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The unequal spatial distribution of ambient nitrogen dioxide (NO2),
an air pollutant related to traffic, leads to higher exposure for mi-
nority and low socioeconomic status communities. We exploit the
unprecedented drop in urban activity during the COVID-19 pandemic
and use high-resolution, remotely-sensed NO2 observations to in-
vestigate disparities in NO2 levels across different demographic sub-
groups in the United States. We show that COVID-19 lockdowns re-
duced, but did not eliminate, the overall racial, ethnic, and socioe-
conomic NO2 disparities. Prior to the pandemic, satellite-observed
NO2 levels in the least white census tracts of the United States
were double NO2 levels in the most white tracts. During the pan-
demic, the largest lockdown-related NO2 reductions occurred in ur-
ban neighborhoods that have 30% fewer white residents and 111%
more Hispanic residents than neighborhoods with the smallest re-
ductions, likely driven by the greater density of highways and inter-
states in these racially and ethnically diverse areas. However, the
least white tracts still experienced ≥50% higher NO2 levels during
the lockdowns than the most white tracts experienced prior to the
pandemic. Future policies aimed at eliminating pollution disparities
will need to look beyond reducing emissions from only passenger
traffic and also consider other collocated sources of emissions such
as heavy-duty trucks, power plants, and industrial facilities.
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A
dverse air quality is an environmental justice issue as it1

