journal of Geophysical Research: Atmospheres ,126 (20), 1–18. https://doi.org/10.1029/2021JD034989
Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., et al. (2004). The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system.Journal of Geophysical Research: Atmospheres , 109(7), 1–32. https://doi.org/10.1029/2003jd003823
Muñoz-Sabater, J., Lawrence, H., Albergel, C., Rosnay, P., Isaksen, L., Mecklenburg, S., et al. (2019). Assimilation of SMOS brightness temperatures in the ECMWF Integrated Forecasting System. Quarterly Journal of the Royal Meteorological Society , 145 (723), 2524–2548. https://doi.org/10.1002/qj.3577
Palecki, M. A., Lawrimore, J.H., Leeper, R. D., Bell, J. E., Embler, S., Casey, N. (2013). U.S. Climate Reference Network Products, Daily. [Dataset]. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5H13007. https://www.ncei.noaa.gov/pub/data/uscrn/products/daily01/. Accessed 11 Nov. 2021.
Pan, M., Cai, X., Chaney, N. W., Entekhabi, D., & Wood, E. F. (2016). An initial assessment of SMAP soil moisture retrievals using high-resolution model simulations and in situ observations.Geophysical Research Letters , 43(18), 9662–9668. https://doi.org/10.1002/2016GL069964
Quiring, S. M., Ford, T. W., Wang, J. K., Khong, A., Harris, E., Lindgren, T., et al. (2016). The North American Soil Moisture Database: Development and Applications. Bulletin of the American Meteorological Society , 97(8), 1441–1459. https://doi.org/10.1175/BAMS-D-13-00263.1
Rigden, A. J., Powell, R. S., Trevino, A., McColl, K. A., & Huybers, P. (2020). Microwave Retrievals of Soil Moisture Improve Grassland Wildfire Predictions. Geophysical Research Letters , 47 (23), 1–8. https://doi.org/10.1029/2020GL091410
Robock, A., Luo, L., Wood, E. F., Wen, F., Mitchell, K. E., Houser, P. R., et al. (2003). Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. Journal of Geophysical Research: Atmospheres ,108 (22). https://doi.org/10.1029/2002jd003245
Robock, A., Vinnikov, K. Y., Schlosser, C. A., Speranskaya, N. A., & Xue, Y. (1995). Use of Midlatitude Soil Moisture and Meteorological Observations to Validate Soil Moisture Simulations with Biosphere and Bucket Models. Journal of Climate , 8 (1), 15–35. https://doi.org/10.1175/1520-0442(1995)008<0015:UOMSMA>2.0.CO;2
Soil Climate Analysis Network (SCAN) (2016). SCAN Daily Historic Provisional Data. [Dataset]. USDA National Resources Conservation Service National Water and Climate Center. www.wcc.nrcs.usda.gov/scan. Access date 16 Feb. 2022.
Schaefer, G. L., Cosh, M. H., & Jackson, T. J. (2007). The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN).Journal of Atmospheric and Oceanic Technology , 24 (12), 2073–2077. https://doi.org/10.1175/2007JTECHA930.1
Shellito, P. J., Small, E. E., Colliander, A., Bindlish, R., Cosh, M. H., Berg, A. A., et al. (2016). SMAP soil moisture drying more rapid than observed in situ following rainfall events. Geophysical Research Letters , 43(15), 8068–8075. https://doi.org/10.1002/2016GL069946
Smirnova, T. G., Brown, J. M., & Benjamin, S. G. (1997). Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Monthly Weather Review ,125 (8), 1870–1884. https://doi.org/10.1175/1520-0493(1997)125<1870:PODSMC>2.0.CO;2
Smirnova, T. G., Brown, J. M., Benjamin, S. G., & Kim, D. (2000). Parameterization of cold-season processes in the MAPS land-surface scheme. Journal of Geophysical Research: Atmospheres , 105(D3), 4077–4086. https://doi.org/10.1029/1999JD901047
Smirnova, T. G., Brown, J. M., Benjamin, S. G., & Kenyon, J. S. (2016). Modifications to the Rapid Update Cycle Land Surface Model (RUC LSM) Available in the Weather Research and Forecasting (WRF) Model.Monthly Weather Review , 144(5), 1851–1865. https://doi.org/10.1175/MWR-D-15-0198.1
Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., et al. (2002). THE DROUGHT MONITOR. Bulletin of the American Meteorological Society , 83 (8), 1181–1190. https://doi.org/10.1175/1520-0477-83.8.1181
Taylor, C. M., Gounou, A., Guichard, F., Harris, P. P., Ellis, R. J., Couvreux, F., & De Kauwe, M. (2011). Frequency of sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nature Geoscience, 4(7), 430–433. https://doi.org/10.1038/ngeo1173
van den Dool, H., Huang, J., & Fan, Y. (2003). Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981-2001. Journal of Geophysical Research: Atmospheres ,108 (16), 1–16. https://doi.org/10.1029/2002jd003114
Vinnikov, K. Y., & Yeserkepova, I. B. (1991). Soil Moisture: Empirical Data and Model Results. Journal of Climate , 4 (1), 66–79. https://doi.org/10.1175/1520-0442(1991)004<0066:SMEDAM>2.0.CO;2
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., et al. (2012). Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. Journal of Geophysical Research Atmospheres, 117(3). https://doi.org/10.1029/2011JD016048
Xia, Y., Sheffield, J., Ek, M. B., Dong, J., Chaney, N., Wei, H., et al. (2014). Evaluation of multi-model simulated soil moisture in NLDAS-2. Journal of Hydrology, 512, 107–125. https://doi.org/10.1016/j.jhydrol.2014.02.027
Xia, Y., Ek, M. B., Wu, Y., Ford, T., & Quiring, S. M. (2015a). Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis. Journal of Hydrometeorology ,16 (5), 1962–1980. https://doi.org/10.1175/JHM-D-14-0096.1
Xia, Y., Ek, M. B., Wu, Y., Ford, T., & Quiring, S. M. (2015b). Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part II: Impact of soil texture classification and vegetation type mismatches. Journal of Hydrometeorology , 16(5), 1981–2000. https://doi.org/10.1175/JHM-D-14-0097.1
Yao, Y., Ciais, P., Viovy, N., Li, W., Cresto-Aleina, F., Yang, H., et al. (2021). A Data-Driven Global Soil Heterotrophic Respiration Dataset and the Drivers of Its Inter-Annual Variability. Global Biogeochemical Cycles , 35 (8), 1–23. https://doi.org/10.1029/2020GB006918