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Abstract18

Coarse-grid weather and climate models rely particularly on parameterizations of19

cloud fields, and coarse-grained cloud fields from a fine-grid reference model are a nat-20

ural target for a machine-learned parameterization. We machine-learn the coarsened-fine21

cloud properties as a function of coarse-grid model state in each grid cell of NOAA’s FV3GFS22

global atmosphere model with 200 km grid spacing, trained using a 3 km fine-grid ref-23

erence simulation with a modified version of FV3GFS. The ML outputs are coarsened-24

fine fractional cloud cover and liquid and ice cloud condensate mixing ratios, and the in-25

puts are coarse model temperature, pressure, relative humidity, and ice cloud conden-26

sate. The predicted fields are skillful and unbiased, but somewhat under-dispersed, re-27

sulting in too many partially-cloudy model columns. When the predicted fields are ap-28

plied diagnostically (offline) in FV3GFS’s radiation scheme, they lead to small biases in29

global-mean top-of-atmosphere (TOA) and surface radiative fluxes. An unbiased global-30

mean TOA net radiative flux is obtained by setting to zero any predicted cloud with grid-31

cell mean cloud fraction less than a threshold of 6.5%; this does not significantly degrade32

the ML prediction of cloud properties. The diagnostic, ML-derived radiative fluxes are33

far more accurate than those obtained with the existing cloud parameterization in the34

nudged coarse-grid model, as they leverage the accuracy of the fine-grid reference sim-35

ulation’s cloud properties.36

Plain Language Summary37

Weather and climate models typically use simplified means of predicting clouds,38

and these methods are particularly important for models that run at coarse resolution39

(200 km pixels) and relatively quickly. Machine learning is a natural way to improve upon40

the methods of predicting cloud. We first show that detailed cloud information from an41

accurate model run at much finer resolution (3 km pixels) can produce more accurate42

radiative energy fluxes at earth’s surface and top of atmosphere when used in the coarse43

model, instead of its own predicted clouds. We show that by training on the tempera-44

ture, humidity, and other characteristics of the coarse model, machine learning can repli-45

cate much of this skill in predicting clouds, and provide better radiation estimates than46

traditional methods. Because solar and thermal radiation is sensitive to small amounts47

of cloud, we find that we need to remove small amounts erroneously predicted by ma-48

chine learning to achieve the right amounts of radiation at earth’s surface and top of at-49

mosphere. The machine-learning based approach could be used as a replacement for the50

current statistical methods of predicting cloud fields in fast, coarse resolution weather51

and climate models.52

1 Introduction53

Accurately representing clouds is a central challenge in climate modeling. Surface54

and atmospheric radiative heating and precipitation formation are all mediated by cloud55

processes. Cloud feedbacks on climate change are the largest driver of uncertainty in cli-56

mate sensitivity to greenhouse gas increases (Caldwell et al., 2016). Many types of cloud57

are highly spatially inhomogeneous on the 25–200 km grid scale of typical global climate58

models. Expert-designed parameterizations (simplified representations) of this subgrid59

variability are used in model predictions of grid-mean radiation and precipitation. Be-60

cause clouds have diverse, complex spatial structures, developing such subgrid param-61

eterizations is as much art as science, blending physical insights, empirical relationships,62

and post-hoc calibration of uncertain parameters.63

The rise of machine learning (ML, i.e., data-driven models) capabilities has fostered64

new approaches to improving parameterizations (Gentine et al., 2018). Examples include65

replacing computationally-intensive physical parameterizations with ML emulation (Krasnopolsky66
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et al., 2005, 2010; O’Gorman & Dwyer, 2018; Keller & Evans, 2019; Lagerquist et al.,67

2021; Perkins et al., 2023) and training ML against observations (McGibbon & Brether-68

ton, 2019; Watt-Meyer et al., 2021; Chen et al., 2023) or more accurate and computa-69

tionally intensive parameterizations (Chantry et al., 2021). ML parameterizations for70

coarse-grid models have been trained on coarsened (coarse-grained) outputs of fine-grid71

reference simulations, e.g. to predict the effect of the full suite of physics parameteriza-72

tions (Rasp et al., 2018; Brenowitz & Bretherton, 2019; Yuval et al., 2021), or a column-73

wise correction to the coarse-grid model physics (Bretherton et al., 2022; Clark et al.,74

2022; Kwa et al., 2023). While using ML in coarse-grid models to correct physics ten-75

dencies of temperature and humidity can improve aspects of their simulated climates,76

clouds are often made worse because they are not among the ML target variables (Kwa77

et al., 2023), creating knock-on biases in surface and top-of-atmosphere radiative fluxes.78

This motivated us to use ML to also improve the simulated cloud distributions.79

Grundner et al. (2022, 2023) and Chen et al. (2023) have developed ML param-80

eterizations of fractional cloud cover trained on coarsened fine-grid output and obser-81

vations, and they showed that these parameterizations can improve upon the skill of ex-82

isting physically-based parameterizations. We extend such work to demonstrate that ML-83

predicted cloud statistics, including fractional cloud cover and ice and liquid cloud con-84

densate mixing ratios, can improve the simulation of coarse model radiative fluxes, given85

careful attention to the vertical overlap of fractional cloud cover within grid columns.86

