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Text S1. Induction response model

We are interested in the magnetic fields induced within a spherically symmetric body, in

which electrical conductivity is a piece-wise constant function of distance from the center.

We thus assume bounding radii for N layers

{r1, r2, r3, · · · , rN} (S1)
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where

rN = R (S2)

is the outer radius of the spherical body.

The corresponding conductivity values are

{σ1, σ2, σ3, · · · , σN} (S3)

We also assume that there is an imposed external magnetic potential, represented by a

sum of terms, each of which has the form

Φn,m,p(r, θ, ϕ, t) = RBe

( r
R

)n
Sn,m(θ, ϕ)e−iωpt (S4)

where {r, θ, ϕ} are spherical coordinates (r is radius, θ is colatitude, and ϕ is longitude)

of the field point, Be is a scale factor, Sn,m(θ, ϕ) is a surface spherical harmonic function

of degree n and order m, while t is time and ωp is the angular frequency of oscillation

of the imposed potential. The same methods apply independently to each frequency ωp

in the excitation field, and the results sum linearly by superposition. Therefore, we now

drop the subscript on this quantity and simply use ω.

Within each layer, the magnetic field vector B must satisfy the Helmholtz equation

∇2B = −k2B (S5)

which is a diffusion equation for B. k is a scalar wavenumber given by

k2 = iωµ0σ (S6)

where ω is angular frequency, σ is electrical conductivity, and the magnetic constant

(permeability of free space) is given by

µ0 = 4π × 10−7N/A2 (S7)
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with units N and A being Newton and Ampere. In defining k in Equation S6, we have

assumed µ ≈ µ0, which holds well even for ferromagnetic materials when they are con-

sidered on a global scale (Saur et al., 2009). Note that in Equation S6, we have chosen a

different convention from that of Parkinson (1983) and numerous authors relying on their

derivation. We make this choice in order to derive the spherical Bessel equation (Equa-

tion S11) from the diffusion equation (5). Choosing k2 = −iωµ0σ results in the modified

spherical Bessel equation, meaning the derivation in Parkinson (1983) is in error. We

prefer to define k2 as in Equation S6 so that we can, in fact, reach the spherical Bessel

equation and thereby compare the remaining derivation favorably to that of Parkinson

(1983) and other past research using the standard spherical Bessel functions.

Independently from Equation S5, the net poloidal component of the magnetic field

inside the body is given by sums over n and m of terms with the forms

Br(r, θ, ϕ, t) =
C

r

(
F (r)

)
n(n+ 1) Sn,m(θ, ϕ)e−iωt (S8)

Bθ(r, θ, ϕ, t) =
C

r

d

dr

(
rF (r)

) d

dθ

(
Sn,m(θ, ϕ)

)
e−iωt (S9)

Bϕ(r, θ, ϕ, t) =
C

r sin θ

d

dr

(
rF (r)

) d

dϕ

(
Sn,m(θ, ϕ)

)
e−iωt (S10)

where C is a constant, and F (r) is a function of radius, which we need to determine.

S1.1 Analytical model based on Srivastava (1966)

For the purpose of validating our numerical model, we separately derive an analytical

solution akin to that of Srivastava (1966) and summarized by Parkinson (1983). As this

analytical approach is common throughout the literature, we later compare the analytical

(layered) approach to our numerical (ordinary differential equation, ODE) approach in

Figures S1 and S2. We find it instructive to compare the point in the derivation where

the two approaches differ, so we carry out the full derivation here, in our notation.
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Applying separation of variables to the governing differential equation (Equation S5),

one finds that the radial factor F (r) in the solution must satisfy the spherical Bessel

equation

d2F

dr2
+

(
2

r

)
dF

dr
+

(
k2 − n(n+ 1)

r2

)
F = 0 (S11)

This is a second-order equation, having two solutions, jn(kr) and yn(kr), the spherical

Bessel functions of the first and second kind, respectively, of degree n and argument kr.

Note that choosing to define k as we did in Equation S6 was a strict requirement to

obtain Equation S11. If we instead chose k2 = −iωµoσ, we would have obtained the

modified spherical Bessel equation

d2F

dr2
+

(
2

r

)
dF

dr
+

(
−k2 − n(n+ 1)

r2

)
F = 0 (S12)

with solutions in(kr) and kn(kr), the modified spherical Bessel functions, as in Schilling

et al. (2007) and ? (?). In effect, our choice of sign convention results in the complex

response we later derive Aen (Equation S46) being equal to the complex conjugate of the

analogous quantity Aeiφ appearing in past research (e.g., Zimmer et al., 2000).

It will also be convenient to define another set of related functions

F ?(r) =
d

dr

(
rF (r)

)
(S13)

with

j?n(kr) =
d

dr

(
rjn(kr)

)
(S14)

= (n+ 1)jn(kr)− kr jn+1(kr)

and

y?n(kr) =
d

dr

(
ryn(kr)

)
(S15)

= (n+ 1)yn(kr)− kr yn+1(kr)
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Both yn and y?n are singular at the origin r = 0, so in the innermost spherical layer only

jn(kr) and j?n(kr) may describe physically consistent solutions. In other layers, we use

linear combinations of jn and yn and linear combinations of j?n and y?n.

Text S1.1.1. Internal boundary conditions

The resulting piecewise-defined radial functions characterize the radial part of the mag-

netic field. The radial component has the form

Fn(r) =


c1jn(k1r) for 0 < r ≤ r1
c2jn(k2r) + d2yn(k2r) for r1 < r ≤ r2
c3jn(k3r) + d3yn(k3r) for r2 < r ≤ r3

cjjn(kjr) + djyn(kjr) for rj−1 < r ≤ rj

(S16)

The tangential components yield similar structure, but with all Fn, jn, and yn replaced

by their starred counterparts.

The constants cj and dj are determined by continuity of radial (r) and tangential (θ, ϕ)

components of the magnetic field across the boundaries. For each internal boundary, it

must hold that

F below
n (rj) = F above

n (rj)

cjjn(kjrj) + djyn(kjrj) = cj+1jn(kj+1rj) + dj+1yn(kj+1rj) (S17)

to ensure continuity of the radial component of the magnetic field, and likewise for F ?
n to

ensure continuity of the tangential components. These continuity constraints yield two

equations at each internal boundary, from which we can determine the layer coefficients.

The internal boundary conditions are only part of the story. In a model with N layers,

we have 2N − 1 coefficients to determine (recall that d1 = 0, to avoid singular behavior at

the origin), but only N − 1 internal boundaries, and thus only 2N − 2 constraints. The
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external boundary condition provides the additional information to make the problem

evenly determined.