disproportionately a�ects lower income, minority, and2

marginalized populations around the world (1–3). Growing3

evidence suggests that these populations experience more air4

pollution than is caused by their consumption (4–6). Within5

the United States (U.S.), disparities in exposure are persis-6

tent, despite successful regulatory measures that have reduced7

pollution (7, 8). Nitrogen dioxide (NO2) is a short-lived trace8

gas formed shortly after fossil fuel combustion and regulated9

by the National Ambient Air Quality Standards under the10

Clean Air Act. Exposure to NO2 is associated with a range of11

respiratory diseases and premature mortality (9–11). NO2 is12

also a precursor to other pollutants such as ozone and partic-13

ulate matter (12). Major sources of anthropogenic NO2, such14

as roadways and industrial facilities, are often located within15

or nearby minority and disenfranchised communities (13, 14),16

and disparities in NO2 exposure across demographic subgroups17

have been the focus of several recent studies (7, 15–17).18

In early 2020, governments around the world imposed lock-19

downs and shelter-in-place orders in response to the spread20

of the coronavirus disease 2019 (COVID-19). The earliest21

government-mandated lockdowns in the U.S. began in Cal-22

ifornia on 19 March 2020, and many states followed suit in23

the following days. Changes in mobility patterns indicate24

that self-imposed social distancing practices were underway25

days to weeks before the formal announcement of lockdowns 26

(18). Lockdowns led to sharp reductions in surface-level NO2 27

(19–21) and tropospheric column NO2 measured from satel- 28

lite instruments (22, 23) over the U.S., China, and Europe. 29

According to government-reported inventories, roughly 60% 30

of anthropogenic emissions of nitrogen oxides (NOx © NO + 31

NO2) in the U.S. in 2010 were emitted by on-road vehicles 32

(24), and up to 80% of ambient NO2 in urban areas can be 33

linked to tra�c emissions (25, 26). As such, NO2 is often 34

used as a marker for road tra�c in urban areas. Multiple 35

lines of evidence such as seismic quieting and reduced mobility 36

via location-based services point to changes in tra�c-related 37

emissions as the main driver of drops in NO2 pollution dur- 38

ing lockdowns due to the large proportion of the population 39

working from home (21, 27, 28). 40

Here we exploit the unprecedented changes in human activ- 41

ity unique to the COVID-19 lockdowns and remotely-sensed 42

NO2 columns with unprecedented spatial resolution and cov- 43

erage to understand inequalities in the distribution of NO2 44

pollution for di�erent racial, ethnic, and socioeconomic sub- 45

groups in the U.S. Specifically, we address the following: Which 46

demographic subgroups received the largest NO2 reductions? 47

Did the lockdowns grow or shrink the perennial disparities in 48

NO2 pollution across di�erent demographic subgroups? Al- 49

though the lockdowns are economically unsustainable, how can 50

they advance environmental justice and equity by informing 51
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Fig. 1. Spatial distribution of NO2
columns during the baseline and
COVID-19 lockdown periods and ap-
portionment of drops among differ-
ent demographic subgroups. (a)
Census-tract average baseline NO2
(13 March-13 June 2019). (b) Abso-
lute difference between lockdown (13
March - 13 June 2020) and baseline
NO2 (� NO2), where � NO2 < 0 cor-
responds to NO2 drops during lock-
downs. (c) Demographic data aver-
aged over urban tracts with the largest
drops (� NO2 in first decile), all urban
tracts, and urban tracts with the small-
est drops (� NO2 in the tenth decile).

