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Introduction

Supplementary materials contain Texts S1 and S2 that describes validation procedure for the
numerical method and provides MatLab code for the benchmark solution for a single dike
cooling with heat and mass transfer. Additional figures are described in the main text.
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Figure S1. Phase diagrams used in the simulations.

Melt fraction as a function of temperature (in degC) is approximated as following:
Rhyolite:
function MF=mf_rhyolite(T)
2=TXT;
t7 = exp(0.961e3 - 0.359%e1 *T + 0.448e-2 *12 - 0.187e-5*t2 *T);
MF =0.1e1 ./ (0.1e1 + t7);
end

Basalt:
function MF=mf_basalt(T)

T=T/1000;

a=143.6; b=-494.4; c=572.4;, d=-2214; t2=T *T;

MF =0.1e1./(0.1e1+expl@a+b *T+c.*t2+d . *t2 *7T);
end

Text S1. Numerical method validation.

We consider three benchmark studies to demonstrate validity and robustness of our
numerical routines. In the first benchmark study heat conduction from a point source in an
infinite domain is considered. We do not account for phase transitions in this problem, i.e.,
latent heat L is assumed to be equal to 0. An analytical solution of this problem exists in the
form of a Green's function:

T, t x? + y?
Te(x,y,t) = aTOexp <— i4 > (S1)

4yt



which is a “hat-shaped” function for ¢t > 0. Here, to > 0 is some value of time, and T, is an
amplitude of temperature at t = to. For the purposes of numerical modeling, the finite domain
(x,y) € [-1/2;1/2] x [-1/2;1/2] is considered. To reduce the influence of boundaries,
domain size I is chosen in such a way that the temperature Ts(x,,t) is close to zero at x,y =
+1/2.

Results of numerical modeling are presented in Fig. S2. We assume that y =1 m2/sand T, = 1
K. As an initial condition, the analytical solution given by Eq. (S1) at t = to = 0.005 s is used.
Then, the simulation is advanced in time until t = 0.01 s. This corresponds to 800 explicit time
steps with grid spacing 6x = 0.005 m. As can be seen from Fig. S2, exact and numerical profiles

for the temperature atx > 0 and y = 0 are in the good agreement.
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Figure S2. Comparison of the numerical solution to the heat diffusion problem and the
analytical Green’s function. Curves and crosses are the profiles of temperature Tatx> 0 and y
=0.

In the second benchmark study, cooling and solidification of an individual elliptical dike at
different grid resolutions is considered. For comparison, we implemented a reference solver in
Matlab language using the frequently employed enthalpy method. Complete listing of the
reference solver is provided in this Supplementary material. Enthalpy formulation to the
problem of heat conduction is as follows:

3—7 =V-kVT,  H(T) = p(cT + LB(T)) (52)

where H is the enthalpy, T is the temperature, k is the thermal conductivity, p is the density, ¢
is the specific heat capacity, L is the latent heat, § is the melt fraction.

To determine the temperature T, the dependence of H on T'is tabulated, and the resulting
table of H-T pairs is used to lookup the reverse relation T(H). This is possible because H(T) is a
monotonous function.

Problem statement and initial distribution of temperature is shown in Fig. S3a. We consider a
rhyolitic dike with half-length a = 1350 m and half-width b = 10 m. The initial temperature at
time t = 0 in the dike is 900 °C, and the initial temperature in surrounding rocks is 500 °C. Heat
transfer between dike and rocks over ti: = 500 y is modeled using both reference Matlab
solver and CUDA GPU code. The reference simulation is carried out with grid spacing éx = 1.25
m, and GPU simulations are carried out with grid spacings equal to 1.25, 2.5, 5, 10 and 20 m.
The reference distribution of temperature at t = ti:is shown in Fig S3b. Relative deviation of
temperature profile at t = t;: from the reference temperature for all grid resolutions is shown



in Fig. S3c. Maximal deviation reaches 7% at the center of the dike and doesn’t depend
significantly on the grid spacing. That indicates that the main source of deviation is not the
spatial resolution, but the solution method. We conclude that the accuracy of the GPU solver is
sufficient for making first-order predictions of magma chamber formation.
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Figure S3. Results of the benchmark study. (a) Problem statement and (b) the deviation of the
temperature in the dike computed using enthalpy method and the temperature computed
using our explicit GPU code at different grid resolutions.

In the third benchmark study, we compare the results of modelling the repeated injection of
rhyolitic dikes into the granitic crust, presented in the main text in the section 3.1, at different
grid resolutions, corresponding to grid spacing of 2.5, 5, and 10 m. Characteristic width of a
dike is 20 m, and spatial resolution of 10 m is not sufficient for accurate modeling of cooling
and solidification, and the results, shown in Fig S4 a and d, are significantly different from
other cases, in which the spatial resolution is higher. Distributions of melt fraction at t=75 ky,
computed with grid resolutions 5 and 2.5 m, do not differ significantly from each other.
Therefore, we conclude that the grid spacing equal to 5 m is sufficient to resolve the details of
the interaction between individual dikes and surrounding rocks.
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Figure S4. Results of the mesh sensitivity study. In panels the distribution of melt fraction at t
= 75ky is shown. Three columns (a)/(d), (b)/(e), and (c)/(f) correspond to grid resolutions 2600 x
1600, 5200 x 3200, and 10400 x 6400 grid points with grid spacing 10 m, 5 m, and 2.5 m,
respectively. The first row (a)-(c) is the region of the whole computational domain with
coordinates x € [—1;4] km and z € [—8; —3] km; the second row (d)-(f) is the zoomed region
of the domain location of which is shown in panel (a) with the magenta rectangle.