Using notation similar to that of Parkinson (1983, Ch. 5), we can write a recursion

relation that transforms the coefficients in the jth layer into those for the layer above it[
cj+1

dj+1

]
= Tj(kj, kj+1, rj) ·

[
cj
dj

]
(S18)

where the transformation matrix Tj has elements

Tj(kj, kj+1, rj) =
1

αj

[
βj γj
δj εj

]
(S19)

with

αj = jn(kj+1rj) y
?
n(kj+1rj)− yn(kj+1rj) j

?
n(kj+1rj) =

1

kj+1rj
(S20)

which is a function of the conductivity in the layer above the boundary only. The other

elements depend on the conductivities on both sides of the boundary:

βj = jn(kjrj) y
?
n(kj+1rj)− yn(kj+1rj) j

?
n(kjrj) (S21)

γj = yn(kjrj) y
?
n(kj+1rj)− yn(kj+1rj) y

?
n(kjrj) (S22)

and

δj = jn(kj+1rj) j
?
n(kjrj)− jn(kjrj) j

?
n(kj+1rj) (S23)

εj = jn(kj+1rj) y
?
n(kjrj)− yn(kjrj) j

?
n(kj+1rj) (S24)

For computation, it is helpful to note that Equation S18 yields a convenient recursion

relation if we define a quantity

Λj =
dj
cj

(S25)

We find that Λj+1 relates to Λj by

Λj+1 =
δj + Λjεj
βj + Λjγj

(S26)
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As d1 = 0, Λ1 = 0 also for that innermost layer. Note that we define this transfer

coefficient differently than do Parkinson (1983). They define the reciprocal of Λ so that

Equations S26 and S40 appear to match. Our notation allows for Λ1 = 0, rather than

leaving this quantity undefined (Styczinski et al., in progress).

We thus start in the central spherical layer, where Λ1 = 0, then propagate upward

through the stack of layers until we have the coefficient ΛN for the outermost (N th) layer.

With a piecewise model interior structure σ(r), we compute kj for the set of rj. Repeated

application of Equation S26 then allows us to relate the interior structure to the external

boundary conditions.

Text S1.1.2. External boundary conditions

The final step is matching the external surface boundary condition. Outside the sphere,

the magnetic field is represented by a scalar potential which is the sum of an imposed

external contribution and an induced internal contribution. That sum has spatial depen-

dence given by the form

Φ(r, θ, ϕ) = R

(
Be

( r
R

)n
+Bi

(
R

r

)n+1
)
Sn(θ, ϕ) (S27)

We have now dropped the subscript m from Sn,m because for any n, a suitable choice

of axes results in m = 0 for both external and internal fields for the case of spherical

symmetry we consider here. The vector field is obtained from the potential via

B = −∇Φ (S28)

The radial component of the vector field, evaluated at the surface (r = R), is

Br = −
(
nBe − (n+ 1)Bi

)
Sn(θ, ϕ) (S29)
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and the tangential components are

Bθ = −
(
Be +Bi

)∂Sn(θ, ϕ)

∂θ
(S30)

and

Bϕ = −
(
Be +Bi

) 1

sin θ

∂Sn(θ, ϕ)

∂ϕ
(S31)

The θ and ϕ equations yield redundant information, so we consider only the θ equation

for the tangential components.

Matching these with the corresponding interior components, as given in Equations S8–

S10, but evaluated at the top of the uppermost layer, we obtain

−
(
nBe − (n+ 1)Bi

)
R = n(n+ 1)

(
cNjn(kNR) + dNyn(kNR)

)
(S32)

and

−
(
Be +Bi

)
R =

(
cNj

?
n(kNR) + dNy

?
n(kNR)

)
(S33)

From these two equations, we can relate the “Q response”

Q =
Bi

Be

(S34)

to the internal field coefficients:

Q =
n

n+ 1

cNβn + dNγn
cNδn + dNεn

(S35)

We define the parameters βn, γn, δn, and εn by

βn = j?n(kNR)− (n+ 1)jn(kNR) (S36)

γn = y?n(kNR)− (n+ 1)yn(kNR) (S37)

and

δn = njn(kNR) + j?n(kNR) (S38)

εn = nyn(kNR) + j?n(kNR) (S39)October 23, 2020, 8:30pm
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Note that we define these quantities as above for consistency with Parkinson (1983) and

for similarity between the definitions of the transfer coefficients Λj described above and Aen

described below. Also note that although they both relate Bessel functions of argument

kr, Equations S36–S39 differ substantially from Equations S21–S24.

Following the approach of Styczinski et al. (in progress), we now define a final recursion

quantity, the complex response to the excitation field Aen as

Aen =
βn + ΛNγn
δn + ΛNεn

(S40)

This normalized, complex amplitude has the desirable characteristic that it is asymptotic

to (1+0i) for a highly conducting ocean with no ice shell, for any degree n in the excitation

field. Therefore, with the recursion relation from Equation S26, Aen is a readily calculable

measure of the effectiveness of a body at behaving as a perfect conductor, and can easily

be compared to spacecraft data fit to induced magnetic moments of any order n.

For the special case of a single, uniform conducting layer representing a saline ocean,

the complex response evaluates to

Aen =
jn+1(ka)yn+1(ks)− jn+1(ks)yn+1(ka)

jn+1(ks)yn−1(ka)− jn−1(ka)yn+1(ks)
(S41)

with a the radius of the ocean outer boundary, s the radius of the ocean inner boundary,

and k =
√
iωµ0σ with σ the conductivity of the ocean layer. a = R−h, where h is the ice

shell thickness, and s = a−D, where D is the ocean thickness. This result is analogous to

the three-layer model of Zimmer et al. (2000). All past studies have considered a uniform

excitation field, with n = 1; comparison with past work is made by evaluating A = |Ae1|

and φ = − arg(Ae1).
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Text S1.2 Numerical approximation to external boundary conditions

We now detail our alternative numerical approach, based on that of Eckhardt (1963).

Returning to Equation S11 (the Bessel equation), if instead of solving for the basis func-

tions directly, we make the substitution

dF (r)

dr
= F (r)G(r) (S42)

where G(r) is another arbitrary function of r, we obtain a Riccati equation for G:

d

dr

(
r2G

)
+ r2G2 + k2r2 − n(n+ 1) = 0 (S43)

Note that we have not made any assumptions about k(r) in reaching Equation S43.