long-term policies to reduce NO2 disparities and the associated52

public health damages?53

Results54

Previous studies examining satellite-derived NO2 found the55

highest levels in urban areas (29, 30), and we find that these56

areas clearly stand out as NO2 hotspots during our baseline57

period (Figure 1a). NO2 column densities averaged over all58

urban areas are a factor of two higher than over rural ar-59

eas during the baseline period. Absolute di�erences in NO260

between the baseline and lockdown periods (“drops”) show61

sharp decreases over virtually all major metropolitan regions62

(Figure 1b). Outside of metropolitan areas, we note smaller63

NO2 drops in Appalachia and the South, likely stemming from64

a combination of lockdown-related changes in tra�c emissions65

as well as favorable weather (23). Parts of the Great Plains66

and Midwest experience slight increases in NO2 during lock-67

downs (< 0.5 ◊ 1015 molecules cm≠2), which could reflect68

di�erences in natural (e.g., soil, lightning, stratospheric NOx)69

or anthropogenic sources of NO2 between the baseline and70

lockdown periods. Given that the largest lockdown-related71

changes in NO2 occur in urban areas and to avoid urban-rural72

demographic gradients, we primarily focus on urban NO273

changes and how these changes impact di�erent demographic74

subgroups in urban areas.75

The largest urban NO2 drops occur in census tracts that76

are more non-white and Hispanic and have a higher propor-77

tion of their population without a vehicle or a post-secondary78

education compared with tracts with the smallest drops (Fig-79

ure 1d-h). The percentage of white residents in tracts with80

the largest drops in NO2 is 30% less compared with tracts81

with the smallest drops, which represent a slight increase over82

baseline levels (Figure 1g). The percentage of Hispanic- or83

Latinx-identifying residents in tracts with the largest drops is84

111% larger than tracts with the smallest drops (Figure 1d).85

This pattern found in urban tracts also holds in all (urban86

and rural) tracts and rural tracts, despite the di�erent socio- 87

demographic composition of the population in these areas 88

(compare Figures 1 and S1). 89

Since less educated communities and communities with 90

a large proportion of racial and ethnic minorities have 91

faced higher levels of NO2 and other pollutants for decades 92

(3, 7, 8, 15, 31), it is surprising that these communities expe- 93

rienced the largest drops in NO2 pollution during COVID-19 94

lockdowns. However, Figure 1 does not indicate how lockdown- 95

related NO2 drops grew or shrunk disparities, and we next 96

examine disparities in baseline and lockdown NO2 in the most 97

advantaged versus disadvantaged census tracts in the U.S. 98

In the baseline period, low income, less educated neighbor- 99

hoods and those with a higher proportion of minority residents 100

consistently face higher levels of NO2 among all urban tracts 101

across the U.S. and in nearly all 15 major metropolitan sta- 102

tistical areas (MSAs) explored (Figure 2). An unexpected 103

finding is that tracts with the highest income and educational 104

attainment in rural areas and aggregated over both rural 105

and urban areas have higher NO2 levels than tracts with the 106

lowest income or educational attainment (Figure 2). When 107

considering all census tracts (both urban and rural), the most 108

pronounced disparities are on the basis of race and ethnicity: 109

the least white tracts and most Hispanic tracts have 2.1 and 110

1.9 times greater baseline NO2 levels than the most white and 111

least Hispanic tracts, respectively (Figure 2a, S2g). These 112

disparities persist when examining the individual MSAs in 113

the U.S. For example, baseline NO2 in tracts with the lowest 114

median household income in New York and Los Angeles is 1.6 115

and 1.7 times higher, respectively, than tracts with the highest 116

income (Figure 2b). 117

The unprecedented change in human activity during 118

COVID-19 lockdowns narrowed disparities in NO2 across de- 119

mographic subgroups in the U.S. (Figures 2, S2). The ratio 120

of NO2 in the least white urban tracts to NO2 in the most 121

white urban tracts in the U.S. decreased from 1.51 prior to 122

the lockdowns to 1.36 during the lockdowns (Figure 2a). In- 123
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Fig. 2. Disparities in base-
line and lockdown NO2
columns across different
demographic subgroups.
Subgroups are determined
by identifying census tracts
with extreme values for each
demographic variable, and
NO2 levels are averaged
over all, rural, and urban
tracts with these extreme val-
ues. Urban tracts are fur-
ther separated into the fif-
teen largest MSAs listed on
the vertical axis.