Given the role that clouds play in the atmosphere’s radiative balance, we consider ra-87

diative fluxes as a key criteria for evaluating ML cloud parameterizations. Evaluating88

and optimizing the skill of ML-predicted clouds in producing appropriate precipitation89

is another important aspect not considered here, because it requires a more sophisticated90

treatment of the subgrid distribution of clouds and precipitation and is tightly coupled91

to the cloud microphysics parameterization.92

In this study, we seek to produce ML cloud fields in a coarse-grid model that are93

unbiased both in terms of cloud and radiative fluxes. For simplicity, we use a gridcell-94

local approach (i.e., making each prediction only with inputs and outputs from the lo-95

cal gridcell in vertical and horizontal space), as cloud properties within a grid cell should96

be describable in terms of its internal state. Section 2 describe the fine-grid reference dataset,97

the coarse-grid model we use to compute radiative fluxes, and the ML approach. Sec-98

tion 3.1 describes the coarsened-fine clouds and shows that when passed through the coarse99

model radiation parameterization with suitable vertical overlap assumptions, they pro-100

duce unbiased radiative fluxes. Section 3.2 shows the performance of the ML cloud ap-101

proach. Finally, Section 3.3 demonstrates the application of a simple post-processing step102

to the ML clouds to produce unbiased radiation. Section 4 discusses next steps toward103

online application of our ML approach during climate simulations and more sophisticated104

potential approaches for ML of subgrid cloud variability.105

2 Data and Methods106

Our study uses three models: 1) a fine-grid global storm-resolving model to pro-107

duce a reference dataset of clouds, radiation, and atmospheric state predictors such as108

temperature and humidity; 2) a coarse-grid, economical version of this global atmospheric109

model with a radiation parameterization that computes fluxes and heating rates given110

a coarse-grid representation of the cloud state; and 3) an ML model trained on the fine-111

grid cloud distribution that diagnoses cloud fields from coarse-grid atmospheric predic-112

tors; this is designed to replace the physical parameterizations used to predict cloud prop-113

erties needed for the radiation parameterization in the coarse-grid model.114
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2.1 Atmospheric models115

2.1.1 Fine-grid reference model116

Our fine-grid reference model is X-SHiELD (Harris et al., 2020), a non-hydrostatic117

global atmosphere model with approximately 3 km horizontal grid spacing, developed118

by the NOAA Geophysical Fluid Dynamics Laboratory (GFDL). It uses a C3072 cubed-119

sphere grid and a hybrid pressure-sigma vertical coordinate. X-SHiELD shares the same120

FV3 dynamical core (Zhou et al., 2019) and most of its physics parameterizations with121

NOAA’s Global Forecast System (GFS), NOAA’s operational global weather forecast122

model.123

X-SHiELD uses the GFDL microphysics scheme (Zhou et al., 2022), which performs124

inline microphysical moisture adjustments in the dynamical core, and the RRTMG ra-125

diation scheme (Mlawer et al., 2016) as implemented in GFS (Liu & Yang, 2023). For126

computational efficiency, RRTMG uses the Monte Carlo independent column approx-127

imation (MCICA, Pincus et al., 2003), which makes an unbiased, stochastic approxima-128

tion to full shortwave and longwave radiation calculations within each grid column us-129

ing a random sample of the cloud overlap configuration in each spectral band. RRTMG’s130

primary inputs are the fractional cloud cover and liquid and ice cloud condensate mix-131

ing ratios for each model cell (which we will predict using ML), along with ancillary fea-132

tures such as aerosol concentrations.133

Our version of X-SHiELD was configured similarly to the year-long reference sim-134

ulations used in Kwa et al. (2023) and Cheng et al. (2022). We made the following con-135

figuration changes relative to those simulations, in order to ensure the compatibility of136

the fine- and coarse-grid radiation schemes:137

• The “ccnorm” namelist parameter is set to true (see Section 3.1)138

• Vertical cloud overlap uses a latitude-dependent decorrelation length assumption139

• The “cloud gfdl” and “pdfcld” namelist parameters are turned off140

• The radiation scheme was run every 900 s, instead of every 1800 s.141

A ten day X-SHiELD simulation on 79 vertical levels was initialized from a set of142

restart files from the simulation used in Kwa et al. (2023) at 00 UTC on 31 July 2020,143

using a physics time step of 180 s and 40 dynamical sub-steps per physics time step to144

ensure model numerical fidelity.145

We use hourly outputs of the simulated model state and derived diagnostics. Given146

the size of a global field of data on a 3 km, 79-level grid, we implemented online coarse-147

graining of the model state and diagnostics following Bretherton et al. (2022). The out-148

puts needed from the fine-grid model were horizontally coarsened by a factor of 64 to149

200 km resolution before being stored. Two-dimensional variables (e.g. surface and TOA150

radiative fluxes) were coarse-grained using area-weighted horizontal averaging while three-151

dimensional variables on vertical model levels (e.g. liquid and ice cloud condensate mix-152

ing ratios, fractional cloud cover, and thermodynamic fields such as radiative heating rates)153

were coarsened along the coarse grid’s spatially and temporally varying pressure levels.154

2.1.2 Nudged coarse-grid baseline model155

The coarsened temperature, humidity, winds, and pressure thicknesses from the fine-156

grid simulation were used to nudge a 200 km grid version of FV3GFS with the same 79157

vertical model levels, following Bretherton et al. (2022). FV3GFS (Putman & Lin, 2007)158

combines the GFS physical parameterizations with the FV3 dynamical core; it shares159

much of the same model code and physical parameterizations with X-SHiELD (Zhou et160

al., 2019). One important exception is that the GFS deep convection scheme is active161

in the coarse FV3GFS simulation, but not in X-SHiELD, which resolves individual cu-162
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Figure 1. Coarsened-fine fields related to clouds (a, c) and their biases in the coarse-grid

model (b, d) that is nudged to the coarsened fine-grid temperature, humidity, winds, and pressure

thickness. Day 8 through 10 time-mean fields are shown and used to compute the statistics.

mulus updrafts. To the extent possible, we run FV3GFS with the same GFDL cloud mi-163

crophysics and RRTMG radiation parameterization configurations as in X-SHiELD.164