We can now exploit the external boundary conditions to obtain a new equation. In

Equations S32 and S33, on the right-hand side we insert the more general expressions

from Equations S8–S10 using the above substitution for F (r). Solving for the Q response

as in Equation S34, we obtain

Q =
n

n+ 1

rG− n
rG+ n+ 1

(S44)

Taking dQ/dr and making substitutions from Equation S43, we reach an ODE for Q that

may be solved numerically:

dQ

dr
= −k

2r(n+ 1)

(2n+ 1)n

(
Q− n

n+ 1

)2

− 2n+ 1

r
Q (S45)

Aen may then be found by

Aen =
n+ 1

n
Q (S46)

as can be seen from comparing Equations S35 and S40.

Text S1.3 Application of induced response functions

As applied to the Galilean moons, the primary case of interest in the magnetic induction

problem is for an imposed field that is effectively uniform, where n = 1. The analysis
October 23, 2020, 8:30pm
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contained in this work makes the approximation that the magnetic field applied to the

Galilean moons is entirely spatially uniform, with n = 1. The higher-order components

applied to the moons are small, mostly deriving from oscillations in the plasma at much

higher frequencies than Jupiter’s primary field (Schilling et al., 2007). In this case, ex-

pressing the complex quantity Ae1 in terms of a magnitude A and phase delay φ permits

a direct comparison to work by other authors (e.g., Zimmer et al., 2000):

Ae1 = Ae−iφ (S47)

The negative exponent in Equation S47 is ultimately the result of an error in Parkinson

(1983) propagated in the many past studies applying the results from that text. Our

choice of sign convention for k as the complex conjugate of that chosen by Parkinson

(1983), a necessary condition for deriving the spherical Bessel equation, causes our result

for the complex amplitude Ae1 to be equal to the complex conjugate of the analogous

quantity from Zimmer et al. (2000), Aeiφ. This merely negates the phase of this quantity,

as A and φ are both real-valued. By defining A and φ as in Equation S47, we can use

them exactly as in past work to evaluate the internally generated, induced magnetic field

outside the moon Bint,moon by

Bint,moon = −Ae−i(ωt−φ) Be

2

3 cos θr̂ − ẑ
r3

(S48)

where ẑ is directed along the instantaneous vector of the time-varying external magnetic

field Bext,moon applied to the moon, θ is the angle between ẑ and the measurement point

at r = rr̂, the origin is centered on the body to which the excitation field is applied, and

the factor of 2 in Equation S48 results from inserting n = 1 into the factor n/(n + 1) in

Equation S35. Note that Equation S48 only applies in the space outside the moon.
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Figures 2–4, 6, and 7 in the main text were produced using the Eckhardt (1963)-based

numerical technique. Figure 6 plots A = |Ae1| and φ = −arg(Ae1) for Europa, Ganymede,

and Callisto. Figures 2–4 plot the same phase delay φ, but scale the amplitude A to the

maximum induced magnetic field that would be measured at a surface point. This occurs

where the time-varying external field from Jupiter is instantaneously directed vertically

into or out of the surface (θ = 0 or π, r = R, and r̂ = ±ẑ in Equation S48). These

conditions happen at key locations on the bodies’ surfaces twice per period (once outward,

once inward), and are not in general collocated for the various excitation frequencies. For

example, for Europa’s synodic period with Jupiter at 11.23 hr, the key points on the

surface are the sub- and anti-jovian points, because the maximum oscillation is along

the europacentric (EφΩ) ŷ direction. In contrast, at Europa’s orbital period of 85.23 hr,

the greatest oscillation is aligned with the EφΩ ẑ direction, so the largest induced field

will occur at the north and south spin poles. However, all of Figures 2–4, 7 scale to the

By oscillation for ease of interpretation, and therefore describe the oscillation along the

vertical at the surface at the sub- and anti-jovian points for each body.

Figures S1 and S2 show a benchmarking calculation comparing the ODE approach to

the stacked layer approach. For sufficiently stringent numerical solution parameters, the

two approaches yield effectively identical results. Furthermore, the ODE approach has

a distinct advantage in computation time for our implementation. The stacked layer

approach requires explicit calculation of many Bessel functions for the layer coefficients

at closely spaced points. The results of these functions very nearly cancel, so they must

be evaluated at enormously high precision. Sometimes over 200 digits of precision are
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required to evaluate interior models relevant to the Galilean moons, requiring special

computation packages and ample computation time.

The ODE approach, in contrast, converges faster for more closely spaced layers, which

create a smoother function to evaluate. Thus, in practice we evaluate a comparable result

that takes a small fraction of the time to compute for a highly detailed interior structure

model. Use of the ODE approach to reduce computation time for detailed interior models

enables massively parallel statistical studies, such as Monte Carlo methods, to explore

large parameter spaces in reasonable time scales. In future work, we intend to apply

such methods to better constrain the interior structures of the Galilean moons and other

moons, with current and future measurements.

Text S1.6 Comparison of adiabatic ocean profiles to uniformly conducting

oceans

In Section 2 of this work (main text), we focus on the observable signal from depth-

dependent effects that shift the conductivity away from a nominal mean value. All past

work studying magnetic induction of satellite oceans has assumed the ocean to be a

single layer of uniform conductivity and calculated the induced field using the approach

of Srivastava (1966). For comparison to this body of literature, we plot the difference in

induced field from our approach to the uniform conductivity approach in Figures S3–S5. In

each of these figures, the top panels compare our adiabatic ocean approach to a uniform

conductivity that is consistent with the mean value from the corresponding adiabatic

profile; the bottom panels compare our approach against a uniform conductivity taken to

be the value from our model at the uppermost ice–ocean boundary. In most cases, the

differences are near a few percent for the longer periods considered (red lines).
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Text S2. Motional Induction Response Model

The magnetic induction equation can be used to estimate the components of the mag-

netic field B induced by ocean currents with velocity u and those arising from changes in

the externally imposed field:

∂B

∂t
= ∇× (u×B)−∇× (η∇×B) (S49)

where η = (µ0σ)−1 is the magnetic diffusivity. Here, the first term represents the evolution

of the magnetic field, the second term represents magnetic induction, and the third term

represents magnetic diffusion.