dividual MSAs such as New York, Los Angeles, and Atlanta124

undergo even more striking reductions in their racial, income,125

and educational attainment disparities. There are some cities126

or aggregations, however, where disparities remain constant or127

even grow during lockdowns. As examples: the ratio of NO2128

in all urban tracts with the lowest income to those with the129

highest income grows from unity prior to the lockdowns to130

1.06 during the lockdowns (Figure 2b), and the magnitude of131

disparities across demographic subgroups is relatively constant132

in Phoenix (Figure 2).133

Although the short-term changes in NO2 during lockdowns134

reduced disparities, the most exposed demographic subgroups135

prior to the lockdowns remained so during the lockdowns136

(Figure 2, S2). For example, the racial disparities were so large137

during the baseline period that even the unprecedented drop138

in human activity during lockdowns did not bring NO2 levels139

for the least white tracts down to the levels experienced by the140

most white tracts prior to the lockdowns. The same patterns141

hold true on the bases of ethnicity, income, and educational142

attainment (Figures 2, S2). These results are neither an143

artifact of how we defined demographic subgroups (Figure144

S2) or the precise time period over which we characterize145

disparities (Figure S3).146

Within urban areas, we find that the magnitude of NO2147

drops is tightly coupled to the density of nearby primary roads148

(highways and interstates). The density of primary roads in149

urban tracts with the largest NO2 drops is six times greater150

than in urban tracts with the smallest NO2 drops (Figure 3).151

The racial, ethnic, income, and educational composition of152

tracts are also closely related to primary road density; urban153

tracts with lower income and vehicle ownership and a larger154

percentage of racial and ethnic minorities are located near a155

higher density of primary roads (Figure 3). The di�erence156

in primary road density on the basis of vehicle ownership is157

especially stark: tracts with the lowest vehicle ownership (i.e.,158

tracts in the first decile) have ≥ 9.5 times higher primary road159

density than tracts with the highest ownership (i.e., tenth160

decile). Similarly, the least white tracts have a primary road161

density ≥ 4.5 times higher than the most white tracts. Educa- 162

tional attainment is the only demographic variable considered 163

in this study that exhibits a di�erent relationship with primary 164

road density, and we observe a U-shaped relationship between 165

these variables (Figure 3). 166

To better understand the impact of the lockdowns on NO2 167

exposure disparities, we consider case studies of individual 168

cities: New York, Detroit, and Atlanta (Figure 4). Among 169

individual neighborhoods in each of these cities, the magnitude 170

of NO2 drops vary up to 50% above and below the citywide 171

average (Figure 4a-c). The portions of New York, Atlanta, 172

and Detroit that received the largest drops tend to have lower 173

median household income and a high percentage of non-white 174

residents (Figure 4d-i). In New York the largest drops are 175

concentrated in Harlem and The South Bronx (Figure 4a), 176

where the high concentration of major highways and industrial 177

facilities has been linked to disproportionate exposure to air 178

pollution (32). The largest drops in Atlanta occur in the 179

southwestern part of the city where median household income 180

generally is < $30000 and the percentage of Black residents 181

in each tract is nearly 100. Although large-scale drops in 182

NO2 are primarily driven by reductions in on-road emissions 183

(21, 33), examining drops on smaller spatial scales, such as 184

in Atlanta (Figure 4b), suggests that emissions from other 185

sectors may be at play. In Atlanta, the largest drops occur 186

southwest of downtown, near Hartsfield-Jackson International 187

Airport and several major highways (Figure 4b). The airport 188

reported a ≥ 50% decrease in the daily number of flights 189

during lockdowns (34). Therefore, both on-road and aviation 190

emissions may be responsible for the disparities in NO2 levels 191

in Atlanta. The largest drops in Detroit are concentrated on 192

the west shores of the Detroit River; Interstates 75 and 94 193

and the Ambassador Bridge, one of the busiest U.S.-Canada 194

border crossing, transect this part of Detroit (Figure 4c) (35). 195

Although these Detroit neighborhoods are not predominantly 196

non-white (Figure 4f), they are home to a large Hispanic 197

population (not shown) with low median household income 198

(Figure 4i). 199
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Fig. 3. The relationship of road density with urban lockdown-related drops
in NO2 columns and demographic variables. Road density is calculated as the
number of primary road segments within a 1 km radius of tracts’ centroids for each
decile of demographic variables. The colored legend indicates the directionality of
each demographic variable. As an example, the density corresponding to the lowest
decile of the “White” curve represents the road density in urban tracts that are the
least white (i.e. in the first decile of the percentage of their population that is white).
Shading for the �NO2 curve indicates the 90% confidence interval.