When running the coarse-grid FV3GFS, we nudge its prognostic ‘memory’ vari-165

ables at each time (temperature, specific humidity, horizontal winds, and layer pressure166

thickness) to the coarsened fine-grid state, using a 3-hour nudging timescale, following167

Bretherton et al. (2022). This ensures that the coarse model state evolves in an inter-168

nally consistent way that remains very close to that of the fine-grid reference, allowing169

for meaningful comparison of their clouds and radiation fields.170

One might hope that nudging of the prognostic memory variables would also en-171

sure that the nudged coarse simulation produces clouds and radiation that are similar172

to the coarsened-fine reference, but this is not the case (Bretherton et al., 2022). Fig.173

1 shows that the coarse nudged FV3GFS simulation has large negative biases in both174

cloud condensate path and surface precipitation rate. That is, the coarse model physics175

parameterizations produce significantly less cloud and precipitation than the coarsened-176

fine reference for the same column profiles of temperature and humidity. Because the177

nudged simulation has insufficient cloud, it also has excessive longwave and shortwave178

radiative transmissivity, as shown in Section 3.1.179

2.1.3 Diagnostic radiation scheme180

To compute the radiative fluxes arising from coarse-grid cloud fields (both coars-181

ened from the fine-grid model and predicted by ML), we use an offline implementation182

of the RRTMG radiation scheme used in X-SHiELD and FV3GFS. This version of RRTMG183

has been rewritten in Python and validated against its original Fortran implementation184

in terms of surface and top of atmosphere (TOA) flux accuracy (see Supporting Infor-185

mation S1). With the offline RRTMG scheme coupled to FV3GFS, fractional cloud cover186

and liquid and ice cloud condensate mixing ratios can be prescribed, while other RRTMG187
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input variables (temperature, humidity, land surface information, aerosols, etc.) are taken188

from the coarse model state.189

2.2 Machine learning of coarsened fine-grid clouds190

Our ML approach predicts coarsened fine-grid values of the three cloud properties191

needed by the RRTMG radiation scheme (fractional cloud cover and liquid and ice cloud192

condensate mixing ratios), based on the coarse-grid state. The ML is trained to best match193

these coarsened-fine cloud properties. Our hope is that if these ML cloud properties are194

used as inputs to the radiation scheme, the shortwave and longwave surface and TOA195

radiative fluxes will also be close to the coarsened-fine radiative fluxes, at least by com-196

parison with using the parameterized clouds generated by the nudged coarse model, for197

the same column temperature and moisture profile. Because we lack the ability to back-198

propagate parameter gradients through our current version of the RRTMG radiation scheme,199

we train ML with the cloud properties as the target, and use slight additional post-processing200

to ensure nearly unbiased radiative fluxes without degrading the cloud predictions. This201

approach also provides physically interpretable cloud outputs.202

For simplicity, our ML uses cell-local input features, since cloud can rapidly adjust203

through condensation, evaporation and precipitation to a changing local environment.204

We acknowledge that this assumption neglects the learnability of vertical cloud overlap205

between nearby grid cells in the same grid column, as well as possible learnable impacts206

of grid-nonlocal processes such as cumulus updrafts and downdrafts, which can cause large207

subgrid cloud inhomogeneity within grid cells. We also recognize that a more complex208

ML cloud parameterization could predict the full subgrid distributions of cloud liquid209

and ice condensate, information that might be used to make the radiative fluxes more210

accurate and to learn precipitation fluxes. Nevertheless, our cell-local ML approach works211

well enough for the purposes of this paper.212

We use a neural network (NN) with a fully-connected (dense) multi-layer percep-213

tron architecture (Hastie et al., 2009). The NN input features are coarse model grid-cell214

air temperature, relative humidity, and pressure, as well as the cloud ice mixing ratio pro-215

duced by the coarse model’s physics. The last feature is included because cumulus up-216

drafts, which are much smaller than the coarse grid scale, are a major source of cloud217

ice, and we find that cloud ice predictions are better when the coarse model physics pa-218

rameterization’s output is included than when predicting from coarsened-fine thermo-219

dynamic properties of the coarse grid cell alone (not shown). The features are obtained220

from the coarse model alone, allowing this approach to be applied to improve the rep-221

resentation of clouds and their radiative effects in free-running coarse model simulations,222

something which has not been possible with previous cloud ML parameterizations, (e.g.,223

Grundner et al., 2022). However, in this initial study we evaluate the ML skill only di-224

agnostically, a necessary but much easier first step toward prognostic implementation.225

Training data consists of sets of three-dimensional input and output variables from226

each hour during the first seven days of the 10-day X-SHiELD run and the correspond-227

ing 10-day nudged coarse FV3GFS run, after discarding an initial 6-hour spin-up period.228

This results in 1.8×108 training samples. Validation was done on hourly output from229

the last three days of the reference simulation, a total of 7.9× 107 samples.230

The NN is optimized based on hyperparameter sweeps. It has three hidden layers,231

each with a width of 169 neurons (a total of 5.9×104 free parameters). Mean squared232

error loss summed over the three outputs is used, with the targets standard-normalized233

based on 5×105 randomized samples first before computing loss. An additional layer234

is added to the NN to prevent its final outputs from leaving specified ranges during train-235

ing and prediction; for fractional cloud coverage the range is [0, 1], and for the mixing236

ratios the range is ≥ 0. The NN is trained with stochastic gradient descent (SGD) us-237

ing the Adam optimizer (Kingma & Ba, 2014) for 20 epochs with an exponential decay238
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learning rate schedule (initial rate 10−3 and decay of 0.96 every 105 SGD steps). 512 sam-239

ples per SGD batch were used, resulting in approximately 6.9× 106 steps.240

We train four NNs with different random seeds. We select the one that has the small-241