Neglecting variations in oceanic electrical conductivity with depth and assuming an

incompressible fluid, Equation S49 simplifies to

∂B

∂t
= (B · ∇)u− (u · ∇)B + η∇2B, (S50)

after also expanding the induction term and utilizing ∇ · B = 0 and ∇ · u = 0. Let

us decompose the total magnetic field into the background imposed field Bo and the

satellite’s induced field b:

B = Bo + b (S51)

with |Bo| � |b|. The induction equation then becomes

∂b

∂t
= −∂Bo

∂t
+ (Bo · ∇)u− (u · ∇)(Bo + b) + η∇2(Bo + b) (S52)

Here, the first term is the evolution of the induced magnetic field, the second term is

induction due to variations in Jupiter’s (or Ganymede’s) intrinsic magnetic field, the third

term is induction due to oceanic fluid motions, the fourth and fifth terms are advection

of the fields by ocean flows, and the sixth and seventh terms are diffusion of the jovian

and induced fields.
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Let us next assume that the background field can be approximated by Bo = Boẑ, where

Bo is constant and homogeneous and ẑ is aligned with the rotation axis, in which case

Equation S52 further simplifies to:

∂b

∂t
= Bo

∂u

∂z
− (u · ∇)b + η∇2b. (S53)

We will also focus on the quasi-steady induction signal generated by ocean flows rather

than the rapidly varying contribution that could be difficult to distinguish from other

magnetic field perturbations. Towards this end, the induced magnetic field and velocity

fields are decomposed into mean and fluctuating components: b = b + b′ and u = u + u′.

Inserting this into Equation S53 and using Reynolds averaging yields

∂b

∂t
= Bo

∂u

∂z
− (u · ∇)b− (u′ · ∇)b′ + η∇2b. (S54)

Next, we focus on the radial and latitudinal components because the zonal flow (uφ)

is nearly invariant in the z-direction (Figure 8a), noting also that azimuthally oriented

(toroidal) magnetic fields would not be detectable by spacecraft:

∂br
∂t

= Bo
∂ur
∂z
− (u · ∇)br − (u′ · ∇)b′r + η∇2br (S55)

∂bθ
∂t

= Bo
∂uθ
∂z
− (u · ∇)bθ − (u′ · ∇)b′θ + η∇2bθ (S56)

Using simple scaling arguments, the second and third terms on the right sides are likely

small compared to the first term since |Bo| � |b| (assuming similar characteristic flow

speeds and length scales) such that

∂br
∂t
≈ Bo

∂ur
∂z

+ η∇2br (S57)

∂bθ
∂t
≈ Bo

∂uθ
∂z

+ η∇2bθ. (S58)

October 23, 2020, 8:30pm



X - 16 :

Considering the poloidal flow components (Figure 8b-c), the induced fields would likely

be strongest near the equator where large vertical gradients in the convective flows exist.

In the steady-state limit and approximating the gradient length scales as D and flow

speeds as Ur and Uθ, an upper bound on magnetic fields induced by ocean currents can

be estimated as:

BoUr
D
∼ ηbr
D2

, such that br ∼
BoUrD

η
= µoσDUrBo (S59)

BoUθ
D
∼ ηbθ
D2

, such that bθ ∼
BoUθD

η
= µoσDUθBo. (S60)

Here, we neglect the coupling between br and bθ to effectively estimate maximum values

for each component.

Several aspects regarding the velocity field should also be mentioned. First, the oceans

are assumed to be in a convective regime that is weakly constrained by rotation following

Soderlund (2019). Soderlund19 also notes, however, that a stronger rotational influence

may be possible, which would lead to slower flow speeds and weaker induced magnetic

fields. In addition, it is possible that the models overestimate the meridional circulations

relative to the zonal flows compared to what might be expected in the satellites (e.g.,

Jones & Kuzanyan, 2009). Because our approach focuses on upper bound estimates, the

results are still valid if meridional circulations within the oceans are weaker than those

modeled. Finally, flows due to libration, precession, tides, and electromagnetic pumping

(e.g., Le Bars et al., 2015; Gissinger & Petitdemange, 2019; Soderlund et al., 2020) are

neglected here but may interact with the convective flows to change their configurations

and/or speeds.
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Text S3. Interior Structure Models

The interior structures and associated electrical conductivities used in this work are com-

puted with the PlanetProfile package described by Vance et al. (2018). PlanetProfile

employs self-consistent thermodynamics for the properties of ice, fluids, rock, and metals

to compute the radial structure of an ocean world. Inputs are the surface temperature

and bottom melting temperature of the ice, To and Tb; density of the rocky interior and

any metallic core, ρmantle and ρcore; salinity of the ocean, w; and gravitational moment of

inertia, C/MR2. For this work, the values for these properties are substantially the same

as those used by Vance et al. (2018), with a few minor changes that do not significantly

change the ocean thickness and electrical conductivity that are central to this work.

Properties of ice are now computed using the SeaFreeze package (Journaux et al., 2020),

which provides substantial improvements in accuracy for conditions relevant to icy moon

interiors. Solid-state convection in the surface ice I layer has been corrected from Vance

et al. (2018) to use the thermal upper boundary layer thickness, eth, from Deschamps and

Sotin (2001) rather than the mechanical thickness, emech. Properties of the rocky mantle

and metallic core for Europa are based on updated mineralogies described by Vance and

Melwani Daswani (2020). The silicate mantle composition is that of the MC-Scale model,

an aggregate of type CM and CI chondrite compositions, and the composition of comet

67P. The core composition is a Fe–FeS mixture containing 5 wt% sulfur. Sulfur is appro-

priately partitioned between the mantle and core to preserve bulk planetary distribution

of sulfur in the MC-Scale model. This approach does not account for the addition of sul-

fur to the ocean, which makes up 2.6% of the ocean’s mass for the 10 wt% MgSO4 case.
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The effect of this minor inconsistency on the thickness of the ocean is smaller than the

few-km variation in ocean thicknesses between the different ocean compositions (Table 1).

Using the moment of inertia along with supposed core and mantle densities to inform the

construction of interior models effectively fixes the hydrosphere thickness. For example,

for Europa we use the mean value from Anderson et al. (1998) of C/MR2 = 0.346±0.005.

The error bars in this result, combined with the assumed densities of the different radial

layers, provide the canonical range of hydrosphere thicknesses of 80–170 km. Our choice

of the fixed value of 0.346, and the fixed core and mantle density, create the ocean+ice

hydrosphere thickness of about 125 km. This applies to all interior structures considered

for this body. The near-fixed hydrosphere thicknesses are evident in the positions of the

filled circles in Figure 5. Note that the interior structures we infer from moments of inertia

restrict the realistic parameter space in Figures 2–4 to be a narrow region near the top of

each contour plot. This is demonstrated in Figures S8–S10, wherein the studied models

are marked on the contours from Figures 2–4.

The discrete layers in PlanetProfile are in sufficient number to provide step transitions

between layers that are smaller than 1 km in the hydrospheres and smaller than a few

km in the deeper interior. For example, the Europa models used here employ 200 steps

in the ice, 350 steps in the ocean, 500 steps in the silicate layer, and 10 steps in the core.