Discussion200

Our results reveal that neighborhoods with a large popula-201

tion of racial and ethnic minorities, lower income, and lower202

educational attainment saw improvements in NO2 pollution203

during the COVID-19 lockdowns. In many cases, though, NO2204

disparities during the baseline period were so large that disad-205

vantaged communities faced higher NO2 levels during the lock-206

downs than advantaged communities experienced prior to the207

lockdowns. Overall, these findings are consistent with contem-208

poraneous studies that have analyzed long-term trends in NO2209

and other air pollutants and found that, despite widespread210

decreases in pollution, the most exposed demographic sub-211

groups in the 1980s and 1990s remain the most exposed in the212

present-day (7, 8).213

Disparities for certain spatial aggregations or for particular214

demographic variables deviate from the overall conclusions215

of this study. As an example, median household income is216

≥ $3000 higher in urban tracts with the largest drops compared217

with those with the smallest drops, which may be counterin-218

tuitive given the lower educational attainment (Figure 1e-f).219

Hajat et al. (31) found higher concentrations of particulate220

matter and NOx in neighborhoods with higher socioeconomic221

status in some North American cities. They posited that222

busy roadways often run along rivers and lakes, and higher223

socioeconomic status individuals may choose to live near these224

features for more scenic views and access to urban amenities.225

We also find higher baseline NO2 for the most white and most226

educated tracts when considering all census tracts and only227

rural tracts (Figure 2b-c). A possible explanation for this228

may be that white, educated subpopulations choose to live in229

suburban areas outside the census-designed urban boundaries230

but within the polluted airshed of the city.231

Tracts’ proximities to roadways may be responsible for232

both the lockdown-related drops and the persistent dispari-233

ties of NO2 pollution among demographic subgroups (Figures234

1-3). The collocation of primary roads with poor, minority235

communities is not happenstance but a consequence of the236

Eisenhower-era federal highway program, which often delib-237

erately routed highways through these poor, minority neigh- 238

borhoods (7, 14, 36, 37). Additionally, other potent sources 239

of pollution such as power plants, manufacturing facilities, 240

and heavy-duty trucking operations are also collocated with 241

primary roads due to these industries’ needs for highway access 242

(13, 17). 243

Interestingly, urban tracts with the lowest vehicle owner- 244

ship have both the highest density of nearby primary roads 245

and the largest drops in NO2 (Figures 1h, 3). This result 246

suggests that these communities may breathe more tra�c- 247

related NO2 pollution than they produce. This is indeed the 248

case for particulate matter pollution: recent work found that 249

particulate matter exposure is disproportionately caused by 250

rich, non-Hispanic white communities, while poor, Black and 251

Hispanic communities face higher exposure than is caused by 252

their own consumption (5, 6). 253

Preliminary research suggests that high levels of NO2 pol- 254

lution contribute to underlying health conditions that lead 255

to increased COVID-19 fatality rates (38). Therefore, the de- 256

crease in NO2 in low income or ethnicity and racially diverse 257

communities (Figure 2) could decrease population suscepti- 258

bility to COVID-19. This is especially important as these 259

communities have increased risk to COVID-19 and higher 260

hospitalization rates (39). Since short-term NO2 exposure 261

is associated with respiratory disease (40, 41), the tempo- 262

rary NO2 drops may have reduced acute respiratory health 263

outcomes, but the actual health e�ects of NO2 drops during 264

the pandemic are di�cult to tease out since the degree to 265

which people sought health care was also a�ected by the pan- 266

demic. These findings are especially relevant for disadvantaged 267

neighborhoods in cities (e.g., New York, Atlanta, and Detroit; 268

Figure 4) that have been long-plagued by high rates of asthma 269

and other respiratory diseases due, in part, to their proximity 270

to on-road and point source NOx emissions (32, 35). 271

We have considered singular demographic variables and 272

their relationship with baseline and lockdown NO2. The case 273

studies in Figure 4 hint that the intersectionality between race 274

and poverty may be associated with even more pronounced 275

lockdown-related drops in NO2 pollution. Although the vast 276

majority of tracts in the southern half of Atlanta have a major- 277

ity non-white population (Figure 4h), the largest drops occur 278

in tracts that are both majority non-white and low income 279

(Figure 4b, e, h). Recent work by Demetillo et al. (17) exam- 280

ined NO2 exposure for Houston neighborhoods where poverty 281

and racial and ethnic identities intersect and found a dispro- 282

portionate share of NO2 pollution for neighborhoods with 283

these intersecting identities. Assessing other forms of intersec- 284

tionality and their relationship with air pollution exposure is 285

a key area for future research. 286

We relied on TROPOMI tropospheric column abundances 287

rather than surface-level concentrations to understand the 288

impact of lockdowns on disparities in NO2. Surface-level NO2 289

concentrations inferred from satellites exist (42, 43), but not 290

for 2020. Surface-level observations are sparse and unevenly 291

distributed in the U.S. (44). TROPOMI provides significant 292

advances over predecessor instruments on account of its un- 293

precedented spatial resolution (45) and has been used for 294

understanding ethnic, racial, and socioeconomic status NO2 295

disparities (17). We tested whether TROPOMI has consistent 296

spatial patterns with surface-level observations and found good 297

agreement (Figure S4a, Supporting Information Text). The 298
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Fig. 4. Case studies of lockdown NO2 drops, income,
and race for (left column) New York, (middle) Atlanta,
and (right) Detroit. (a-c) � NO2, local is calculated from
oversampled TROPOMI data as the difference between
� NO2 and the city average � NO2 to highlight neigh-
borhoods with larger drops (i.e., negative values) and
smaller drops (i.e., positive values) compared with the
city-averaged drops. Primary roads are shown in thick
black lines. (d-f) Median household income and (g-i) per-
centage of the population that is white. Tracts in (d-i) that
are employment centers, airports, parks, or forests and
therefore report no demographic data are denoted with
hatching.