est global-mean TOA net radiation bias and individual shortwave and longwave bias mag-242

nitudes on the validation dataset, as compared to radiative fluxes resulting from the coarsened-243

fine cloud. The other seeds have similar skill and their global-mean TOA net radiation244

scatters over a 2-3 W/m2 range.245

3 Results246

We first describe the coarsened fine-grid cloud fields and radiative fluxes, since the247

cloud fields are the ML target and the radiative fluxes are what we ultimately wish to248

match. We next test whether prescribing the coarsened-fine clouds in a nudged coarse249

model run in place of the parameterized clouds removes most of its radiation biases, rel-250

ative to the coarsened-fine output. Then we describe the skill of the ML-derived cloud251

fields in predicting the target coarsened-fine clouds and radiation fields. Lastly, we show252

how to achieve unbiased global-mean net TOA radiation via a post-processing step of253

thresholding of small predicted cloud fractions.254

3.1 Coarsened-fine clouds and resulting radiative fluxes255

Fig. 2 shows that the coarsened-fine fractional cloud cover and grid-mean conden-256

sate fields exhibit a great deal of structure, including clear columns and ones with deep,257

extensive cloud. Condensate spans several orders of magnitude. The radiation fields ex-258

hibit correspondingly detailed spatial variability, particularly for shortwave. An ML cloud259

parameterization needs to be able to capture these features.260

We compute the radiative fluxes obtained by prescribing the coarsened-fine cloud261

fields in the nudged coarse FV3GFS simulation. This is purely diagnostic; these do not262

feed back into the nudged coarse model evolution. Because of the nudging, the coarse263

model temperature and humidity profiles are nearly identical to their coarsened-fine coun-264

terparts, although the cloud amounts are not.265

Fig. 3 shows maps of the time-mean biases in surface and TOA shortwave and long-266

wave radiative fluxes, for the prescribed coarse-grained fine-resolution cloud fields and267

for the nudged coarse model’s own cloud fields, the baseline upon which we aim to im-268

prove. The nudged coarse model’s lack of cloud condensate translates into substantial269

global-mean radiation flux biases and even larger regional biases. By prescribing the coarsened-270

fine clouds, we achieve nearly unbiased radiative fluxes, with time-mean spatial pattern271

error magnitudes reduced by 30-60% for longwave radiation and around 80% for short-272

wave radiation. Thus, if ML could skillfully emulate the coarsened-fine cloud fields, it273

would also greatly improve the coarse model radiation fields.274

Achieving unbiased radiative fluxes for the prescribed coarsened-fine cloud runs re-275

quired consistency between the coarse and fine model radiation scheme in the choice of276

cloud overlap assumption and the setting of an FV3GFS namelist parameter (“ccnorm”,277

discussed further below) governing condensate scaling in fractionally-cloud covered cells.278

Table 1 shows the bias for different choices, with the last column being the parameter279

choices that produce nearly unbiased radiative fluxes shown in Fig. 3. Absolute global-280

mean values exceeding 5 W/m2 constitute large biases for climate modeling purposes,281

larger than the radiative effect of doubling CO2. By this measure, the radiative biases282

are evidently sensitive to these choices.283

While coarse-grid and (to a lesser extent) fine-grid simulations are sensitive to these284

radiation scheme settings, these sensitivities are more pronounced when using coarsened-285

fine cloud properties in the radiation scheme. The reason for this can be inferred from286
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Figure 2. Coarsened-fine fractional cloud cover and condensate transects (a, b) and 15-minute

average coarsened-fine radiative fluxes fields (c, d, e, f) for a typical simulated time, 1030 UTC

on the seventh day of the fine-grid reference simulation. The transects are shown through the red

line at 60◦E.

Bias [W/m2]
Cloud dataset

ccnorm=False ccnorm=True

max-random random decorrelation max-random random decorrelation

SW down at sfc. 16.30 8.80 13.86 4.69 -16.90 -0.74
LW down at sfc. -2.84 2.54 -1.50 -0.70 10.08 1.45
SW up at TOA -13.82 -7.57 -11.77 -4.05 14.14 0.50
LW up at TOA 2.28 -0.61 1.31 -1.06 -7.51 -2.98

Table 1. Global-mean surface and TOA radiative flux biases (over days 8 through 10) when

the coarsened-fine cloud fields are prescribed in the coarse-grid FV3GFS model. max-random,

random and decorrelation are three types of cloud overlap assumptions, and ccnorm describes

how fractional cloud coverage is handled.
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Figure 3. Surface and TOA radiative flux biases for the prescribed coarsened-fine cloud fields

(a, c, e, g) and the baseline coarse nudged cloud fields (b, d, f, h). Bias and root-mean-squared

error (RMSE) are computed over days 8 through 10 of the simulation period.
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Figure 5. Schematic description of the effect of the “ccnorm” parameter in RRTMG. When

set to true (a), a physically-conservative cloud condensate mixing ratio is used in computing

radiative transmissivity. When set to false (b), the same condensate mixing ratio is used in the

cloud as in the gridcell-mean, even if the cell is partially cloudy.

the distributions of fractional cloud cover in the different cloud datasets (Fig. 4a). Around287

90% of fine-grid model cells have fractional cloud cover of zero, and most of the rest have288

nearly 100% fractional cloud cover. However, as an inevitable result of horizontal coars-289

ening, the coarsened-fine dataset has less than 70% clear cells, with 20% of cells having290

fractional cloud cover between zero and 0.2. This makes the radiation scheme particu-291

larly sensitive to cloud overlap and subgrid condensate partitioning assumptions for the292

coarsened-fine data. For instance, less than 20% of the coarse grid columns have coarsened-293

fine fractional cloud cover less than 10−3, whereas about 40% of fine-grid columns do (Fig.294