Similar scalings are used for Ganymede and Callisto in proportion to their thicker oceans

and ice layers.
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Figure S1. Comparison of the complex responseAe1 for the uniform field case, calculated

by two different methods. The amplitude A = |Ae1| and phase delay φ = −arg(Ae1) are

plotted separately. The Srivastava (1966) layered conductor approach common in the

literature is plotted as a blue dashed line and the Eckhardt (1963) ODE approach we

use in our analysis is plotted in as a solid green line. For sufficiently stringent numerical

solution parameters, the lines are effectively identical. A numerically challenging example

case was selected for this comparison: a Europa model of approx. 150 layers and a

1 wt% MgSO4 ocean.
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Figure S2. Difference of the lines in Figure S1. Absolute values of the difference are

plotted so that a log scale may be used to display them. The relative phase difference is

shown, i.e. normalized to a maximum of 1. The small differences belie the close overlap

of the lines in Figure S1.
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Figure S3. Europa: Differences (in %) from the nominal adiabatic case studied here, for

uniformly conducting oceans with the equivalent mean conductivity (top panel), and for

uniformly conducting oceans with the equivalent conductivity at the ice–ocean interface

(bottom panel). Dashed lines (−−) are MgSO4 oceans; dot–dashed lines are seawater

oceans ( ). Blue curves are for thicker ice (30 km), magenta curves are thinner ice

(5 km) MgSO4 oceans, and cyan curves are thinner ice (5 km) seawater oceans. Thick

lines are higher salinities (10 wt% and 3.5 Wt%, respectively) for oceans with aqueous

MgSO4 and seawater. Thinner lines are for oceans with 10% of those concentrations.

Vertical lines are the strongest inducing frequencies shown in Figure 1.
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Figure S4. Ganymede: Differences (in %) from the nominal adiabatic case studied

here for uniformly conducting oceans with the equivalent mean conductivity (top panel),

and for uniformly conducting oceans with the equivalent conductivity at the ice–ocean

interface (bottom panel). Magenta curves are for thinner ice (∼30 km) and blue curves

are for thicker ice (∼100 km). All configurations assume an ocean with aqueous MgSO4.

Thick lines are higher salinity (10 wt%) and thinner lines are for oceans with 1 wt%.

Vertical lines are the strongest inducing frequencies shown in Figure 1.
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Figure S5. Callisto: Differences (in %) from the nominal adiabatic case studied here,

for uniformly conducting oceans with the equivalent mean conductivity (top panel) and

with for uniformly conducting oceans with the equivalent conductivity at the ice–ocean

interface (bottom panel). Magenta curves are for thinner ice (∼30 km) and blue curves

are for thicker ice (∼100 km). All configurations assume an ocean with aqueous MgSO4.

Thick lines are higher salinity (10 wt%) and thinner lines are for oceans with 1 wt%.

Vertical lines are the strongest inducing frequencies shown in Figure 1.
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Figure S6. Real and imaginary components of the diffusive induction response to the

changing Bx component of Jupiter’s magnetic field at the main driving periods (Figure 1)

for {Europa,Ganymede,Callisto}. The real part (on the x-axis) is in phase with the

excitation field, and the imaginary part (on the y-axis) is 90◦ out of phase, as detailed in

Section 2.6. Subpanels on the left side show the lower-magnitude signals of panels on the

right. Filled symbols are for the higher concentrations. Upward and downward triangles

are for thicker ice ({30,95,130} km) and thinner ice ({5,26,100} km), respectively. Symbol

sizes scale with the period of the oscillation, denoting the orbital (largest), the synodic

(intermediate), and the synodic harmonic (smallest). Circles are added to the orbital

periods to guide the eye.
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Figure S7. Real and imaginary components of the diffusive induction responses

to the changing Bz component of Jupiter’s magnetic field at the main driving periods

(Figure 1) for {Europa,Ganymede,Callisto}. The real part (on the x-axis) is in phase

with the excitation field, and the imaginary part (on the y-axis) is 90◦ out of phase,

as detailed in Section 2.6. Subpanels on the left side show the lower-magnitude signals

of panels on the right. Filled symbols are for the higher concentrations. Upward and

downward triangles are for thicker ice ({30,95,130} km) and thinner ice ({5,26,100} km),

respectively. Symbol sizes scale with the period of the oscillation, denoting the orbital

(largest), the synodic (intermediate), and the synodic harmonic (smallest). Circles are

added to the orbital periods to guide the eye.
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Figure S8. Europa: Reproduction of main text Figure 2, with points showing the

coordinates of the studied models. The marked points match the identification scheme

described in Figure 7.
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Figure S9. Ganymede: Reproduction of main text Figure 3, with points showing the

coordinates of the studied models. The marked points match the identification scheme

described in Figure 7.
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Figure S10. Callisto: Reproduction of main text Figure 4, with points showing the

coordinates of the studied models. The marked points match the identification scheme

described in Figure 7.
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Europa Period (hr): 5.62 11.23 85.20

Bx (nT): 10.03 75.55 3.17

Tb T DI Docean BxAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.000 0.069 0.001 0.262 0.000 0.001