ratios of 24-hour average NO2 to NO2 near the time of satellite299

overpass are also similar between least- and most-polluted sites300

(Figure S4b). These results suggest that column-to-surface or301

time-to-day biases do not underscore TROPOMI’s ability to302

capture disparities. Future work may infer surface concentra-303

tions of NO2 from satellite-derived column abundances during304

lockdowns using these satellite data within land-use regression305

models (46) or chemical transport models (43). We encourage306

the use of these ground-level estimates to better understand307

exposure across demographic subgroups.308

Lockdown-related changes in other air pollutants, partic-309

ularly secondary pollutants such as ozone and particulate310

matter, do not exhibit the same spatial patterns as NO2311

(20, 21, 47). Future research should investigate how changes in312

these species impact pollutant disparities and environmental313

justice during lockdowns.314

Conclusions315

This study provides a unique look at air pollution dispari-316

ties in the U.S., leveraging the extraordinary confluence of317

unparalleled changes in human activity during COVID-19318

lockdowns and unmatched spatial coverage and resolution of319

air quality surveillance from the TROPOMI satellite instru-320

ment. Lockdowns decreased tropospheric column abundances321

of NO2 across the vast majority of urban areas. However,322

drops in NO2 pollution were uneven within these urban areas323

and largely benefitted communities with a high proportion324

of racial and ethnic minorities and lower educational attain-325

ment. Our results reveal that, despite the improvements in326

NO2 pollution during lockdowns, minority communities and327

communities with lower income and educational attainment328

continued to face higher levels of NO2 during the lockdowns329

than majority white communities and those with higher income330

and educational attainment experienced prior to the pandemic.331

As tra�c emissions represent a major source of NO2 variabil-332

ity, the proximity of disadvantaged neighborhoods to a high333

density of major roadways is likely the key determinant in334

explaining lockdown-related drops in NO2 pollution. 335

Our finding that even the ≥ 50% drop in passenger vehicle 336

emissions (33) did not reduce NO2 levels among the most 337

disadvantaged urban census tracts to the levels experienced by 338

the most advantaged tracts before the pandemic indicates that 339

profound changes are needed to address disparities in NO2 340

pollution in the U.S. In particular, this unintended natural ex- 341

periment shows that policies aimed at reducing emissions from 342

passenger vehicle tra�c (e.g., mode shifting to public trans- 343

portation and active transportation, widespread use of electric 344

vehicles) would not be enough. Policy strategies such as tra�c 345

rerouting and low emissions zones (4) and the widespread 346

electrification of heavy-, medium- and light-duty vehicles (48) 347

are urgently needed. Moreover, as stationary sources (e.g., 348

power plants, industrial facilities) are often collocated with 349

major highways and interstates, emission control strategies 350

that reduce inequality in exposure while maximizing health 351

benefits (49) from these stationary sources should also be a 352

key priority. 353

Materials and Methods 354

355

Remotely-sensed NO2. We obtain retrievals of the tropospheric NO2 356

column from the Tropospheric Monitoring Instrument (TROPOMI) 357

aboard the Sentinel-5 Precursor (S5P) satellite. S5P is a nadir- 358

viewing satellite in a sun-synchronous, low-earth orbit that achieves 359

near-global daily coverage with a local overpass time of ≥ 1330 hours 360

(50). TROPOMI provides NO2 measurements at an unprecedented 361

spatial resolution of 5◊3.5 km2 (7◊3.5 km2 prior to 6 August 2019) 362

(51). Specifically, we use Level 2 data and only consider pixels with a 363

quality assurance value > 0.75. Data are thereafter oversampled by 364

regridding to a standard grid with a resolution of 0.01¶ latitude ◊ 365

0.01¶ longitude (≥ 1 km ◊1 km) and averaged over two time periods: 366

a baseline period (13 March-13 June 2019) and a lockdown period 367

(13 March-13 June 2020). Regridded data are publicly available at 368

Figshare (www.figshare.com/s/75a00608f3faedc4bca7). 369

Comparing the same time period across di�erent years is com- 370

monplace in satellite studies investigating changes in NOx and other 371

trace gases, and averaging over three month timeframes smooths 372

natural NO2 variations that arise from di�erences in meteorology 373

Kerr et al. PNAS | October 26, 2020 | vol. XXX | no. XX | 5
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and sun angle, which are especially relevant during boreal spring374