4b).295

The “ccnorm” namelist parameter affects the subgrid partitioning of grid-mean con-296

densate within fractionally-cloudy cells in RRTMG. Its effect is shown in Fig. 5. When297

this logical flag is set to true, RRTMG correctly scales up the in-cloud condensate mix-298

ing ratios, representing the given grid-mean condensate amount and the given fractional299

cloud cover in a physically conservative manner. When it is off, the in-cloud condensate300

is specified to be equal to the grid-mean condensate, regardless of the cloud fraction, which301

is physically incorrect.302

The existence of the “ccnorm” flag may derive from the GFS implementation of303

the stochastic MCICA parameterization in RRTMG, which makes the correct choice of304

“ccnorm” less intuitively obvious. In particular, for each radiation band, a random num-305

ber uniformly distributed between zero and one is generated, and for that band, the grid306

cell is taken to be fully cloud filled when the random number is less than the cloud frac-307

tion, and cloud-free when that random number is greater than the cloud fraction. It is308

easy to fall into the trap of then setting the condensate amount equal to the grid-mean309

condensate amount when that cell is chosen to be fully cloud filled, which corresponds310

to “ccnorm” being false. Indeed, “ccnorm” is false by default in the GFS RRTMG scheme311

of both X-SHiELD and the current version of NCEP’s operational global weather fore-312

cast model. Fig. 5 shows that this is not the physically correct approach, even in an op-313

erational setting where it may be compensating for other parameterization biases. The314

random number should be construed as drawing from a random sub-region of the coarse315

grid cell when doing the MCICA radiation calculation. If that random sub-region is cloudy,316

the radiation should be calculated using the in-cloud condensate (Fig. 5a), not the grid-317
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mean condensate (Fig. 5b). This is particularly important for cells with small but nonzero318

cloud fraction, for which the in-cloud condensate is much larger than the grid-mean con-319

densate.320

Setting “ccnorm” to true results in RRTMG seeing greater cloud optical depth, pro-321

ducing more reflected TOA shortwave and less outgoing TOA longwave radiation, which322

better matches the coarsened-fine reference radiation (Table 1). The global-mean increase323

in TOA upwelling shortwave radiation is particularly large: 10–22 W/m2 depending on324

the chosen vertical cloud overlap scheme (see below). TOA upwelling longwave radia-325

tion is reduced by 3–7 W/m2 in the global mean. Corresponding changes are seen in global-326

mean downwelling shortwave and longwave radiation at the surface.327

For consistency, the 10-day fine-grid simulation used here was also run with “cc-328

norm” set to true. Over most parts of the world, the fine-grid radiative fluxes are only329

weakly affected by this choice, because fine-grid cells tend to be either clear or nearly330

entirely cloud-filled. One exception is over the Southern Ocean, where small subgrid cloud331

fractions are often generated by the shallow cumulus parameterization, even on the fine332

grid. There, setting “ccnorm” to true increases the regional time-mean reflected short-333

wave radiation simulated by the fine-grid model by several W/m2 (not shown).334

The radiative fluxes are also sensitive to the cloud overlap assumption. Two com-335

monly used methods are maximum-random overlap (the GFS RRTMG default), in which336

subgrid cloud in contiguous vertical layers is assumed to overlap as much as possible, and337

random overlap, in which the horizontal distribution of subgrid clouds is assumed to be338

uncorrelated between vertical layers. A third method available in the FV3GFS RRTMG339

implementation, decorrelation overlap, assumes that the subgrid distribution of clouds340

within nearby vertical levels is correlated, with a correlation coefficient that decays ex-341

ponentially with an empirically-specified, latitude-dependent e-folding scale. This op-342

tion is arguably most physically realistic.343

For the fine-grid model, the TOA and surface fluxes are relatively insensitive to the344

choice of overlap, because the majority of fine-grid cells are clear or mostly cloud filled,345

for which the spatial distribution of subgrid cloud is a moot point. However, for the coarsened-346

fine output, the overlap scheme has a large impact, as seen in Table 1. We selected decor-347

relation overlap because it is physically attractive and gave minimal global-mean TOA348

shortwave and longwave biases.349

3.2 ML clouds350

Since the coarsened-fine cloud field can produce nearly unbiased radiative fluxes,351

an ML approximation of those cloud properties might also be able to do so. The design352

principles and implementation of the simple ML scheme that we used for this purpose353

was detailed in Sec. 2.2; here we show results for the best-performing NN seed ensem-354

ble member.355

The solid orange lines in Figs. 6a-c show that the three ML predictands (fractional356

cloud cover and liquid and ice cloud condensate mixing ratios) have vertical profiles with357

relatively unbiased global means relative to the coarsened-fine validation data. Fig. 6d358

shows that this also holds for cloud condensate (the sum of cloud liquid and ice). In con-359

trast, the nudged coarse baseline cloud fields have large negative condensate biases, and360

negative fractional cloud cover biases throughout most of the troposphere.361

All the ML cloud properties have an R2 between 0.5 and 0.7 between the surface362

and 200 hPa (Fig. 6e-h). This skill degrades near and above the tropopause, but mag-363

nitudes of fractional cloud cover and condensate at these levels are very small. The skill364

of the ML-predicted cloud fields exceeds that of the nudged coarse baseline cloud fields365

throughout the atmospheric column.366
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Figure 6. Global- and time-mean vertical profiles over the validation period of fractional

cloud cover (a) and liquid, ice, and total cloud condensate mixing ratios (b, c, d) for the

coarsened-fine, coarse nudged baseline, and ML cloud datasets. e-h) Vertical profiles of R2 of

the instantaneous fields, computed at each level using the global horizontal area-weighted mean