MgSO4 1 wt% Re Im Re Im Re Im

273.1 273.9 5 117 9.106 1.019 66.471 13.737 0.876 1.333

Pedersen 9.108 1.021 66.488 13.741 0.877 1.334

σ = 0.4533 S/m ∆Ae
1 (%) 0.36 -0.41 0.39 -0.08 0.85 0.50

σtop = 0.4107 S/m ∆Ae
1 (%) 0.10 7.75 -0.45 8.80 -12.31 -3.57

270.4 271.1 30 91 8.714 1.280 61.952 17.717 0.500 1.075

Pedersen 8.718 1.282 61.980 17.723 0.501 1.076

σ = 0.4132 S/m ∆Ae
1 (%) 0.22 -0.10 0.24 0.01 0.55 0.34

σtop = 0.3847 S/m ∆Ae
1 (%) -0.09 6.49 -0.88 6.09 -10.65 -4.23

MgSO4 10 wt% Re Im Re Im Re Im

272.7 274.1 5 124 9.552 0.359 70.730 3.681 2.803 0.510

Pedersen 9.553 0.361 70.733 3.687 2.803 0.510

σ = 3.7646 S/m ∆Ae
1 (%) 0.23 -3.83 0.33 -2.87 0.49 -0.10

σtop = 3.3197 S/m ∆Ae
1 (%) -0.01 2.28 -0.01 2.13 -0.34 11.33

269.8 270.8 30 96 9.075 0.357 67.382 3.517 2.635 0.668

Pedersen 9.076 0.359 67.386 3.526 2.636 0.669

σ = 3.3661 S/m ∆Ae
1 (%) 0.18 -2.30 0.23 -1.35 0.30 0.02

σtop = 3.0763 S/m ∆Ae
1 (%) -0.01 1.41 0.08 2.77 -0.81 7.99

Seawater 0.35165 wt% Re Im Re Im Re Im

274.9 275.7 5 117 9.076 1.102 65.860 14.958 0.758 1.275

Pedersen 9.078 1.103 65.879 14.961 0.759 1.276

σ = 0.4124 S/m ∆Ae
1 (%) 0.41 -0.33 0.44 -0.04 0.96 0.58

σtop = 0.3670 S/m ∆Ae
1 (%) 0.05 9.74 -0.77 10.45 -15.30 -5.17

270.0 270.7 30 91 8.667 1.428 60.705 19.584 0.407 0.990

Pedersen 8.670 1.430 60.738 19.589 0.408 0.991

σ = 0.3651 S/m ∆Ae
1 (%) 0.26 -0.07 0.29 0.03 0.65 0.42

σtop = 0.3339 S/m ∆Ae
1 (%) -0.23 8.27 -1.49 7.33 -13.72 -5.87

Seawater 3.5165 wt% Re Im Re Im Re Im

270.8 271.9 5 119 9.509 0.394 70.355 3.930 2.761 0.628

Pedersen 9.510 0.396 70.358 3.936 2.761 0.628

σ = 3.0760 S/m ∆Ae
1 (%) 0.24 -3.32 0.33 -2.24 0.46 -0.03

σtop = 2.7347 S/m ∆Ae
1 (%) -0.02 2.08 0.04 2.37 -0.74 10.53

268.2 269.1 30 91 9.032 0.374 67.196 3.767 2.564 0.793

Pedersen 9.033 0.376 67.201 3.777 2.564 0.793

σ = 2.8862 S/m ∆Ae
1 (%) 0.18 -1.89 0.22 -0.95 0.28 0.03

σtop = 2.6476 S/m ∆Ae
1 (%) 0.01 1.46 0.10 3.88 -1.26 7.23

Table S1. Europa: Magnetic induction field strengths {Re,Im}(BxAen), in nT, at the

main inducing periods in Figure 1. For the different ocean compositions and thicknesses

of the upper ice I lithosphere/ocean (DI/Docean; Figure 6), the adiabatic response is listed

first. These values are also shown in Figure S6. Following these are the deviations from

the adiabatic case (in %) for the responses including a 100 km ionosphere with Pedersen

conductance of 30 S (Hartkorn & Saur, 2017), then for the ocean with uniform conductivity

set to the mean of the adiabatic ocean (σ), and then for the case with uniform conductivity

set to the value at the ice–ocean interface (σtop). The surface responses of the ionosphere

in the absence of an ocean are listed at the top of the table.
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Ganymede Period (hr): 5.27 10.53 171.57

Bx (nT): 1.76 16.64 0.14

Tb T DI Docean BxAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.000 0.001 0.000 0.007 0.000 0.000

MgSO4 1 wt% Re Im Re Im Re Im

270.7 279.0 25 442 1.598 0.100 14.669 1.293 0.094 0.047

Pedersen 1.598 0.100 14.669 1.293 0.094 0.047

σ = 0.5166 S/m ∆Ae
1 (%) 0.87 -8.82 1.23 -7.04 2.61 1.01

σtop = 0.3890 S/m ∆Ae
1 (%) -0.03 4.54 -0.14 5.86 -9.33 17.09

261.6 266.2 92 276 1.449 0.110 13.326 1.352 0.050 0.057

Pedersen 1.449 0.110 13.326 1.353 0.050 0.057

σ = 0.3322 S/m ∆Ae
1 (%) 0.95 -5.29 1.18 -2.65 2.44 1.41

σtop = 0.2623 S/m ∆Ae
1 (%) 0.08 3.83 0.45 10.74 -22.82 -3.32

MgSO4 10 wt% Re Im Re Im Re Im

270.2 278.3 25 458 1.670 0.037 15.614 0.490 0.122 0.015

Pedersen 1.670 0.037 15.614 0.491 0.122 0.015

σ = 4.0699 S/m ∆Ae
1 (%) 0.29 -10.57 0.41 -9.78 1.48 -3.07

σtop = 3.1150 S/m ∆Ae
1 (%) -0.00 2.03 -0.01 2.84 -0.18 7.55

260.0 263.5 93 282 1.530 0.045 14.262 0.586 0.112 0.019

Pedersen 1.530 0.045 14.262 0.586 0.112 0.019

σ = 2.3476 S/m ∆Ae
1 (%) 0.27 -7.17 0.38 -6.43 1.01 -0.28

σtop = 1.9483 S/m ∆Ae
1 (%) 0.00 1.71 -0.00 2.51 -0.11 15.65

bottom layer: 30 km 20 S/m ∆Ae
1 (%) 0.00 -0.00 0.00 -0.00 -1.20 0.20

Pedersen ∆Ae
1 (%) 0.00 0.10 0.00 0.04 -1.20 0.20

Table S2. Ganymede: Magnetic induction field strengths {Re,Im}(BxAen), in nT, at

the main inducing periods in Figure 1. For the different ocean compositions and thick-

nesses of the upper ice I lithosphere/ocean (DI/Docean; Figure 6), the adiabatic response

is listed first. These values are also shown in Figure S7. Following these are the devia-

tions from the adiabatic case (in %) for the responses including a 100 km ionosphere with

Pedersen conductance of 2 S (Hartkorn & Saur, 2017), then for the ocean with uniform

conductivity set to the mean of the adiabatic ocean (σ), and then for the case with uni-

form conductivity set to the value at the ice–ocean interface (σtop). The surface responses

of the ionosphere in the absence of an ocean are listed at the top of the table.
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Callisto Period (hr): 5.09 10.18 400.33

Bx (nT): 0.17 1.31 0.03

Tb T DI Docean BxAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.013 0.047 0.027 0.193 0.000 0.000