Text S2. Enthalpy method, code

1 clear;figure(l);clf;colormap jet
2 % physics

3 rho = 2650;

4 Cp = 1350;

5 L = 3.5e5;

6 lambda =1.5;

7 Ly = 4000;

8 lam rhoCp = lambda/rho/Cp;
9 dT = 500;

10 | ¥ scales

11 | tsc = Ly”~2/lam_rhoCp;
12 | ¥ nondimensional

13 | Lx Ly = 0.25;

14 | L Cp = 260;

15 | Ta_dT = 4/5;

16 | a Ly = 0.3375;

17 | b Ly = 0.0025;

18 | ¥ dimensionally dependent

19 | Lx = Lx Ly*Ly;

20 | a = a Ly*Ly;

21 | b = b Ly*Ly;
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ttot = le-3*tsc;

Ta = Ta dT*dT;

% numerics

ny = 800;

nx = ceil (Lx Ly*ny);
CFL = 0.1;

niter = 100;

eiter = le-8;

nout = 100;

n_ lut = 1001;

% preprocessing

dx = Lx/ (nx-1);

dy = Ly/ (ny-1);

XS = -Lx/2:dx:Lx/2;
ys = -Ly/2:dy:Ly/2;
[x,¥] = ndgrid(xs,ys);
dt = CFL*min (dx,dy) ~2/lam_rhoCp;
nt = ceil (ttot/dt);
dt = ttot/nt;

% hires numerics

ny hires = 6400;

nx hires = ceil(Lx Ly*ny hires);

[

% hires preprocessing

dx hires = Lx/ (nx _hires-1);
dy hires = Ly/ (ny hires-1);
xs_hires = -Lx/2:dx_hires:Lx/2;
ys_hires = -Ly/2:dy_hires:Ly/2;
[x_hr,y hr] = ndgrid(xs_hires,ys hires);
r = (x_hr/b).”2+(y_hr/a).”2
% init
TO hr = Ta*ones (nx_hires,ny hires);
TO0 hr(r<=1l) = Ta + dT;
TO = TO0 hr;
for iconv = 1l:log2(fix(ny hires/ny))
TO = 0.25*(T0(1l:2:end,1:2:end) ...
+ TO(2:2:end,1:2:end) ...
+ TO(l:2:end,2:2:end) ...
+ TO(2:2:end,2:2:end)) ;
end
T lut = linspace(300,1000,n lut);
H lut = rho*Cp*T lut + rho*L*beta rhyolite(T lut);
T itp = griddedInterpolant (H lut,T lut);
H itp = griddedInterpolant (T lut,H lut);
H = H itp(TO);
ax = zeros (nx+1l,ny);
qy = zeros (nx,ny+l);
% action
for it = 1l:nt
H_old = H;
errs = [];
for iter = l:niter
H err = H;
T =T itp(H);
gx(2:end-1,:) = -lambda.*diff(T,1,1)/dx;
qy(:,2:end-1) = -lambda.*diff(T,1,2)/dy;
divQ = diff(gx,1,1)/dx + diff(qy,1,2)/dy;
H = H old - dt*divQ;
H err = H err - H;
merr = max (abs (H _err(:)))/max(abs(H(:)));
if merr < eiter;break;end
end

if mod(it,nout) ==

pcolor(x,y,T);shading flat;axis image;colorbar;caxis([Ta

Ta+dT])



85 title(sprintf('it = %d, iter = %d',it,iter))

86 drawnow;

87 end

88 | end

89 | pcolor(x,vy,T);shading flat;axis image;colorbar;caxis([Ta Ta+dT])
90 | title(sprintf('it = %d, iter = %d',it,iter))

91 | function bt=beta rhyolite(T)

92 T2 = T.*T;

93 t7 = exp(0.961e3 - 0.359el*T + 0.448e-2*T2 - 0.187e-5*T2.*T);
94 bt = 0.1lel./(0.1lel + t7);

95 | end
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Figure S5. Temperature histories of rock and magma particles during basaltic magma
injection into granitic host rocks for Q=0.25 m?/s, W=10 km. Due to higher solidification
temperatures basaltic magma has low melt fraction soon after the emplacement, while host
rocks become completely molten.
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Figure S6. Proportion of assimilated rocks during different eruptions.
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Figure S7. Average temperature of host rocks vs. time during preparation to different
eruptions shown on Figs.8-10. Because most eruptions are generated from the bottom of the
magma injection area, the starting temperature is ~ 570-620 °C. With consequent injection of
new magma and heat transfer the temperature rises to ~ 800 °C, that corresponds to ~ 50 %
melt (see Fig. S1)
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Figure S8. Histograms of core preservation of different host-rock zircon crystals during
different eruption episodes.