for that variable. The R2 of the nudged coarse baseline is below 0 everywhere for liquid cloud

mixing ratio (f). For both bias and R2, the thresholded ML cloud dataset is also shown; see Sec-

tion 3.3.
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Fig. 7a-b shows that the ML overpredicts the occurrence of cells with small frac-367

tional cloud cover and small cloud condensate mixing ratio. We attribute this to coarse-368

grid thermodynamic states in which cloud may or may not be present, so the ML pre-369

dictors must average over those conditions, while underpredicting the fraction of cloud-370

free cells. Fig. 7c compares the cumulative distribution function (CDF) of the result-371

ing the column-integrated cloud condensate path for the ML predictions and the train-372

ing data, which is a good proxy for the cloud impact on TOA and surface radiative fluxes,373

especially in the shortwave band. The solid line at 10−3 kg/m2 is a rough threshold for374

a radiatively significant condensate path. The fractional cloud cover and condensate CDF375

biases translate into too many columns with ML-predicted condensate path between 10−3-376

10−1 kg/m2 compared to the training dataset, in which about 20% of all columns are377

below this value. We infer that the ML overpredicts the fraction of grid columns with378

radiatively significant cloud. This suggests that the ML will also overpredict TOA re-379

flected shortwave radiation and (because these condensate biases also apply to upper-380

tropospheric cirrus clouds) underpredict TOA outgoing longwave radiation.381

Geographically, this bias translates into the ML overpredicting fractional cloud cover382

and cloud condensate path in regions of the globe with very little cloud, such as in the383

dry subtropics adjacent to regions of convection. This can be seen in the typical snap-384

shot shown in Fig. 8. On the other hand, Fig. 7c shows that the ML slightly under-predicts385

the frequency of the highest condensate paths; geographically this leads to the ML un-386

derestimating cloud condensate maxima in areas of deep convection and strong frontal387

convergence.388

The ML bias in underpredicting cloud-free columns is disproportionately impor-
tant to global-mean radiative fluxes, given the small amounts of spurious ML-predicted
cloud condensate in these columns. For example, the RRTMG scheme computes cloudy
cell radiative extinction coefficient from liquid water τliq as a function of liquid water path,
LWP (Liu and Yang (2023), following parameters from Hu and Stamnes (1993)):

τliq = LWP · ( a

reb
+ c) (1)

where re is an effective radius of cloud droplets, and a, b, and c are semi-physical fitted389

parameters. For typical values of re (10 µm) and the fitted parameters (a ≈1800, b ≈1.1,390

and c ≈8.0 for shortwave at 750 nm), if the cloud liquid condensate mixing ratio is 10−6 kg/kg391

over a cloud 10 hPa thick, then LWP=10−4 kg/m2 and τliq=0.015, and this will reduce392

the shortwave transmissivity in the cloud by 1.5% below clear-sky values. Cell conden-393

sate mixing ratios of 10−6 kg/kg over a significant portion of the column and column-394

integrated condensate path approaching 10−3 kg/m2 are thus “radiatively significant”395

thresholds and are highlighted on Fig. 7b-c.396

While the ML cloud model makes skillful and unbiased predictions, the radiative397

fluxes resulting from those predictions have significant global-mean biases, when com-398

pared to the coarsened-fine clouds’ radiative fluxes. Table 2 shows that with ML clouds,399

the TOA and surface radiative fluxes have global-mean biases that are 30-52% of the coarse400

nudged baseline, but of opposite sign. This is suggestive of excessive cloud optical depth,401

yet ML-predicted cloud condensate amounts are unbiased throughout the troposphere.402

These radiative biases are an inevitable consequence of the ML making unbiased
but under-dispersed predictions of cloud condensate and amount. To illustrate this, we
define a normalized surface downward shortwave cloud radiative effect:

NSWCREsfc =
SW ↓,sfc

clear-sky − SW ↓,sfc
total-sky

SW ↓,sfc
clear-sky

(2)

where ↓, sfc indicates downward flux at the surface, and clear-sky and total-sky are the403

RRTMG scheme’s fluxes without and with cloud effects. This quantity is defined only404

for columns in which TOA downward shortwave flux is non-zero. In contrast to typical405
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thin cloud.
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Metric
Cloud dataset

coarse nudged baseline ML cloud Thresholded ML cloud

Validation bias [W/m2]

SW down at sfc. 18.37 -6.15 -1.53
LW down at sfc. -5.24 2.74 1.40
SW up at TOA -15.56 4.80 0.86
LW up at TOA 9.09 -4.33 -2.77

R2 of validation time-mean

SW down at sfc. 0.840 0.956 0.959
LW down at sfc. 0.980 0.992 0.993
SW up at TOA 0.594 0.895 0.899
LW up at TOA 0.839 0.940 0.949

Table 2. Bias and R2 of radiative fluxes from the coarse nudged baseline dataset, the ML

cloud dataset, and the thresholded ML (section 3.3). Metrics are computed with reference to the

radiative fluxes produced by the coarse-grained fine-resolution cloud fields, over hourly data from

the ML validation period (days 8 through 10 of the reference simulation).

cloud radiative effect, here NSWCREsfc is the fraction of the clear-sky shortwave flux406

that is prevented from reaching the surface by clouds. A similar quantity could be de-407

fined for upward shortwave at TOA, with similar results.408

Fig. 9 shows the joint distribution of column total cloud condensate path (CCP)409

and NSWCREsfc. It has a convex shape, such that a given increase in CCP will increase410

NSWCREsfc much more for small CCP, i.e. predominantly thinner clouds. Thus, the411

mean NSWCREsfc of the ML clouds is larger than in the training data, because the ML412

cloud condensate shifts the CCP distribution towards its mean from both high and low413

values, but the shifts from low values have more impact on NSWCREsfc. In Appendix414