Cowling 0.154 0.065 0.832 0.701 0.000 0.001

MgSO4 1 wt% Re Im Re Im Re Im

257.4 259.6 99 132 0.137 0.015 1.038 0.221 0.000 0.003

Pedersen 0.139 0.017 1.054 0.228 0.000 0.003

Cowling 0.154 0.024 1.159 0.250 0.001 0.004

σ = 0.2307 S/m ∆Ae
1 (%) 0.49 -0.44 0.53 -0.08 1.45 0.96

σtop = 0.1965 S/m ∆Ae
1 (%) 0.06 14.62 -1.03 15.03 -26.08 -13.62

250.8 250.9 128 21 0.040 0.063 0.101 0.317 0.000 0.000

Pedersen 0.068 0.079 0.199 0.459 0.000 0.000

Cowling 0.159 0.055 0.950 0.656 0.000 0.001

σ = 0.0895 S/m ∆Ae
1 (%) 0.04 0.02 0.04 0.03 0.05 0.03

σtop = 0.0874 S/m ∆Ae
1 (%) -3.26 -0.99 -4.12 -1.87 -4.52 -2.28

MgSO4 10 wt% Re Im Re Im Re Im

255.7 256.9 99 130 0.141 0.005 1.094 0.053 0.009 0.011

Pedersen 0.142 0.007 1.098 0.062 0.009 0.012

Cowling 0.151 0.018 1.135 0.118 0.010 0.012

σ = 1.5256 S/m ∆Ae
1 (%) 0.20 -2.91 0.26 -1.74 0.69 0.39

σtop = 1.3789 S/m ∆Ae
1 (%) 0.01 1.12 0.12 3.18 -10.78 -1.59

250.8 250.9 128 21 0.130 0.035 0.847 0.461 0.000 0.001

Pedersen 0.135 0.037 0.897 0.467 0.000 0.001

Cowling 0.160 0.033 1.146 0.419 0.000 0.002

σ = 0.6025 S/m ∆Ae
1 (%) -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

σtop = 0.6062 S/m ∆Ae
1 (%) 0.08 -0.53 0.28 -0.34 1.23 0.61

Table S3. Callisto: Magnetic induction field strengths {Re,Im}(BxAen), in nT, at the

main inducing periods in Figure 1. For the different ocean compositions and thicknesses

of the upper ice I lithosphere/ocean (DI/Docean; Figure 6), the adiabatic response is listed

first. These values are also shown in Figure S6. Following these are the responses (in nT)

including a 100 km ionosphere with {Pedersen,Cowling} conductance of {800,6850} S

(Hartkorn & Saur, 2017), then the deviations from the adiabatic case (in %) for the ocean

with uniform conductivity set to the mean of the adiabatic ocean (σ), and then for the

case with uniform conductivity set to the value at the ice–ocean interface (σtop). The

surface responses of the ionosphere in the absence of an ocean are listed at the top of the

table.
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Europa Period (hr): 5.62 11.23 84.63

Bz (nT): 1.22 15.24 11.97

Tb T DI Docean BzAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.000 0.008 0.000 0.053 0.000 0.006

MgSO4 1 wt% Re Im Re Im Re Im

273.1 273.9 5 117 1.104 0.124 13.409 2.771 3.339 5.049

Pedersen 1.105 0.124 13.412 2.772 3.342 5.052

σ = 0.4533 S/m ∆Ae
1 (%) 0.36 -0.41 0.39 -0.08 0.85 0.50

σtop = 0.4107 S/m ∆Ae
1 (%) 0.10 7.75 -0.45 8.80 -12.31 -3.57

270.4 271.1 30 91 1.057 0.155 12.497 3.574 1.910 4.078

Pedersen 1.057 0.155 12.503 3.575 1.913 4.082

σ = 0.4132 S/m ∆Ae
1 (%) 0.22 -0.10 0.24 0.01 0.55 0.34

σtop = 0.3847 S/m ∆Ae
1 (%) -0.09 6.49 -0.88 6.09 -10.65 -4.23

MgSO4 10 wt% Re Im Re Im Re Im

272.7 274.1 5 124 1.158 0.044 14.268 0.743 10.590 1.916

Pedersen 1.158 0.044 14.268 0.744 10.591 1.916

σ = 3.7646 S/m ∆Ae
1 (%) 0.23 -3.83 0.33 -2.87 0.49 -0.10

σtop = 3.3197 S/m ∆Ae
1 (%) -0.01 2.28 -0.01 2.13 -0.34 11.33

269.8 270.8 30 96 1.101 0.043 13.592 0.709 9.962 2.510

Pedersen 1.101 0.044 13.593 0.711 9.963 2.510

σ = 3.3661 S/m ∆Ae
1 (%) 0.18 -2.30 0.23 -1.35 0.30 0.02

σtop = 3.0763 S/m ∆Ae
1 (%) -0.01 1.41 0.08 2.77 -0.81 7.99

Seawater 0.35165 wt% Re Im Re Im Re Im

274.9 275.7 5 117 1.101 0.134 13.285 3.017 2.893 4.833

Pedersen 1.101 0.134 13.289 3.018 2.896 4.836

σ = 0.4124 S/m ∆Ae
1 (%) 0.41 -0.33 0.44 -0.04 0.96 0.58

σtop = 0.3670 S/m ∆Ae
1 (%) 0.05 9.74 -0.77 10.45 -15.30 -5.17

270.0 270.7 30 91 1.051 0.173 12.245 3.951 1.556 3.755

Pedersen 1.051 0.173 12.252 3.952 1.559 3.759

σ = 0.3651 S/m ∆Ae
1 (%) 0.26 -0.07 0.29 0.03 0.65 0.42

σtop = 0.3339 S/m ∆Ae
1 (%) -0.23 8.27 -1.49 7.33 -13.72 -5.87

Seawater 3.5165 wt% Re Im Re Im Re Im

270.8 271.9 5 119 1.153 0.048 14.192 0.793 10.435 2.358

Pedersen 1.153 0.048 14.193 0.794 10.435 2.358

σ = 3.0760 S/m ∆Ae
1 (%) 0.24 -3.32 0.33 -2.24 0.46 -0.03

σtop = 2.7347 S/m ∆Ae
1 (%) -0.02 2.08 0.04 2.37 -0.74 10.53

268.2 269.1 30 91 1.095 0.045 13.555 0.760 9.695 2.979

Pedersen 1.095 0.046 13.556 0.762 9.696 2.979

σ = 2.8862 S/m ∆Ae
1 (%) 0.18 -1.89 0.22 -0.95 0.28 0.03

σtop = 2.6476 S/m ∆Ae
1 (%) 0.01 1.46 0.10 3.88 -1.26 7.23

Table S4. Europa: Magnetic induction field strengths {Re,Im}(BzAen), in nT, at the

main inducing periods in Figure 1. For the different ocean compositions and thicknesses

of the upper ice I lithosphere/ocean (DI/Docean; Figure 6), the adiabatic response is listed

first. These values are also shown in Figure S6. Following these are the deviations from

the adiabatic case (in %) for the responses including a 100 km ionosphere with Pedersen

conductance of 30 S (Hartkorn & Saur, 2017), then for the ocean with uniform conductivity

set to the mean of the adiabatic ocean (σ), and then for the case with uniform conductivity

set to the value at the ice–ocean interface (σtop). The surface responses of the ionosphere

in the absence of an ocean are listed at the top of the table.
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X - 36 :