(23). This temporal averaging also removes part of the random error375

in the TROPOMI single-pixel uncertainties, which can be 40-60%376

of the tropospheric column abundances (22).377

Socio-demographic Data. Demographic information is derived from378

the American Community Survey (ACS) conducted by the U.S.379

Census Bureau and maintained by the National Historical Geo-380

graphic Information System (52). Data are publicly available at381

www.nhgis.org. We extract 2014-2018 5-year estimates on race,382

Hispanic or Latino origin (henceforth “ethnicity”), educational at-383

tainment, median household income, and vehicle availability for the384

72,538 census tracts in the contiguous U.S. To minimize the number385

of di�erent categorical variables presented in this study, we combine386

racial groups into three categories: white, Black (includes Black and387

African American), and Other (includes American Indian/Alaska388

Native, Asian, Native Hawaiian/Other Pacific Islander, and some389

other race). Similarly, we form three di�erent levels for educa-390

tional attainment: high school (includes no high school diploma,391

regular high school diploma, and GED or alternative credentials),392

college (includes some college without a degree, Associate’s degree,393

and Bachelor’s degree), and graduate (includes Master’s degree,394

Professional school degree, and Doctorate degree).395

Methods. We harmonize the regridded TROPOMI NO2 measure-396

ments with tract-level ACS demographics by determining the geo-397

graphic boundaries of each tract and thereafter calculating a simple398

arithmetic average over all TROPOMI grid cells within the tract399

for the baseline and lockdown periods. Approximately 8% of tracts400

lack a co-located TROPOMI grid cell due to their small size or401

irregular geometry, and we exclude these tracts from our analysis.402

Tracts are classified as either rural or urban based on the census-403

designed rurality level from the last decadal census in 2010. We404

further stratify the tracts into metropolitan-level subsets for the 15405

largest metropolitan statistical areas (MSAs) in the U.S.: New York406

City-Newark-Jersey City, NY-NJ-PA; Los Angeles-Long Beach-407

Anaheim, CA; Chicago-Naperville-Elgin, IL-IN-WI; Dallas-Fort408

Worth-Arlington, TX; Houston-The Woodlands-Sugar Land, TX;409

Washington-Arlington-Alexandria, DC-VA-MD-WV; Miami-Fort410

Lauderdale-Pompano Beach, FL; Philadelphia-Camden-Wilmington,411

PA-NJ-DE-MD; Atlanta-Sandy Springs-Alpharetta, GA; Phoenix-412

Mesa-Chandler, AZ; Boston-Cambridge-Newton, MA-NH; San413

Francisco-Oakland-Berkeley, CA; Riverside-San Bernardino-Ontario,414

CA; Detroit-Warren-Dearborn, MI; and Seattle-Tacoma-Bellevue,415

WA. For brevity we refer to these MSAs by their colloquial names416

(e.g., Los Angeles, rather than Los Angeles-Long Beach-Anaheim,417

CA) when discussing them.418

We calculate the density of nearby primary roadways for each419

census tract as a proxy for exposure to tra�c-related NO2 pollu-420

tion. Primary roads are generally divided, limited-access highways421

within the Interstate Highway System or under state management,422

and their locations are determined from the U.S. Census Bureau’s423

TIGER/Line geospatial database. Specifically, we determine density424

as the number of primary road segments within 1 km of a tract’s425

centroid. We choose 1 km as our threshold for what constitutes426

as “nearby,” as NO2 concentrations decrease up to ≥ 50% within427

0.5 ≠ 2 km from major roadways (17, 46), and we note that our428

findings are robust when considering all primary roads within 2 km429

(not shown). Other means of quantifying tra�c exist (e.g., length of430

roadway within a specified distance, tra�c within bu�er zones, sum431

of distance traveled, 53), but our approach allows for consistent use432

of geospatial data from the U.S. Census Bureau.433

We partition census tracts by extreme values of their change in434

NO2 (� NO2) or demographic variables using the first decile (0-10th435

percentile) and tenth decile (90-100th percentile). As examples,436

tracts classified as “Most white” or “Highest income” have a white437

population fraction or median household income which falls in438

the tenth decile. Likewise, � NO2 in tracts with the “Largest439

drops” (i.e., the largest decrease in NO2 during lockdowns) falls440

in the first decile. Our results are not sensitive to the use of the441

first and tenth deciles, and we have tested the upper and lower442

vigintiles, quintiles, and quartiles and obtain similar results (Figure443

S2). The use of percentiles rather than absolute thresholds yields444

a consistent sample size for the upper and lower extrema and also445

avoids defining absolute thresholds for di�erent variables. This is446

especially important as thresholds may change along the urban-rural 447