A, we show that simple exponential models of the distribution of CCP and its effect on415

NSWCREsfc can approximately predict the bias in NSWCREsfc resulting from an under-416

dispersed ML prediction of CCP.417

3.3 Thresholded ML clouds418

Due to the radiative flux biases resulting from imperfect distributions of ML cloud419

fields, we apply a post-processing approach, “thresholding” the raw ML cloud fields by420

setting to zero cloud condensate in all grid cells below a user-chosen threshold ML frac-421

tional cloud cover k. This mostly removes cloud from grid cells that have little conden-422

sate, which can have a meaningful radiative impact without inducing significant low bi-423

ases in the global-mean condensate distribution. This simple approach can generate nearly424

unbiased and highly skillful radiative fluxes from our ML-predicted clouds.425

Figs. 10a-b show the sensitivity of the global-time-mean TOA and surface radia-426

tive fluxes biases to the threshold k. The shortwave biases (blue circles) are larger than427

the partly compensating longwave biases (orange triangles). Their sum, the net flux, is428

shown as green pluses. Increasing k decreases the magnitude of both the shortwave and429

longwave biases, up to a point. Figs. 10c-d show the corresponding sensitivity of the RM-430

SEs of the time-mean spatial pattern of the radiative fluxes. The RMSEs are fairly in-431

sensitive to k, but most show a slight thresholding-induced reduction in RMSE across432

a broad range of k including 0.065.433

Using the selected seed model, we choose a threshold value (k = 0.065) that most434

closely produces both unbiased net TOA radiation (shortwave plus longwave, an impor-435

tant goal in tuning climate models), and small magnitude shortwave and longwave com-436

ponent biases at both the surface and TOA. This choice results in net TOA bias of -2.8 W/m2,437

and component bias magnitudes all <3 W/m2.438
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Figure 11. Validation time-mean transects of target and ML cloud condensate for the north-

south transect through the Indian Ocean shown in Fig. 2.

The effect of thresholding with k = 0.065 on the global-mean vertical profiles and439

the probability distributions of ML cloud quantities was shown as orange dashed lines440

on Figs. 6 and 7. Thresholding introduces a negative bias of 5-10% into the post-processed441

ML cloud fields, but it has a negligible impact on their R2. Significantly, thresholding442

produces a much better match to the fraction of clear columns in the training data (Fig.443

7c). This translates into smaller radiative biases (last column, Table 2). Thus, thresh-444

olded ML cloud achieves the goal of producing nearly unbiased radiative fluxes from ML445

clouds, with much smaller error magnitudes than the baseline nudged coarse simulation.446

Fig. 11 compares time-mean raw and thresholded ML cloud predictions against coarsened-447

fine validation data along the same vertical N-S transect shown in Fig. 2. The raw ML448

cloud predictions laterally spread condensate and contain too many slightly cloudy cells.449

The thresholded ML cloud improves the match to the validation data, although some450

regions of very thin, radiatively insignificant cloud with grid-mean condensate less than451

10−6 kg/kg in the validation transect are removed by the thresholding.452

The radiation fields resulting from the raw and thresholded ML cloud are shown453

in Fig. 12. In the ML clouds’ radiative fluxes, there is too little transmissivity in many454

columns, particularly those adjacent to areas of deep convection (Fig. 12a, g). The thresh-455

olding has the effect of reducing this bias, particularly for shortwave flux both at the sur-456

face and TOA (Fig. 12c, i). It does this without significantly worsening biases in areas457

where the raw ML cloud transmissivity is too high, i.e., in the specific columns with deep458

convection. It is less effective at reducing the longwave bias, particularly in upward flux459

at the TOA over the Indian Ocean and warm pool (Fig. 12j, k, l).460

4 Discussion461

While our ML cloud scheme outperforms its baseline and achieves nearly unbiased462

radiative fluxes, it is also deliberately simple. More sophisticated schemes might be able463

to predict cloud fields that produce unbiased radiative fluxes without a post-hoc thresh-464
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olding step. Several approaches might be employed to achieve this. For example, con-465

volution of the model column via ML, rather than a gridcell-local approach, might re-466

sult in better-predicted overlap structure of clouds and therefore not require removal of467

thin cloud in excess columns. Using ML to make an unbiased prediction of the joint PDF468

of fractional cloud cover and condensate in each grid cell (rather than the cloud fields469

themselves), and sampling appropriately from that PDF, might avoid the radiation bi-470

ases associated with regression of ML-predicted condensate and cloud fraction toward471

their means. A related idea was described in Shamekh et al. (2022): during the coars-472

ening of a fine-grid humidity field, a latent variable encoding subgrid organization was473

saved along with the grid-mean value; the latent variable added skill in predicting grid-474

mean precipitation rate. A similar latent variable could characterize subgrid cloud or-475

ganization important for grid-mean radiative fluxes.476

Radiative heating rates derived from ML cloud properties used prognostically (on-477

line) may improve coarse-grid simulations, given the baseline’s observed poor represen-478

tation of cloud and radiation. While the corrective temperature tendency in nudging-479

based corrective ML already implicitly handles this (Bretherton et al., 2022), it would480

be more physically satisfying and consistent to attribute the difference in heating rates481

to a specific cloud bias. In the Supporting Information, we show that the vertically-resolved482

radiative shortwave heating rates from ML cloud are also more accurate than those from483

the coarse nudged baseline (Fig. S4), suggesting that vertical cloud placement is improved484

over the baseline. However, this is not necessarily the case for ML cloud in terms of long-485

wave heating rates (Fig. S5).486

One of the inputs to the cloud ML model is the nudged coarse model’s ice cloud487

condensate mixing ratio. Unlike the other ML inputs (temperature, pressure, and rel-488