Ganymede Period (hr): 5.27 10.53 171.57

Bz (nT): 1.78 2.42 0.38

Tb T DI Docean BzAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.000 0.001 0.000 0.001 0.000 0.000

MgSO4 1 wt% Re Im Re Im Re Im

270.7 279.0 25 442 1.618 0.101 2.137 0.188 0.248 0.122

Pedersen 1.618 0.101 2.137 0.188 0.248 0.122

σ = 0.5166 S/m ∆Ae
1 (%) 0.87 -8.82 1.23 -7.04 2.61 1.01

σtop = 0.3890 S/m ∆Ae
1 (%) -0.03 4.54 -0.14 5.86 -9.33 17.09

261.6 266.2 92 276 1.466 0.112 1.941 0.197 0.131 0.149

Pedersen 1.466 0.112 1.941 0.197 0.131 0.149

σ = 0.3322 S/m ∆Ae
1 (%) 0.95 -5.29 1.18 -2.65 2.44 1.41

σtop = 0.2623 S/m ∆Ae
1 (%) 0.08 3.83 0.45 10.74 -22.82 -3.32

MgSO4 10 wt% Re Im Re Im Re Im

270.2 278.3 25 458 1.690 0.038 2.274 0.071 0.320 0.039

Pedersen 1.690 0.038 2.274 0.071 0.320 0.039

σ = 4.0699 S/m ∆Ae
1 (%) 0.29 -10.57 0.41 -9.78 1.48 -3.07

σtop = 3.1150 S/m ∆Ae
1 (%) -0.00 2.03 -0.01 2.84 -0.18 7.55

260.0 263.5 93 282 1.548 0.045 2.077 0.085 0.294 0.051

Pedersen 1.548 0.045 2.077 0.085 0.294 0.051

σ = 2.3476 S/m ∆Ae
1 (%) 0.27 -7.17 0.38 -6.43 1.01 -0.28

σtop = 1.9483 S/m ∆Ae
1 (%) 0.00 1.71 -0.00 2.51 -0.11 15.65

bottom layer: 30 km 20 S/m ∆Ae
1 (%) 0.00 -0.00 0.00 -0.00 -1.20 0.20

Pedersen ∆Ae
1 (%) 0.00 0.10 0.00 0.04 -1.20 0.20

Table S5. Ganymede: Magnetic induction field strengths {Re,Im}(BzAen), in nT, at

the main inducing periods in Figure 1. For the different ocean compositions and thick-

nesses of the upper ice I lithosphere/ocean (DI/Docean; Figure 6), the adiabatic response

is listed first. These values are also shown in Figure S7. Following these are the devia-

tions from the adiabatic case (in %) for the responses including a 100 km ionosphere with

Pedersen conductance of 2 S (Hartkorn & Saur, 2017), then for the ocean with uniform

conductivity set to the mean of the adiabatic ocean (σ), and then for the case with uni-

form conductivity set to the value at the ice–ocean interface (σtop). The surface responses

of the ionosphere in the absence of an ocean are listed at the top of the table.
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Callisto Period (hr): 5.09 10.18 400.33

Bz (nT): 1.82 0.20 0.14

Tb T DI Docean BzAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.141 0.508 0.004 0.030 0.000 0.001

Cowling 1.677 0.708 0.130 0.110 0.000 0.005

MgSO4 1 wt% Re Im Re Im Re Im

257.4 259.6 99 132 1.489 0.166 0.162 0.034 0.002 0.014

Pedersen 1.511 0.190 0.165 0.036 0.002 0.015

Cowling 1.683 0.265 0.181 0.039 0.003 0.019

σ = 0.2307 S/m ∆Ae
1 (%) 0.49 -0.44 0.53 -0.08 1.45 0.96

σtop = 0.1965 S/m ∆Ae
1 (%) 0.06 14.62 -1.03 15.03 -26.08 -13.62

250.8 250.9 128 21 0.438 0.690 0.016 0.049 0.000 0.001

Pedersen 0.746 0.865 0.031 0.072 0.000 0.002

Cowling 1.738 0.603 0.148 0.102 0.000 0.006

σ = 0.0895 S/m ∆Ae
1 (%) 0.04 0.02 0.04 0.03 0.05 0.03

σtop = 0.0874 S/m ∆Ae
1 (%) -3.26 -0.99 -4.12 -1.87 -4.52 -2.28

MgSO4 10 wt% Re Im Re Im Re Im

255.7 256.9 99 130 1.539 0.057 0.171 0.008 0.046 0.059

Pedersen 1.546 0.079 0.171 0.010 0.047 0.059

Cowling 1.648 0.195 0.177 0.018 0.049 0.060

σ = 1.5256 S/m ∆Ae
1 (%) 0.20 -2.91 0.26 -1.74 0.69 0.39

σtop = 1.3789 S/m ∆Ae
1 (%) 0.01 1.12 0.12 3.18 -10.78 -1.59

250.8 250.9 128 21 1.420 0.386 0.132 0.072 0.000 0.006

Pedersen 1.476 0.399 0.140 0.073 0.000 0.006

Cowling 1.743 0.358 0.179 0.065 0.001 0.010

σ = 0.6025 S/m ∆Ae
1 (%) -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

σtop = 0.6062 S/m ∆Ae
1 (%) 0.08 -0.53 0.28 -0.34 1.23 0.61

Table S6. Callisto: Magnetic induction field strengths {Re,Im}(BzAen), in nT, at the

main inducing periods in Figure 1. For the different ocean compositions and thicknesses

of the upper ice I lithosphere/ocean (DI/Docean; Figure 6), the adiabatic response is listed

first. These values are also shown in Figure S6. Following these are the responses (in nT)

including a 100 km ionosphere with {Pedersen,Cowling} conductance of {800,6850} S

(Hartkorn & Saur, 2017), then the deviations from the adiabatic case (in %) for the ocean

with uniform conductivity set to the mean of the adiabatic ocean (σ), and then for the

case with uniform conductivity set to the value at the ice–ocean interface (σtop). The

surface responses of the ionosphere in the absence of an ocean are listed at the top of the

table.
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