gradient or among di�erent metropolitan areas. 448

The start date of the baseline and lockdowns periods used in this 449

study (13 March) corresponds to the date of national emergency 450

declaration in the U.S. and the beginning of a pronounced decrease 451

in mobility patterns in 2020 (18). Our results could be an artifact 452

of the start date or length of the baseline and lockdown periods. 453

We test whether the overall racial, ethnic, income, and educational 454

disparities hold for other periods and find that the disparities among 455

di�erent demographic subgroups persist regardless of the start date 456

or length of the baseline period (Figure S3). While the absolute 457

NO2 levels experienced by these subgroups slightly change based 458

on the baseline period, our overall results do not hinge on the 459

precise definition of the baseline period. We are inherently limited 460

by the short TROPOMI data record, and interannual variability 461

could play a role in modulating the magnitude of disparities in NO2 462

levels. Testing this possibility is important as more TROPOMI 463

data become available. 464
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Supporting Information Text11

Remotely-sensed versus surface-level NO2. We compare tropospheric column NO2 from TROPOMI with ground-based12

observations from the Environmental Protection Agency’s Air Quality System (AQS; 1) to test whether TROPOMI can provide13

an accurate characterization of di�erences in surface-level NO2. There are 439 AQS monitors in the contiguous U.S. with14

observations during the baseline period, and we average hourly observations over the entire baseline period at each of these15

sites and compare it with TROPOMI retrievals at the collocated grid cell to each site.16

TROPOMI struggles to capture large, localized sources of NO2 on account of the di�erence in scale between the footprint of17

the satellite and point-based observations (2). We find that 71 of the 439 monitors are located near (< 20 meters) roads (3).18

These sites generally have observed surface-level NO2 > 10 ppbv despite relatively low columnar amounts from TROPOMI19

(Figure S4). When we consider only AQS monitors that are not located near roads, we find good agreement between TROPOMI20

and AQS NO2 levels (Figure S4a). We also find a similar ratio of NO2 averaged over the 24-hour diurnal cycle to NO2 near the21

time of satellite overpass at sites that are classified as the most and least polluted (Figure S4b). These findings lend credibility22

to our reliance on TROPOMI to characterize disparities in NO2 at earth’s surface.23
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Fig. S1. Same as Figure 1c-h in the main text but drops and averages are derived from (a-f) all tracts and (g-l) rural tracts.
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Fig. S2. Sensitivity of NO2 disparities to percentiles chosen to constitute extreme values for each demographic variable. Interpretation follows Figure 2 in the main

text, but each pair of bars in individual subplots represents different percentile thresholds, indicated in the subplots’ vertical axes. The boldface 10/90 row corresponds to the

first and tenth deciles used in the main text.
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Fig. S3. Sensitivity of urban NO2 disparities to the baseline period. Extreme values of each demographic variable (using the first and tenth deciles) for three different

baseline periods: 1 April - 30 June 2019, 13 March - 13 June 2019 (the period used in the main text), and 1 May 2018 - 31 December 2019 (the entire TROPOMI data record).

Boxes extend to the lower and upper quartiles of the data, and the median value is indicated with the horizontal white lines. The lower and upper whiskers extend to the 10th

and 90th percentiles, respectively.
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Fig. S4. (a) Observed NO2 from AQS monitors versus TROPOMI tropospheric NO2 columns for the baseline period (13 March - 13 June 2019). TROPOMI data correspond

to the nearest 0.01¶
latitude ◊ 0.01¶

longitude grid cell to each AQS monitor. The orange line represents the linear regression fitted only through AQS data not flagged

as “near-road” (< 20 meters). The orange text gives the slope (m) and intercept (b) of this linear fit. (b) Observed diurnal cycles of NO2 averaged over the most polluted

(AQS monitors where the collocated TROPOMI grid cell > 90th percentile) and least polluted sites (AQS monitors where the collocated TROPOMI grid cell < 10th percentile)

during the baseline period. Only sites that are not near-road are considered for these averages. The ratios of 24-hour average NO2 to NO2 at the approximate time of satellite

overpass (dashed grey line; ≥ 13:00 hours local time) are indicated in the colored text.
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