ative humidity) that are coarse model thermodynamic state variables, the ice cloud con-489

densate comes from its physics parameterization, and is included because it may cap-490

ture non-local effects on cloud such as convective updrafts. While including this feature491

does improve the ML predictions of coarsened-fine ice cloud condensate and upward long-492

wave fluxes at TOA, the improvement is marginal and not a requirement for the over-493

all goal of improving coarse model radiative fluxes. This is helpful as the behavior of coarse494

model physics may not be robust across models and configurations.495

5 Conclusions496

Coarse-grid weather and climate models rely on parameterizations of the subgrid497

variability of cloud fields, and coarse-grained cloud fields from a fine-grid storm-resolving498

reference model are a natural target for a data-driven (ML) parameterization. We im-499

plement this approach in a 200 km grid global atmospheric model, FV3GFS, with ML500

trained on coarsened outputs (grid-mean cloud fraction, liquid and ice condensate) from501

a reference global 3-km grid simulation using a modified version of FV3GFS, X-SHiELD.502

These outputs are used in the FV3GFS radiation scheme, and our goal was to obtain503

accurate radiative fluxes and heating rates from the learned cloud properties.504

With an appropriate vertical overlap scheme and a physically correct setting of a505

GFS physics parameter called “ccnorm” (which is set incorrectly in NOAA’s current op-506

erational forecast versions of this model), the coarsened fine-grid clouds from a fine-grid507

reference model produce almost unbiased surface and TOA radiative fluxes when used508

in the coarse-grid radiation parameterization.509

The ML skillfully learns the coarsened-fine cloud properties as a function of local510

coarse-grid model state. But because the ML is not perfect and the radiative effects of511

a cloud layer depend non-linearly on its thickness, the global-mean TOA radiative fluxes512

derived from the machine-learned clouds are biased, even though the predicted cloud fields513

themselves are not. We show that zeroing predicted cloud condensate in cells with an514
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ML-predicted cloud fraction less than a threshold of 0.065 largely removes these biases515

with minimal impacts to the skill of the cloud predictions of the ML scheme. The result-516

ing ML-derived radiative fluxes are much more accurate than those produced by the ex-517

isting cloud parameterization in the nudged coarse-grid model.518

To be an attractive candidate for on-line implementation in the coarse model, an519

ML scheme for clouds would also have to produce physically justifiable precipitation fields520

that approximately match the coarsened fine-grid reference data. This would be an ex-521

cellent extension of our work.522
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Appendix A A simple exponential model for the effects of cloud field668

distribution on radiative flux669

The bottom panel of Fig. 9 suggests that the PDF of column total cloud conden-
sate path (CCP) can be fitted by a truncated exponential distribution of the form:

p(CCP ) =
cm
c12

e−CCP/c1 , CCP > 0, cm < c1. (A1)

The first fitting parameter is the characteristic CCP decay scale c1. The second fitting670

parameter cm is the mean of the CCP PDF. This PDF integrates over CCP > 0 to the671

fraction of cloud-containing columns cm/c1 < 1. The remainder of the PDF, which falls672

at CCP = 0, and represents the fraction of clear columns.673

The main panel of Fig. 9 suggests that the normalized cloud effect on surface down-
welling shortwave radiation, NSWCREsfc can also be fitted as an exponential function
of CCP:

NSWCREsfc(CCP ) = 1− e−CCP/c0 , (A2)

where the fitting parameter c0 is a characteristic value of CCP.674

Combining these two empirical results gives a simple mathematical model that pre-675

dicts NSWCREsfc. This enables us to predict the extent to which an ML-predicted dis-676

tribution of CCP, which is unbiased in the mean (correct cm) but inherently under-dispersed677

due to imperfect ML skill (underestimated c1), would overestimate NSWCREsfc.678

Combining eqs. A2 and A1 with the expectation operator over CCP, we get:

E[NSWCREsfc] =

∫ ∞

0

NSWCREsfc(CCP ) · p(CCP ) · dCCP

=

∫ ∞

0

(1− e−CCP/c0) · cm
c12

e−CCP/c1 · dCCP

=
cm

c0 + c1

(A3)

For given values of the mean column condensate path cm and the radiative fit param-679

eter c0, the global-mean NSWCREsfc is a decreasing function of c1. An ML fit which680

reduces c1 will inevitably increase NSWCREsfc. This is exactly the effect we wished to681

isolate.682

For our coarsened-fine cloud dataset, the global-mean CCP is cm = 0.095 kg/m2,683

and based on the data in Fig. 9, the radiative fit parameter c0 = 0.30 kg/m2. We cal-684

ibrate cm/c1 to match the fraction of coarse grid columns with radiatively significant CCP >685

1e−3kg/m2; this yields cref1 = 0.118 kg/m2 (for which 80% of coarse grid columns have686

radiatively significant cloud), and cML
1 = 0.097 kg/m2 (for which 98% of coarse grid687

columns have radiatively significant cloud).688

Finally, applying eq. A3 using these values yields expected NSWCREsfc of 0.241689

for ML vs. 0.228 for the coarsened-fine data, i.e., these exponential models predict a 5.4%690

overestimation of NSWCREsfc due to the under-dispersion of the ML predictions (Fig.691

9, dashed lines on left panel). In fact, the actual overestimation of NSWCREsfc is 12.8%692

for the ML versus coarsened-fine datasets (0.243 vs 0.216, Fig. 9, solid lines on left panel).693

The expected bias will also depend on the altered exponential relationship between CCP694

and NSWCREsfc in the predicted cloud due to differences in vertical overlap, which we695

neglect here to focus on the effects of under-dispersion and which has a relatively small696

on global-mean NSWCREsfc. However, these numbers show that the exponential model697

fits the data quite well.698
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